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1. Introduction

Singular elliptic problems have been intensively studied in the last decades, and
have drawn attention in many types of contexts and applications, including heat
conduction theory, boundary layer phenomena, biological pattern formation, mor-
phogenesis and chemical heterogeneous catalysts (see [8, 32,35,36,38,41]).

In 2023 A. Khaleghi and A. Razani [26] studied the following (p(x), q(x))-
biharmonic problem containing a singular term with exponent constant{

∆2
p(x)u+∆2

q(x)u+ θ(x) |u|
s−2u

|x|2s = λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN (N > 2) is a bounded domain with boundary of class C1; p, q ∈
C+(Ω̄), θ ∈ L∞(Ω) is a real positive function, 1 < s < N/2, λ is a positive parame-
ter, and f is a Carathéodory function. They proved the existence and multiplicity
of weak solutions of this problem, through the use of variational approaches and
critical point results.

Also in [3], A. Ayoujil et al, examined a class of (p1(·), p2(·))-biharmonic of the
form ∆

(
|∆u|p1(x)−2∆u

)
+∆

(
|∆u|p2(x)−2∆u

)
= f(x, u) in Ω,

u = ∆u = 0 on ∂Ω.

Several studies have focused on different equations in the p−q−laplacien oprator
(see [9, 24, 28, 33, 43]). However in [40], Honghui Yin and Zuodong Yang, studied
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the following problem.−∆pu−∆qu = θV (x)|u|r−2u+ |u|p∗−2u+ λf(x, u), x ∈ Ω,

u = 0 x ∈ ∂Ω,

They showed that the problem has an infinite weak solution. Additionally, they
obtained some results for the case 1 < q < p < r < p∗, by using variational
methods.

Weihua Wang [39] obtained multiple solutions for △2
pu = µ|u|r−2u

|x|s + f(x, u)

with Dirichlet boundary conditions, and the same problem with Navier boundary

conditions, where 2 < 2p < N, p ≤ r < p∗(s) = (N−s)p
N−2p ≤ p∗(0) := p∗, µ ≥ 0.

Over the past few years, there has been a lot of interest in the p(x)-biharmonic
problem involving the s(x)−Hardy weight. It is the reason why this paper is a
significant step in that direction. In this article, we focus on a particular class of
singular fourth-order elliptic problems with no-flux boundary conditions.

(Pλ)


∆2

p(x)u+∆2
q(x)u+ a(x)|u|p(x)−2u = µm(x)

|u|s(x)−2u

|x|s(x)
+ λf(x, u) in Ω,

u = constant, ∆u = 0, on ∂Ω,∫
∂Ω

∂
∂n

(
|∆u|p(x)−2∆u

)
+ ∂

∂n

(
|∆u|q(x)−2∆u

)
ds = 0,

where ∆2
p(x)u is the p(x)-biharmonic operator, Ω ⊂ RN (N > 2) is a smooth

bounded domain and 0 ∈ Ω, λ is a real positive parameter, and the fonctions
p(x), q(x), r(x) ∈ C(Ω).

We start by giving the assumptions that we will consider for our problem (PV ).
H(r,q,p) 1 < q− < q+ < p− < p+ < N

2 ,
where h− := min

x∈Ω̄
h(x), h+ := max

x∈Ω̄
h(x).

(s) p+ < s− ≤ s(x) < p⋆2(x) for all x ∈ Ω, and s+ − 1
2 < s−.

(a) a ∈ L∞(Ω) and there exists a0 > 0 such that a(x) ≥ a0 for all x ∈ Ω.

(f1)
|f(x, t)| ≤ a1 + a2|t|z(x)−1 for all (x, t) ∈ Ω× R,

where a1, a2 > 0 and 1 < z(x) < p−, ∀x ∈ Ω.

(m) m ∈ Lγ(x)(Ω) is a changing sign function, where γ ∈ C+(Ω) and
1

p⋆
2(x)

+ 1
γ(x) <

1
s(x) for all x ∈ Ω.

This paper has the following structure. In Section 2, we list a few standard
definitions, fundamental properties, and background information on generalized
Lebesgue-Sobolev spaces. In Section 3 under the case of the variable exponent,
we prove the Sobolev-Hardy type compact embedding theorem and provide some
preliminary results.

We get the existence of one weak solution nontrivial for the problem (Pλ) in
Section 4. After that in Section 5, we show that the problem (Pλ) has two and
three solutions.



(p(x),q(x))-Biharmonic Problems with Hardy Weight with Two Parameters 825

2. Preliminaries

First, we review some fundamental knowledge on the variable exponent Lebesgue-
Sobolev. In this paper, we assume that,

(H) p verifies 1 < p− ≤ p+ < ∞ and is log-Hölder continuous function in Ω.

M(Ω) is the set of all real functions that are measurable and defined on Ω.

We introduce the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u ∈ M(Ω) :

∫
Ω

|u|p(x) dx < ∞
}
,

with the norm

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣u(x)
µ

∣∣∣p(x)dx ≤ 1

}
.

Now, we get the inequalities of Hölder∣∣∣ ∫
Ω

u(x)v(x) dx
∣∣∣ < 2|u|p(x)|v|p′(x), (2.1)

for all u ∈ Lp′(x)(Ω) and v ∈ Lp(x)(Ω) and Lp′(x)(Ω) the conjugate space of Lp(x)(Ω).
Additionally, we have that for any u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω) and w ∈ Lr(x)(Ω), if
1

p(x) +
1

q(x) +
1

r(x) = 1, ∫
Ω

|uvw|dx < 3|u|p(x)|v|q(x)|w|r(x), (2.2)

(see [19, Proposition 2.4 and Proposition 2.5]). There will be a need for the propo-
sition that follows.

Proposition 2.1. (see [13, Lemma 2.1]). For p1, p2 ∈ M(Ω), such that p1 ∈
L∞(Ω) and 1 < p1(x)p2(x) ≤ ∞, for a.e. x ∈ Ω. Let u ∈ Lp2(x)(Ω) such that
u ̸= 0. Then

(i) |u|p1(·)p2(·) ≤ 1, then |u|p
+
1

p1(·)p2(·) ≤
∣∣∣|u|p1(·)

∣∣∣
p2(·)

≤ |u|p
−
1

p1(·)p2(·),

(ii) |u|p1(·)p2(·) ≥ 1, then |u|p
−

p1(·)p2(·) ≤
∣∣∣|u|p1(·)

∣∣∣
p2(·)

≤ |u|p
+
1

p1(·)p2(·).

Moving on to the definition of W k,p(x)(Ω) (the Sobolev space with variable expo-
nent)

W k,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k

}
,

endowed with the norm

∥u∥Wk,p(x)(Ω) =
∑
|α|≤k

|Dαu|p(x),

is a reflexive and separable Banach space. (See [27]).

We have C∞(Ω) is dense in W k,p(x)(Ω), and denote by W
1,p(x)
0 (Ω) the closure

of C∞(Ω) in W 1,p(x)(Ω), (see [10, Section 6.5.3] and [12, Theorem 3.7]).
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Thereafter, we consider the weighted variable exponent of Lebesgue space, which
is defined as follows:

Let b ∈ M(Ω) and b(x) > 0 for all x ∈ Ω. We define

L
p(x)
b(x)(Ω) =

{
u ∈ M(Ω) :

∫
Ω

b(x)|u(x)|p(x)dx < ∞
}

with the norm,

|u|
L

p(x)

b(x)
(Ω)

= |u|(p(x),b(x)) = inf

{
γ > 0 :

∫
Ω

b(x)
∣∣∣u(x)

γ

∣∣∣p(x)dx ⩽ 1

}
.(

L
p(x)
b(x)(Ω), | · |Lp(x)

b(x)

)
is a Banach space. For properties of this norm, (see [18]).

We will need the following theorem.

Theorem 2.1. (see [10, Section 6] and [18, Theorem 2.3]). Let q ∈ C(Ω) with

1 < q(x) ≤ p∗2(x) for each x ∈ Ω, (p∗2(x) =
Np(x)

N−2p(x) , if p(x) <
N

2
). Then there is a

continuous embedding compact W 2,p(x)(Ω) ↪→ Lq(x)(Ω).

In this work, we opted for the norm:

∥u∥a = inf

{
µ > 0 :

∫
Ω

(∣∣∣∆u(x)

µ

∣∣∣p(x) + a(x)
∣∣∣u(x)

µ

∣∣∣p(x)) dx ≤ 1

}
,

this norm is equivalent to the usual norm ∥ · ∥W 2,p(x)(Ω). ( See [16, Remark 2.1]).

We present the following subspace of W 2,p(·)(Ω).

Y =
{
u ∈ W 2,p(x)(Ω) : u|∂Ω ≡ constant

}
=

{
u+ c : u ∈ W 2,p(x)(Ω) ∩W

1,p(x)
0 (Ω), c ∈ R

}
.(

Y, ∥ · ∥W 2,p(x)(Ω)

)
is a reflexive and separable Banach space (see [6, Theorem 4]).

In the space Y , we will search for the weak solution of our problem. As a result, we
take into account the functional Θ : Y → R such that

Θ(u) =

∫
Ω

[
|∆u|p(x) + a(x)|u|p(x)

]
dx.

The following inequalities have a significant connection to the norm ∥.∥a, (See for
example [6, Proposition 1]). For u ∈ W 2,p(x)(Ω) we have:

∥u∥a ≥ 1 ⇒ ∥u∥p
−

a ≤ Θ(u) ≤ ∥u∥p
+

a . (2.3)

∥u∥a ≥ 1 ⇒ ∥u∥p
−

a ≤ Θ(u) ≤ ∥u∥p
+

a . (2.4)

Proposition 2.2. (see [18, Theorem 2.2]) Assume that p1(x), p2(x) ∈ C+(Ω). If
p1(x) ≤ p2(x), then W 2,p1(x)(Ω) can be imbedded into W 2,p2(x)(Ω) continuously.

Proposition 2.3. ( [15, Proposition 2.5] and [1, Proposition 1.6]) Λp : Y → R is
a functional defined by

Λp(u) =

∫
Ω

1

p(x)

[
|∆u|p(x) + a(x)|u|p(x)

]
dx+

∫
Ω

1

q(x)
|∆u|q(x)dx,

which verifies the following assumptions.
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(i) Λ is of class C1, with the following Gâteaux derivative

⟨Λ′(u), φ⟩ =
∫
Ω

|∆u|p(x)−2∆u∆φdx+

∫
Ω

|∆u|q(x)−2∆u∆φdx

+

∫
Ω

a(x)|u|p(x)−2uφdx.

(ii) For any u ∈ Y and any subsequence (un)n ⊂ Y such that un ⇀ u in Y , there
holds

Λ(u) ≤ lim
n→∞

infΛ(un).

(iii) The mapping Λ′ : Y → Y ′ is of type (S+), that is un ⇀ u and

lim sup
n→∞

⟨Λ′(un), (un − u)⟩ ≤ 0 implies that un −→ u.

3. Proof of main result

In the present paper, the lemma that follows is important.

Lemma 3.1. Let us consider r(x), γ(x) ∈ C+(Ω), and

r(x) <
N − γ(x)

N
p⋆2(x) = p⋆2(γ) for all x ∈ Ω. (3.1)

Then an embedding W 2,p(x)(Ω) ↪→ L
r(x)

|x|−γ(x)(Ω) is compact.

Proof. We notice |x|−γ(x) ∈ L
N−ϵ
γ(x) (Ω) such that ϵ is a positive constant small

enough. Let u ∈ W 2,p(x)(Ω). Set h(x) =
(

N−ϵ
γ(x)

)′

r(x) = (N−ϵ)r(x)
N−ϵ−γ(x) . Then (3.1)

implies h(x) < p∗2(x) and by Theorem 2.3 (in [18]) there is a compact embedding

W 2,p(x)(Ω) ↪→ Lh(x)(Ω), then for u ∈ W 2,p(x)(Ω) we have |u(x)|r(x) ∈ L
N−ϵ

N−γ(x)−ϵ (Ω)
and, by inequality (2.1), we deduce∫

Ω

|u|r(x)

|x|γ(x)
dx ⩽ 2

∣∣∣|x|−γ(x)
∣∣∣
N−ϵ
γ(x)

∣∣∣|u|r(x)∣∣∣
(N−ϵ)

N−γ(x)−ϵ

< ∞.

This proves W 2,p(x)(Ω) ⊂ L
r(x)

|x|−γ(x)(Ω). Now let (un) ⊂ W 2,p(x)(Ω) and un ⇀ 0 in

W 2,p(x)(Ω). Using Theorem 2.1, we conclude that un −→ 0 in Lh(x)(Ω) and from

this we get
∣∣∣|un

∣∣∣r(x)∣∣∣
N−ϵ

N−γ(x)−ϵ

−→ 0. Hence, we have

∫
Ω

|u|r(x)

|x|γ(x)
dx ⩽ 2

∣∣∣|x|−γ(x)
∣∣∣
N−ϵ
γ(x)

∣∣∣|u|r(x)∣∣∣
N−ϵ

N−γ(x)−ϵ

−→ 0.

That implies
∣∣∣un

∣∣∣
(r(x),|x|−γ(x))

−→ 0. Therefore, the embedding W 2,p(x)(Ω) ↪→

L
r(x)

|x|−γ(x)(Ω) is compact. The proof is complete.

In addition to the density result and the boundary conditions, we apply Green’s
formula and the fact that Y is a closed subspace of

(
W 2,p(x)(Ω), ∥.∥W 2,p(x)(Ω)

)
. Here

is the definition that we provide:
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Definition 3.1. u ∈ Y is a weak solution of the problem (Pλ) if∫
Ω

|∆u|p(x)−2∆u∆υdx+

∫
Ω

a(x)|u|p(x)−2uυdx+

∫
Ω

|∆u|q(x)−2∆u∆υdx

− µ

∫
Ω

m(x)
|u|s(x)−2

|x|s(x)
uυdx− λ

∫
Ω

f(x, u)udx = 0

for all υ ∈ Y .

We apply the critical point theory to problem (Pλ) in order to find a weak
solution. As a result, we associate the functional

Tλ(u) = J1(u)− λI1(u),

where

J1(u) = Λp(u) +

∫
Ω

1

q(x)
|∆u|q(x)dx− µ

∫
Ω

m(x)

s(x)

|u|s(x)

|x|s(x)
dx,

and

I1(u) =

∫
Ω

F (x, u)dx.

From (i)-(ii) in Proposition 2.3 and Lemma 3.1, we can conclude that the energy
functional Tλ ∈ C1(Y,R) and is weakly lower semicontinuity. Its Gâteaux derivative
is defined as follows:

⟨T
′

λ(u), υ⟩ =
∫
Ω

|∆u|p(x)−2∆u∆υdx+

∫
Ω

a(x)|u|p(x)−2uυdx

+

∫
Ω

|∆u|q(x)−2∆u∆υdx− µ

∫
Ω

m(x)
|u|s(x)−2

|x|s(x)
uυdx

− λ

∫
Ω

f(x, u)udx,

for all υ ∈ Y .

4. The existence result

The following theorem provides a base for our first solution of the problem (Pλ).

Theorem 4.1. [37] Given a reflexive real Banach space X, consider two Gâteaux
differentiable functionals Φ,Ψ : X → R, such that Φ is coercive, sequentially weakly
lower semicontinuous, and strongly continuous. Further, suppose that Ψ is an upper
semicontinuous sequentially weak function. Put

φ(r) := inf
u∈Φ−1(]−∞,r[)

(
supv∈Φ−1(1−∞,r) Ψ(v)

)
−Ψ(u)

r − Φ(u)
.

Then, for every r > infX Φ and every λ ∈] 0, 1/φ(r)[,the restriction of Jλ := Φ−λΨ
to Φ−1(]−∞, r[) admits a global minimum, which is a critical point (local minimum)
of Jλ in X.
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Theorem 4.2. Let f : Ω×R → R is a carathéodory and that (f1) is satisfied. Then
there are µ⋆ and λ⋆ two positive constants, such that the problem (Pλ) admits at
least one non-trivial weak solution uλ ∈ Y for each µ ∈]0, µ⋆[ and λ ∈]0, λ⋆[.

Proof. First we need to prove that J1 is coercive for every λ > 0 and µ > 0.
Since s+ − 1

2 < s−, then there exists θ such that s+ − 1
2 < θ < s−, wiche implies

2(s− − θ) < 2(s+ − θ) < 1. Let us take σ any measurable function satisfying

max{ γ(x)

1 + θγ(x)
,

p⋆2(s(x))

p⋆2(s(x)) + θ − s(x)
}<σ(x)<min{ γ(x)p⋆2(s(x))

p⋆2(s(x)) + θγ(x)
,

1

1 + θ − s(x)
},

for all x ∈ Ω and

θ(
σ+

σ− + 1) ≤ s−.

This implies that σ ∈ L∞(Ω) and 1 < σ(x) < γ(x), for any x ∈ Ω. Then, we have

1 <
θσ(x)γ(x)

γ(x)− σ(x)
< p⋆2(s(x)), 1 <

(s(x)− θ)σ(x)

σ(x)− 1
< p⋆2(s(x)), ∀x ∈ Ω.

So there exist constants C1 and C2 such that∣∣∣ u|x| ∣∣∣ θσ(x)γ(x)
γ(x)−σ(x)

≤ C1∥u∥a,

∣∣∣ u|x| ∣∣∣ (s(x)−θ)σ
σ(x)−1

≤ C2∥u∥a,

for all x ∈ Ω. So we have the following∣∣∣ ∫
Ω

m(x)

s(x)

|u|s(x)

|x|s(x)
dx

∣∣∣ ≤ 1

s−

∫
Ω

|m(x)
|u|θ

|x|θ
| |u|

s(x)−θ

|x|s(x)−θ
dx

≤ 2

s−

∣∣∣m(x)
|u|θ

|x|θ
∣∣∣
σ(x)

∣∣∣ |u|s(x)−θ

|x|s(x)−θ

∣∣∣
σ(x)

σ(x)−1

≤ 2

s−

∣∣∣|m(x)|σ(x)
∣∣∣ 1

σ−

γ(x)
σ(x)

∣∣∣ |u|θσ(x)|x|θσ(x)
∣∣∣ 1

σ−

γ(x)
γ(x)−σ(x)

∣∣∣ |u|s(x)−θ

|x|s(x)−θ

∣∣∣
σ(x)

σ(x)−1

,

for all u ∈ Y , with
∣∣∣m(x)

|u|θ

|x|θ
∣∣∣
σ(x)

> 1. Thus, we have

∣∣∣m(x)
|u|θ

|x|θ
∣∣∣
σ(x)

≤ 1 +
2

s−

∣∣∣|m(x)|σ(x)
∣∣∣ 1

σ−

γ(x)
σ(x)

∣∣∣ |u|θσ(x)|x|θσ(x)
∣∣∣ 1

σ−

γ(x)
γ(x)−σ(x)

≤ 1 +
2

s−
(1 + |m|

σ+

σ−
σ(x))(1 +

∣∣∣ |u||x|

∣∣∣ θσ+

σ−

θσ(x)γ(x)
γ(x)−σ(x)

) ≤ C3(1 + ∥u∥
θσ+

σ− )

for any u ∈ Y . Similarly∣∣∣ |u|s(x)−θ

|x|s(x)−θ

∣∣∣
σ(x)

σ(x)−1

≤ 1 +
∣∣∣ u|x| ∣∣∣s

+−θ

σ(s(x)−θ)
σ(x)−1

≤ 1 + C4∥u∥s
+−θ, ∀u ∈ Y.
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By the above information, we deduce that∣∣∣ ∫
Ω

m(x)

s(x)

|u|s(x)

|x|s(x)
dx

∣∣∣ ≤ C3(1 + ∥u∥
θσ+

σ− )(1 + C4∥u∥s
+−θ)

for all u ∈ Y .
Since

∫
Ω

1
q(x) |∆u|q(x)dx ≥ 0, with ∥u∥ > 1 we have

|J1(u)| ≥
1

p+
∥u∥p

−
− µC3(1 + ∥u∥

θσ+

σ− )(1 + C4∥u∥s
+−θ)

≥ 1

p+
∥u∥p

−
− C5µ(1 + ∥u∥

2θσ+

σ− + ∥u∥2(s
+−θ)). (4.1)

Since p− > 1 > 2(s+ − θ) > 2θσ+

σ− , then J1(u) → +∞ as ∥u∥ → +∞. Thus J1
is coercive. Clearly we have infu∈Y J1(u) ≤ 0. Now we can set r ∈]0,+∞[, and
consider the function

χ(r) =
supu∈J−1

1 (]−∞,r[) I1(u)

r
.

By the above inequality, for 0 < µ <
1

3p+C5
= µ⋆, and ∥u∥ ≥ 1 we obtain

|J1(u)| ≥
1

p+
∥u∥p

−
− µC5(1 + 2∥u∥2(s

+−θ)),

≥ (
1

p+
− 3µC5)∥u∥2(s

+−θ).

Then for J1(u) < r, we get

∥u∥ ≤ (
r

1
p+ − µ3C5

)
1

2(s+−θ) ∀u ∈ Y. (4.2)

Taking into account hypothesis (f1), there exists C and Cz, such that

I1(u) =

∫
Ω

F (x, u)dx ≤ a1∥u∥L1(Ω) +
a2
z−

∥u∥z
±

Lz(x)(Ω)

≤ Ca1∥u∥+ Cz
a2
z−

∥u∥z
±
. (4.3)

Now, we have

I1(u) < a1C(
r

1
p+ − 3µC5

)
1

2(s+−θ) +
a2Cz

z−
(

r
2
p+ − 3µC5

)
z±

2(s+−θ)

for every u ∈ Y , such that J1(u) < r and ∥u∥ ≥ 1. Hence

I1(u) < C6 + a1C(
r

1
p+ − 3µC5

)
1

2(s+−θ) +
a2Cz

z−
(

r
2
p+ − 3µC5

)
z±

2(s+−θ)

with C6 = a1 +
a2Cz

z− .

sup
u∈(]−∞,r[)

I1(u) ≤C6 + a1Cr
1

2(s+−θ) (
1

p+
− 3µC5)

1

2(θ−s+)



(p(x),q(x))-Biharmonic Problems with Hardy Weight with Two Parameters 831

+
a2Cz

z−
r

z±
2(s+−θ) (

1

p+
− 3µC5)

z±
2(θ−s+) .

Then

χ(r) ≤C6

r
+ a1Cr

1

2(s+−θ)
−1

(
1

p+
− 3µC5)

1

2(θ−s+)

+
a2Cz

z−
r

z±
2(s+−θ)

−1
(
1

p+
− 3µC5)

z±
2(θ−s+) ,

for every r > 0. In particular

χ(ξ2(s
+−θ)) ≤ C6

ξ2(s+−θ)
+ a1C(

1

p+
− 3µC5)

1

2(θ−s+) ξ1−2(s+−θ)

+
a2Cz

z−
(
1

p+
− 3µC5)

z±
2(θ−s+) ξz

±−2(s+−θ). (4.4)

Now, observe that

φ(ξ2(s
+−θ)) = inf

u∈J−1
1 (]−∞,ξ2(s+−θ)[)

supv∈J−1
1 (]−∞,r[) I1(v)− I1(u)

r − J1(u)
≤ χ(ξ2(s

+−θ),

(4.5)

because there exists u0 ∈ J−1
1 (] − ∞, ξ2(s

+−θ[) such that J1(u0) = I1(u0) = 0. In
conclusion, the inequalities (4.4) and (4.5), give us

φ(ξ2(s
+−θ)) ≤ χ(ξ2(s

+−θ)) ≤ C6

ξ2(s+−θ)
+ a1C(

1

p+
− 3µC5)

1

2(θ−s+) ξ1−2(s+−θ)

+
a2Cz

z−
(
1

p+
− 3µC5)

z±
2(θ−s+) ξz

±−2(s+−θ) =
1

λ⋆
<

1

λ
.

Otherwise,

λ ∈
]
0,

z−ξ1−2(s+−θ)

z−C6ξ + z−a1C( 1
p+ − 3µC5)

1

2(θ−s+) + a2Cz(
1
p+ − 3µC5)

z±
2(θ−s+) ξz±−1

[
⊆]0,

1

φ(ξ2(s+−θ))
[.

Then by Theorem 4.1, there exists a function uλ ∈ J−1
1 (]−∞, ξ2(s

+−θ)[) such that

T ′
λ(uλ) = J ′

1(uλ)− λI ′1(uλ) = 0,

and, specifically, the restriction of Tλ to J−1
1 (]−∞, ξ2(s

+−θ)[) has a global minimum
represented by uλ.

It remains to show that uλ is non-trivial. We have two cases. If f(x, 0) = 0,

then there exists φ > 0 such that tφ ∈ J−1
1 (] − ∞, ξ2(s

+−θ)[) for t ∈ (0, 1) small
enough, we have

Tλ(tφ) ≤
tp

−

p−
∥φ∥p

±
+

Cqt
q−

q−
∥φ∥q

±
− ts

+

s+

∫
Ω

m(x)
|φ|s(x)

|x|s(x)
dx− a1t

∫
Ω

|φ|dx
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− a2
tz

+

z+

∫
Ω

|φ|z(x)dx

Since z+ < q− < p− < s+ and for t small enough, we have Jλ(tφ) < 0. Thus
Jλ(uλ) < Jλ(tφ) < 0 = Jλ(0).

Else, if f(x, 0) ̸= 0 in Ω, the function uλ cannot be trivial. Hence for µ ∈ [0, µ⋆[
and for every λ ∈ [0, λ⋆[, the problem (Pλ) admits a non-trivial solution faible
uλ ∈ Y .

5. The multiplicity result

Theorem 5.1. (see [4, Theorem 3.2]) Assume that X is a real Banach space and
that there are two continuously Gâteaux differentiable functionals Φ,Ψ : X → R
such that Φ is bounded from below and Φ(0) = Ψ(0) = 0. Consider that r > 0 and
assume that for every

λ ∈]0, r

supu∈Φ−1(]−∞,r[) Ψ(u)
[,

the functional Iλ := Φ−λΨ is unbounded from below and satisfies the Palais-Smale
condition. Then, for every

λ ∈]0, r

supu∈Φ−1(]−∞,r[) Ψ(u)
[,

the functional Iλ admits two different critical points.

Theorem 5.2. Let f : Ω × R → R be a carathéodory with f(x, 0) = 0 in Ω, and
satisfy (f1). There exist two positive constants, µ⋆ and λ⋆, such that the problem
(Pλ) has at least two distinct nontrivial weak solutions in Y , for every µ ∈]0, µ⋆[
and λ ∈]0, λ⋆[.

Lemma 5.1. The functional Tλ verifies the Palais-Smale condition in Y .

Proof. Let us assume that there is a convergent subsequence {un} ⊆ Y . Utilizing
(f1) and the Hölder inequality, we obtain

J1(u) =

∫
Ω

F (x, u(x))dx ≤ a1

∫
Ω

|u|dx+
a2
z−

∫
Ω

|u|z(x)dx

≤ a1C∥u∥+ a2Cz

z−
∥u∥z

±
.

From (4.1), one has

< Tλ(un), un > =< I1(un), un > −λ < J1(un), un >

≥ 1

p+
∥un∥p

±
− C5µ(1 + ∥un∥

2θσ+

σ− + ∥un∥2(s
+−θ))

− λ
(
a1C∥un∥+

a2Cz

z−
∥un∥z

±
)
.

Then, by applying the second property of (P.S), we have

∥u∥p
±
≤ C5µ(1 + ∥un∥

2θσ+

σ− + ∥un∥2(s
+−θ)) + λ

(
a1C∥un∥+

a2Cz

z−
∥un∥z

±
)
,
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and since 2θσ+

σ− < 2(s+ − θ) < 1 < z± < p±, it follows that {un} is bounded in Y .

Consequently, there is a subsequence still indicated by {un}, and u ∈ Y such
that

un ⇀ u in Y as n → ∞, (5.1)

then

lim
n→∞

< T ′
λ(un), un − u >= 0.

Specifically, we have

0 = lim
n→∞

(∫
Ω

|∆un|p(x)−2∆un∆(un − u)dx+

∫
Ω

|∆un|q(x)−2∆un∆(un − u)dx

+

∫
Ω

a(x)
|un|p(x)−2

|x|p(x)
un(un − u)dx− µ

∫
Ω

m(x)
|un|s(x)−2

|x|α(x)
un(un − u)dx

− λ

∫
Ω

f(x, un)(un − u)dx
)
.

By Hölder inequality (2.2), we get∣∣∣ ∫
Ω

m(x)
|un|s(x)−2

|x|s(x)
un(un − u)dx

∣∣∣ ≤ 2
∣∣∣m(x)

|un|s(x)−1

|x|s(x)−1

∣∣∣
s′(x)

∣∣∣un − u

|x|

∣∣∣
s(x)

≤ 3|m|γ(x)
∣∣∣ |un|s(x)−1

|x|s(x)−1

∣∣∣
v(x)

∣∣∣un − u

|x|

∣∣∣
s(x)

,

where v(x) =
s(x)

γ(x)(s(x)− 1)
, then by using Proposition 2.1 and Lemma 3.1 we

obtain∣∣∣ |un|s(x)−1

|x|s(x)−1

∣∣∣
v(x)

≤
∣∣∣un

|x|

∣∣∣s±−1

(s(x)−1)v(x)
=

∣∣∣un

|x|

∣∣∣s±−1

s(x)

γ(x)

≤
(
C s

γ
∥un∥(

s
γ )±

)(s±−1)

.

Since (un) is bounded in Y , there exists a constant C ′ such that,∣∣∣ |un|s(x)−1

|x|s(x)−1

∣∣∣
v(x)

≤ C ′.

Thus to show that lim
n−→∞

∣∣∣ ∫
Ω

m(x)
|un|s(x)−2

|x|s(x)
un(un − u)dx

∣∣∣ = 0, we prove that

lim
n−→∞

∣∣∣un − u

|x|

∣∣∣
s(x)

= 0.

For every ϵ > 0 we have∫
Ω

|un − u|s(x)

|x|s(x)
dx =

∫
B(0,ϵ)

|un − u|s(x)

|x|s(x)
dx+

∫
Ω⧹B(0,ϵ)

|un − u|s(x)

|x|s(x)
dx

≤
∫
B(0,ϵ)

|un − u|s(x)

|x|s(x)
dx+

( 1

ϵs+
+

1

ϵs−

)∫
Ω

|un − u|s(x)dx
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and due to embedding Y ↪→ Ls(x)(Ω), we get
(

1

ϵs+
+ 1

ϵs−

)
|un − u|s(x)s(x) → 0 as

n → +∞.
However, ∫

B(0,ϵ)

|un − u|s(x)

|x|s(x)
dx =

∫
Ω

χB(0,ϵ)
|un − u|s(x)

|x|s(x)
dx,

we have s+ < p⋆2 then there exists α such that s+ < α < p⋆2.
Lemma 3.1, Proposition 2.1, and Hölder inequality allow us to deduce∫

Ω

|un − u|s(x)

|x|s(x)
dx ≤ 2|B(0, ϵ)|

α
α−s(x)

∣∣∣ |un − u|s(x)

|x|s(x)
∣∣∣

α
s(x)

+ o(n)

≤ 2|(B(0, ϵ)|
α

α−s−
(∣∣∣ |un − u|

|x|

∣∣∣s+
α

+
∣∣∣ |un − u|

|x|

∣∣∣s−
α

)
+ o(n)

≤ Cϵ
Nα

α−s− (∥un − u∥s
+

a + ∥un − u∥s
−

a ) + o(n).

Since (un) is bounded in Y ,then ∥un − u∥a ≤ M for all n ∈ N, which M > 0.
Consequently,∫

Ω

|un − u|s(x)

|x|s(x)
dx ≤ Cϵ

Nα

α−s− (Ms+ +Ms−) + o(n),

thus, for every ϵ > 0,

lim
n→∞

∫
Ω

|un − u|s(x)

|x|s(x)
dx ≤ Cϵ

Nα

α−s− (Ms+ +Ms−),

which implies that, for ϵ → 0

lim
n−→∞

∣∣∣un − u

|x|

∣∣∣
s(x)

= 0.

Then

lim
n−→∞

∣∣∣ ∫
Ω

m(x)
|un|s(x)−2

|x|s(x)
un(un − u)dx

∣∣∣ = 0.

From (f1), Hölder inequality and Proposition 2.1 we have∣∣∣ ∫
Ω

f(x, un)(un − u)dx
∣∣∣ ≤ C∥un − u∥L1 + 2C

∣∣∣|un|z(x)−1
∣∣∣
z′(x)

|un − u|z(x)

≤ C∥un − u∥L1 + 2C
(
|un|z

+−1
z(x) + |un|z

−−1
z(x)

)
|un − u|z(x).

Using the compact embedding Y ↪→ L1(Ω) and Y ↪→ Lr(x)(Ω), we obtain

lim
n−→∞

∫
Ω

f(x, un)(un − u)dx = 0.

We infer from (a) and (2.1) that∣∣∣ ∫
Ω

a(x)|un|p(x)−2un(un − u)dx
∣∣∣ ≤ 2∥a∥∞

∣∣∣|un|p(x)−1
∣∣∣
p′(x)

|un − u|p(x).
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Using the compact embedding Y ↪→ Lp(x)(Ω), we find

lim
n−→∞

∫
Ω

a(x)|un|p(x)−2un(un − u)dx = 0.

Therefore, we arrive at

lim
n−→∞

∫
Ω

(|∆un|p(x)−2 + |∆un|p(x)−2)∆un∆(un − u)dx = 0.

Consequently, Proposition 2.3 and the weak convergence (5.1) suggest that un −→ u
in Y as n −→ +∞.

This leads us to say that Tλ satisfies the palais-smale condition.
Proof. [Proof of theorem 5.2.] All theorem 5.1 hypothesis has been proved. Then,
Tλ admits at least two different critical points, which are the weak solutions of
problem (Pλ), for every λ ∈]0, λ⋆[.

Theorem 5.3. (see [5, Theorem 2.1]) X is a reflexive real Banach space. Let
Ψ : X → R be a continuously Gâteaux differentiable whose Gâteaux derivative
is compact. Let Φ : X → R be a coercive, continuously Gâteaux differentiable
and sequentially weakly lower semi-continuous functional whose Gâteaux derivative
admits a continuous inverse on X∗ such that

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Let r > 0 and x̄ ∈ X, such that r < Φ(x̄), and

i)
supΦ(x)<r Ψ(x)

r < Ψ(x)
Φ(x) .

ii) for each λ ∈ Λr :=] Φ(x̄)
Ψ(x̄) ,

r
supΦ(x)<r Ψ(x) [ , the functional Iλ := Φ− λΨ is coer-

cive.

Then, for every λ ∈ Λr, the functional Φ − λΨ has at least three different critical
points in X.

We shall use the following assumption:

(f2) There exists ν(x) such that p+ < ν− < ν(x) < p⋆2(x), and

lim sups→0 sup
x∈Ω

F (x, s)

|s|ν(x)
< +∞.

Theorem 5.4. Assume that H(p, q, s) (a), (m), (f1) and (f2) hold. For f(x, 0) = 0
in Ω there exist several positive constants λ⋆ , λ and µ⋆, for every µ ∈]0, µ⋆[ and
λ ∈]λ, λ⋆[, the problem (Pλ) has at least three different solutions.

Proof. Fix µ ∈]0, µ⋆[. By the condition (f2), there exists ζ ∈ [0, 1], and C7 such
that

F (x, s) < C7|s|ν(x) for all s ∈ [−ζ, ζ] a.e x ∈ Ω,

and by (f1), then there exists M > 0, such that

F (x, s) < M |s|ν
−

for all s ∈ R.
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On the other hand, we have∫
Ω

F (x, u)dx < M

∫
Ω

|u|ν
−
dx ≤ C7∥u∥ν

−
≤ C8r

ν−
2(s+−θ) ,

when ∥u∥ ≤ (
r

1
p+ − µ3C6

)
1

2(s+−θ) . Since ν− > 1 > 2(s+ − θ), we obtain

lim
r→0+

1

r
sup

∥u∥≤(
r

ξ
)

1
2(s+−θ)

{J1(u)} = 0,

where ξ = 1
p+ − µ3C6. Next, let u1 ∈ C(Ω) be a positive fonction in Ω with

I1(u1) > 0, and F (x, u1) > 0 for a.e x ∈ Ω. We get

J1(u1) =

∫
Ω

F (x, u1(x))dx > 0.

As a result, we can get r ∈
(
0,min{I1(u1), ξ}

)
, such that

sup

∥u∥≤(
r

ξ
)

1
2(s+−θ)

{J1(u)} < r
J1(u1)

I1(u1)
.

Now, let u ∈ I−1
1 (−∞, r]. Then by (4.2), we have

∥u∥ ≤
(r
ξ

) 1

2(s+−θ)
,

then we can infer that I−1
1 (−∞, r] ⊂ {u ∈ Y : ξ∥u∥2(s+−θ) ≤ r}. Hence

sup
u∈I−1

1 (−∞,r]

{J1(u)} < r
J1(u1)

I1(u1)
= rλ.

As a result, the assumption (i) of Theorem 5.3 is fulfilled. Therefore, we have to
show that the functional Tλ is coercive. From (4.1) and by (f1) we have

Tλ(u) ≥
1

p+
∥u∥p

−
− C6µ(1 + ∥u∥

2θσ+

σ− + ∥u∥2(s
+−θ))− λ(a1C∥u∥+ a2Cz

z−
∥u∥z

±
),

2θσ+

σ− < 2(s+ − θ) < 1 < z± < p±, proving that the functional Tλ is coercive.
Consequently, (ii) is satisfied. Therefore, every assumption in Theorem 5.3 is veri-
fied. Following that, the functional Tλ permits at least three distinct critical points,
which are the weak solutions of the problem (Pλ), for each λ ∈]λ, λ⋆[.
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