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Abstract A co-infection of a human or a pig with human influenza or COVID-
19 strains and H5N1 strain may result in a pandemic strain, causing a widespre-
ad deadly pandemic. In this paper, we consider a new class of co-infections
disease epidemic models for a rapid and slow virus. We study the transmission
threshold by analyzing the basic reproduction number. The equilibrium points
for the model are derived, and their local stability is analyzed with suitable
assumptions on the model parameters. Understanding the model parameters
is one of the prime subjects in this research work. Therefore, the sensitivity
of essential parameters is investigated. Moreover, the optimal control problem
for the proposed model is considered, and first-order optimality conditions are
derived. Finally, numerical simulations indicate the effects of the model’s basic
reproduction number and control variables.
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1. Introduction

Time evolution and the rapid spread of deadly viruses threaten human life and
global economic growth. Therefore, understanding virus transmission is excellent
attention to take precautions to control the disease. Recently, human beings suffers
a lot from similar virus transmissions. The spread of the virus around the globe
agitates its living organisms. For example, COVID-19 ruled out human life for a
year, both health and wealth-wise. The spread of COVID-19 has been modeled and
discussed by many researchers in their recent articles, for example, see [1,10,19,20]
and also the references therein. In particular, a patient with other health ailments
(e.g., asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis,
pneumonia, lung cancer, diabetes of type 1, human immunodeficiency virus (HIV),
etc.,) suffered a lot in this COVID-19 outbreak.
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On the other hand, some virus for example asthma, chronic obstructive pul-
monary disease (COPD), pulmonary fibrosis, pneumonia, lung cancer, diabetes of
type 1 and HIV are virus that damages the cells in your immune system and weak-
ens your ability to fight everyday infections and diseases. Some of the virus are
not fully curable, but we can make patients lead their daily lives without any trou-
bles. However, for more detail, we refer the interested readers to [2–4, 9] and the
references therein. A mathematical model studies the transmission of two or more
diseases called a co-infection model. Therefore, a good understanding of both the
virus transmission and outbreak is important to investigate. Hence, we propose
a co-infection diseases mathematical model in this work. For more references of
co-infection diseases mathematical model, we refer the readers to [7, 11, 12, 14] and
the references therein.

Coinfection is the process of infection of a single host with two or more pathogen
variants (strains) or with two or more distinct pathogen species. Coinfection with
multiple pathogen strains is particularly common in HIV, but it occurs in many
other diseases. Coinfection with multiple pathogen species is also thought to be
a very common occurrence. Particularly widely distributed combinations are HIV
and tuberculosis, HIV and hepatitis, HIV and malaria, and others. Coinfection is
of significant importance because it may have negative effect both on the health of
the coinfected individuals as well as on the public health in general. For instance,
a coinfection of a human or a pig with human influenza strain and H5N1 strain
may result in a pandemic strain, causing a widespread deadly pandemic. Among
rapid virus such as COVID-19 or influenza affected patients, few of them are asymp-
tomatic. Further, some are exposed to this virus patients are in quarantine. Those
classes are also included in the following co-infection model. The population of the
model includes twelve classes: S denotes the the susceptible individuals, E1 and
E2 represent the exposed individuals of first (rapid virus) and Second (slow virus)
respectively. I1 for infected individuals of first virus, I2 for infected individuals
of second virus, and I3 represents the individuals who are infected by both of the
infections. The variable A denotes the individuals who are asymptomatic of first
virus. Q denotes individuals who are in quarantine for first virus. R1 denotes the
individuals who are recovered from first virus. R2 represents the individuals who
are recovered from second virus, and R3 represents the individuals who are recov-
ered from both infections. Finally, D denotes individuals who died due to infection.
Here the recovery of second virus individuals represents the individuals who can
lead their life without any interception of the infections. To model coinfection, we
need to introduce a new dependent variable, namely I3(t), the number of coinfected
individuals in the population. The model again is built on the basis of the com-
petitive exclusion model (1.1), but with a coinfected class I3. From the model flow
diagram of the co-infections disease mathematical epidemic model Fig. 1, we derive
the following system of nonlinear differential equations
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dS

dt
= Λ− β1S (I1 +A)− pβ3SI3 − β2SI2 − (1− p)β3SI3 + r1R1 + r2R2 + r3R3 − µS,

dE1

dt
= β1S (I1 +A) + pβ3SI3 − τ1E1 − ρδE1 + β1I1R2 + β3I3R2 − µE1,

dE2

dt
= β2SI2 + (1− p)β3SI3 − τ2E2 + β2I2R1 + β3I3R1 − µE2,

dI1
dt

= τ1E1 − θ1bI1I2 − bI1I3 − σI1 − µI1,

dI2
dt

= τ2E2 − θ2bI1I2 − bI2I3 − γ3I2 − d2I2 − µI2,

dI3
dt

= θ1bI1I2 + bI1I3 + θ2bI1I2 + bI2I3 + θ3bAI2 + bAI3 − d3I3 − γ4I3 − µI3,

dA

dt
= σαI1 − ρA− γ1A− θ3bAI2 − bAI3 − µA,

dQ

dt
= σ(1− α)I1 + ρA− γ2Q− d1Q+ δρE1 − µQ,

dR1

dt
= γ1A+ γ2Q− r1R1 − β2I2R1 − β3I3R1 − µR1,

dR2

dt
= γ3I2 − r2R2 − β1I1R2 − β3I3R2 − µR2,

dR3

dt
= γ4I3 − r3R3 − µR3,

dD

dt
= d1Q+ d2I2 + d3I3,



,

(1.1)

where θ1 + θ2 + θ3 = 1, 1 > α and the initial values are given as,

S(0) = S0, E1(0) = E10, E2(0) = E20, I1(0) = I10, I2(0) = I20, I3(0) = I30,

A(0) = A0, Q(0) = Q0, R1(0) = R10, R2(0) = R20, R3(0) = R30, D(0) = D0.

The parameters used in the model are defined in Table 1. All the parameters used
in the model (1.1) are positive. Before starting the main results of the work, we
recall some literature on the co-infection model and its related study. Recently a
mathematical model for Buruli ulcer and Cholera diseases was proposed, and sta-
bility analysis was performed in [22]. A model for HIV and hepatitis C virus (HCV)
co-infection is studied, and the reproduction numbers and the local and global sta-
bility of the disease-free equilibria are derived in [5]. A fractional-order model for
the co-infection of HIV and tuberculosis (TB), in the presence of multi-drug resis-
tant TB strains (MDR-TB), and treatment for both diseases are analyzed in [15]. A
generalized simple mathematical model of HIV-COVID-19 together is studied in [8].
A new mathematical model for dual variants of COVID-19 and HIV co-infection
is presented and analyzed in [13]. A model for COVID-19 and HIV/AIDS is pro-
posed to assess the impact of COVID-19 on HIV dynamics and vice-versa in [16].
However, all the above models are considered with some restrictions in the recovery
class and do not include the quarantine and asymptomatic classes.

The remaining paper is arranged as follows: In section 2, we discuss the solv-
ability and boundedness of the proposed model. Further, the basic reproduction
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Table 1. Definition of parameter used in the model (1.1)

Parameters Definition

Λ recruitment rate

β1 infection rate of pathogen 1

β2 infection rate of pathogen 2

β3 infection rate of both the pathogen

p probability rate of infection from I3 which transform S to I1

r1 rate of person who again going to S from R1

r2 rate of person who again going to S from R2

r3 rate of person who again going to S from R3

τ1 per capita rate at which the exposed individuals of panthogen 1

become infections

τ2 per capita rate at which the exposed individuals of panthogen 2

become infections

ρ testing rate of people with mild or no symptoms at the time

δ probability of detecting infection by testing in E1

θ1 transmission rate of a individual from I1 to I3

θ2 transmission rate of a individual from I2 to I3

θ3 transmission rate of a individual from A to I3

b co-infection rate

σ inverse of the time from infectiousness onset to possible

symptoms onset

γ1 recovery rate of asymptomatic individuals

γ2 recovery rate of quarantine individuals

γ3 recovery rate of second virus individuals

γ4 recovery rate of co-infection individuals

d1 death rate due to first virus in quarantine

d2 death rate due to second virus

d3 death rate due both the virus

α proportion of asymptomatic infection

µ natural death rate
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Figure 1. Schmatic diagram for coinfection model.

number for the model (1.1) and the local stability of all possible equilibrium points
are studied in section 3. The sensitivity of model parameters are discussed in section
4. The optimal control problem is proposed and analyzed in section 5. Computa-
tional results are provided in section 6.

2. Solvability and boundedness of solution of co-
infection model

In this section, we prove the existence and uniqueness of the solution of the model
(1.1). Further, the non-negative and boundedness of the solution are also analyzed
for the model (1.1). We rewrite the model (1.1) as follows,

dX

dt
= F (X(t)), t ∈ (0, T ], (2.1)

with a initial condition X(0) = X0. Here

X(t) = [S(t) E1(t) E2(t) I1(t) I2(t) I3(t) A(t) Q(t) R1(t) R2(t) R3(t) D(t)]
T
,
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and a non-linear function is defined as,

F (X(t)) =
[
F1(X(t)), F2(X(t)), F3(X(t)), F4(X(t)), F5(X(t)), F6(X(t)), F7(X(t)),

F8(X(t)), F9(X(t)), F10(X(t)), F11(X(t)), F12(X(t))
]T

,

where

F1(X(t)) = Λ− β1S (I1 +A)− β2SI2 − β3SI3 + r1R1 + r2R2 + r3R3 − µS,

F2(X(t)) = β1S (I1 +A) + pβ3SI3 − τ1E1 − ρδE1 + β1I1R2 + β3I3R2 − µE1,

F3(X(t)) = β2SI2 + (1− p)β3SI3 − τ2E2 + β2I2R1 + β3I3R1 − µE2,

F4(X(t)) = τ1E1 − θ1bI1I2 − bI1I3 − σI1 − µI1,

F5(X(t)) = τ2E2 − θ2bI1I2 − bI2I3 − γ3I2 − d2I2 − µI2,

F6(X(t)) = θ1bI1I2 + bI1I3 + θ2bI1I2 + bI2I3 + θ3bAI2 + bAI3 − d3I3 − γ4I3 − µI3,

F7(X(t)) = σαI1 − ρA− γ1A− θ3bAI2 − bAI3 − µA,

F8(X(t)) = σ(1− α)I1 + ρA− γ2Q− d1Q+ δρE1 − µQ,

F9(X(t)) = γ1A+ γ2Q− r1R1 − β2I2R1 − β3I3R1 − µR1,

F10(X(t)) = γ3I2 − r2R2 − β1I1R2 − β3I3R2 − µR2,

F11(X(t)) = γ4I3 − r3R3 − µR3,

F12(X(t)) = d1Q+ d2I2 + d3I3.

Lemma 2.1. Suppose

X̄(t) =
[
S̄(t) Ē1(t) Ē2(t) Ī1(t) Ī2(t) Ī3(t) Ā(t) Q̄(t) R̄1(t) R̄2(t) R̄3(t) D̄(t)

]T
and

consider the state variables X and X̄ have a upper bound Φ, then it satisfies

|F (X(t))| − |F (X̄(t))| < K|X − X̄|, (2.2)

for some K > 0.

Proof. Consider for the first compartment of F (X(t)) and evaluate as follows to
get,

|F1(X)− F1(X̄)|
=| − β1S (I1 +A)− β3SI3 − β2SI2 + r1R1 + r2R2 + r3R3 − µS

− (−β1S̄
(
Ī1 + Ā

)
− β3S̄Ī3 − β2S̄Ī2 + r1R̄1 + r2R̄2 + r3R̄3 − µS̄)|

≤|β1(S(I1 +A)− S̄
(
Ī1 + Ā

)
)|+ |β2(SI2 − S̄Ī2)|+ |β3(SI3 − S̄Ī3)|

+ |r1(R1 − R̄1)|+ |r2(R2 − R̄2)|+ |r3(R3 − R̄3)|+ |µ(S − S̄)|

≤L1(|S − S̄|+ |I1 − Ī1|+ |I2 − Ī2|+ |I3 − Ī3|+ |A− Ā|+ |R1 − R̄1|
+ |R2 − R̄2|+ |R3 − R̄3|)

≤L1|X − X̄|, (2.3)

where L1 = 2Φ(2β1+β2+β3)+r1+r2+r3+µ. As similar as in the above estimate,
for all Fi(X(t)), we get

|Fi(X(t))− Fi(X̄(t))| ≤ Li|X(t)− X̄(t)| (i = 2, 3, · · · , 12). (2.4)
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Here

L2 = 2Φ(3β1 + (p+ 1)β3) + τ1 + ρδ + µ,

L3 = 2Φ(β2 + (1 + p)β3 + β2 + β3) + τ2 + µ,

L4 = τ1 + 2Φ(θ1b+ b) + σ + µ, L5 = 2Φ(θ2b+ b) + τ2 + γ3 + d2 + µ,

L6 = 2Φ(b(θ1 + θ2 + θ3 + 3)) + d3 + γ4 + µ, L7 = σα+ ρ+ γ1 + µ+ 2Φ(b(1 + θ3)),

L8 = σ(1− α) + ρ+ γ2 + d1 + δρ+ µ, L9 = γ1 + γ2 + r1 + 2Φ(β2 + β3) + µ,

L10 = γ3 + r2 + 2Φ(β1 + β3) + µ, L11 = γ4 + r3 + µ,

L12 = d1 + d2 + d3.

The above inequality leads to,

|F (X(t))| − |F (X̄(t))| < K|X − X̄|, (2.5)

where K = max{L1, L2, · · · , L12} > 0.

Theorem 2.1. Suppose there exists a solution to the model (1.1) with the initial

values belongs to R12
+ , with S0 >

Λ

µ
, and all the model parameters being positive.

Then that solution set X(t) always remains in R12
+ . Further, the solution of the

model (1.1) is always bounded.

Proof. First, the positivity of the solution is proved as follows: Consider the
trajectory of the solution along S-axis, it means that, E1 = E2 = I1 = I2 = I3 =

A = Q = R1 = R2 = R3 = 0 and S(0) = S0 >
Λ

µ
. Then from the first equation of

(1.1), we have
dS

dt
= Λ− µS

with S(0) = S0. Solving the above differential equation, we get

S(t) =
Λ− exp(−µt)(Λ− µS0)

µ
> 0.

Similarly, moving along the respective all other axes, that is considering variables
are zero except the respective variable. We get all other state variables that are
also non-negative. Now, consider t∗ > 0 such that

S(t∗) = 0, E1(t
∗) > 0, E2(t

∗) > 0, I1(t
∗) > 0, I2(t

∗) > 0, I3(t
∗) > 0, A(t∗) > 0,

Q(t∗) > 0, R1(t
∗) > 0, R2(t

∗) > 0, R3(t
∗) > 0, and S(t) < S(t∗).

On this plane,

dS

dt

∣∣∣∣
t=t∗

= Λ+ r1R1(t
∗) + r2R2(t

∗) + r3R3(t
∗) > 0.

Using the generalized mean value theorem [18], we get

S(t)− S(t∗) = S′(τ)(t− t∗), τ ∈ (t∗, t],
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from the above, S(t) > S(t∗), and this contradicts our assumption for t∗. This
shows, the solution S(t) is positive ∀ t ≥ 0. Similar arguments on other variables
lead to

dE1

dt

∣∣∣∣
t=t∗

= β1S (I1 +A) + pβ3SI3 + β1I1R2 + β3I3R2 ≥ 0,

dE2

dt

∣∣∣∣
t=t∗

= β2SI2 + β3SI3 + β2I2R1 + β3I3R1 ≥ 0,

dI1
dt

∣∣∣∣
t=t∗

= τ1E1 ≥ 0,

dI2
dt

∣∣∣∣
t=t∗

= τ2E2 ≥ 0,

dI3
dt

∣∣∣∣
t=t∗

= θ1bI1I2 + bI1I3 + θ2bI1I2 + bI2I3 + θ3bAI2 + bAI3 ≥ 0,

dA

dt

∣∣∣∣
t=t∗

= σαI1 ≥ 0,

dQ

dt

∣∣∣∣
t=t∗

= σI1 + ρA+ δρE1 ≥ 0,

dR1

dt

∣∣∣∣
t=t∗

= γ1A+ γ2Q ≥ 0,

dR2

dt

∣∣∣∣
t=t∗

= γ3I2 ≥ 0,

dR3

dt

∣∣∣∣
t=t∗

= γ4I3 ≥ 0,

dD

dt

∣∣∣∣
t=t∗

= d1Q+ d2I2 + d3I3 ≥ 0.

(2.6)

Since the function Fi(X(t)) ∈ C[a, b], and the state variables are also a contin-
uous functions in the interval [a, b], which shows that the solution of (2.6) starts
from initial values belonging to R12

+ keep increasing and remains in R12
+ .

Finally, we prove the boundedness of solutions of (1.1). Suppose that the total
population of the model (1.1), is
N(t)
= S(t)+E1(t)+E2(t)+I1(t)+I2(t)+I3(t)+A(t)+Q(t)+R1(t)+R2(t)+R3(t)+D(t).
Then,

dN

dt
≤ Λ− µN,

N(t) ≤ N(0)e−µt +
Λ

µ
.

This completes the proof of the model.
From the above theorem, we can define the following domain for the solutions

of (1.1),

Ω =

{
X(t) ∈ R12

+ |N(t) ≤ Λ

µ
+ ϵ, for ϵ > 0

}
. (2.7)
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Theorem 2.2. Suppose that X0 ∈ R12
+ , with S(0) >

Λ

µ
and the function Fi(t,X(t)) i

= 1, · · · , 12 satisfies the Lipschitz condition:

∥Fi(t,X1)− Fi(t,X2)∥ ≤ Ci∥X1 −X2∥, (i = 1, · · · , 12). (2.8)

In the above C ′
is are positive constants and (t,X1) & (t,X2) belongs to the domain

Ω where Ω defined in (2.7) Then there exists a unique continuous vector X(t) as a
solution of the model (1.1).

Proof. From the Lemma (2.1), we easily say that

∥Fi(t,X1)− Fi(t,X2)∥ ≤ Ci∥X1 −X2∥, (i = 1, · · · , 12),

where Ci = Li (i = 1, 2, · · · , 12) is defined in Lemma 2.1. It shows that the
functions Fi(t,X(t)) i = 1, · · · , 12 satstifies the uniform Lipschitz continuity with
respect to state variables. This shows that the existence and the uniqueness of the
solution of the model (1.1).

3. Stability analysis

In this section, first, we define the disease-free equilibrium point for the model
(1.1). Then, the basic reproduction number for the considered co-infection model
is calculated. Further, all other possible equilibrium points are provided, and the
local stability of all the equilibrium points are discussed. Finally, the necessary
conditions to attend to global stability of disease-free equilibrium point is derived.

3.1. Basic reproduction number

Now, we start our computations for basic reproduction number by using the method
proposed in [21]. We know that the disease-free equilibrium point of (EP0) to the
model (1.1) is as follows:

EP0 =

(
Λ

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

Next, find the basic reproduction number for the model (1.1) using the following
method. In order to do this, first, separate the newly infected term from all other
evolving terms. Let F represent the rate at which new infections emerge in the
compartments. V represents the rate at which the spread of infection from one
compartment to another.

Here, F and V for the model (1.1) is given as follows:

F =



β1S (I1 +A) + pβ3SI3 + β1I1R2 + β3I3R2

β2SI2 + (1− p)β3SI3 + β2I2R1 + β3I3R1

−θ1bI1I2 − bI1I3

−θ2bI1I2 − bI2I3

θ1bI1I2 + bI1I3 + θ2bI1I2 + bI2I3 + θ3bAI2 + bAI3

−θ3bAI2 − bAI3

0


,
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V =



τ1E1 + ρδE1 + µE1

τ2E2 + µE2

−τ1E1 + σI1 + µI1

−τ2E2 + γ3I2 + d2I2 + µI2

d3I3 + γ4I3 + µI3

−σαI1 + ρA+ γ1A+ µA

−σ(1− α)I1 − ρA+ γ2Q+ d1Q− δρE1 + µQ


.

So, we define the Jacobian matrix for F and V at E0. It is denoted as F and V
respectively as in the following form:

F =



0 0
β1Λ

µ
0

pβ3Λ

µ

β1Λ

µ
0

0 0 0
β2Λ

µ
(1− p)

β3Λ

µ
0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,

and

V =



τ1 + ρδ + µ 0 0 0 0 0 0

0 τ2 + µ 0 0 0 0 0

−τ1 0 σ + µ 0 0 0 0

0 −τ2 0 γ3 + d2 + µ 0 0 0

0 0 0 0 γ4 + d3 + µ 0 0

0 0 −σα 0 0 ρ+ γ1 + µ 0

−δρ 0 −σ(1− α) 0 0 −ρ γ2 + d1 + µ


.

Hence, the basic reproduction number R0 of (1.1) is the spectral radius of the next
generation matrix FV−1 which is given as follows:

R0 = ρ
(
FV−1

)
= max {R1,R2} , (3.1)

where

R1 =
β1τ1Λ (ρ+ γ1 + µ+ σα)

µ (ρ+ γ1 + µ) (τ1 + ρδ + µ) (σ + µ)
,

R2 =
β2τ2Λ

µ (τ2 + µ) (γ3 + d2 + µ)
.

(3.2)

Here, R1 and R2 are threshold parameters representing the average number of
secondary infection cases produced by a single infectious individual of pathogen 1
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(COVID-19) and pathogen 2 (HIV), respectively. Further, Rj , (j = 1, 2) are called
as the basic reproduction number of the pathogen j, (j = 1, 2).

For the model (1.1), we have only four equilibrium points as follows:

1. EP0 =

(
Λ

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
,

2. EP1 =
(
S01, E01

1 , 0, I011 , 0, 0, A01, Q01, R01
1 , 0, 0

)
,

3. EP2 =
(
S02, 0, E02

2 , 0, I022 , 0, 0, 0, 0, R02
2 , 0

)
,

4. EP3 = (S∗, E∗
1 , E

∗
2 , I

∗
1 , I

∗
2 , I

∗
3 , A

∗, Q∗, R∗
1, R

∗
2, R

∗
3) ,

where

S01 =
Λ

µ

1

R1
, E01

1 =
σ + µ

τ1
I011 ,

I011 =
Λ

β1S01

(
1 +

σα

ρ+ γ1 + µ

)
− γ1A

(
1− 1

R1

)
,

Q01 = BI011 , R01
1 = AI011 , A01 =

σα

ρ+ γ1 + µ
I011 ,

S02 =
Λ

µ

1

R2
, E02

2 =
γ3 + d2 + µ

τ2
I022 ,

I022 =
Λ

β2S02 − r2γ3
r2 + µ

(
1− 1

R2

)
,

R02
2 =

γ3
γ2 + µ

I022 ,

A =
1

γ1 + µ

{
γ1σα

ρ+ γ1 + µ
+

γ2
γ2 + d1 + µ

[
σ(1− α) +

ρσα

ρ+ γ1 + µ
+

δρ(σ + µ)

τ1

]}
,

B =
1

γ2 + d1 + µ

[
σ(1− α) +

ρσα

ρ+ γ1 + µ
+

δρ(σ + µ)

τ1

]
.

EP1 is a equilibrium point where the system has only COVID-19. EP2 is a equi-
librium point where there is only HIV there is no COVID-19. Final, the endemic
equilibrium point is denoted as EP3, where both the infections are positive.

3.2. Local stability

In this subsection, the local stability for the equilibrium points are analyzed using
the Routh Hurwitz criteria [17].

Theorem 3.1. The disease free equilibrium point EP0 of the model (1.1) is locally
stable, if R0 < 1 with β1τ1Λ < µ(τ1 + ρδ + µ)(σ + µ).

Proof. By linearizing the system (1.1) at EP0, the Jacobi matrix is given as
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follows:

J(EP0) =



−µ 0 0
−β1Λ

µ

−β2Λ

µ

−β3Λ

µ

−β1Λ

µ
0 r1 r2 r3

0 a22 0
β1Λ

µ
0

pβ3Λ

µ

β1Λ

µ
0 0 0 0

0 0 −τ2 − µ 0
β2Λ

µ
a36 0 0 0 0 0

0 τ1 0 −σ − µ 0 0 0 0 0 0 0

0 0 τ2 0 a55 0 0 0 0 0 0

0 0 0 0 0 a66 0 0 0 0 0

0 0 0 σα 0 0 a77 0 0 0 0

0 δρ 0 σ(1− α) 0 0 ρ a88 0 0 0

0 0 0 0 0 0 γ1 γ2 a99 0 0

0 0 0 0 γ3 0 0 0 0 a00 0

0 0 0 0 0 γ4 0 0 0 0 −r3 − µ



,

(3.3)

where a22 = −τ1 − ρδ − µ, a36 =
(1− p)β3Λ

µ
, a55 = −γ3 − d2 − µ, a66 = −d3 −

γ4 − µ, a77 = −ρ− µ, a88 = −γ2 − d1 − µ, a99 = −r1 − µ, a00 = −r2 − µ.
The eigenvalues of the above Jacobi matrix are −µ, −r1 − µ, −r2 − µ, −r3 − µ,

−γ2 − d1 − µ, −d3 − γ4 − µ and the roots of equation

x2 +A1x+A2 = 0, (3.4)

and
x3 +B1x

2 +B2x+B3 = 0, (3.5)

where

A1 = d2 + γ2 + 2µ+ τ2, A2 = (τ2 + µ) (γ3 + d2 + µ)− β2τ2Λ/µ,

B1 = 3µ+ ρ+ δρ+ σ + τ1,

B2 = (τ1 + δρ+ µ)(2µ+ ρ+ σ) + (σ + µ)(µ+ ρ)− β1Λτ1/µ,

B3 = (ρ+ µ) (τ1 + ρδ + µ) (σ + µ)− β1τ1Λ (ρ+ µ+ σα) /µ.

We know that A1 is positive. Further, A2 > 0 if R2 < 1. Then (3.4) satisfies the
Routh Hurwitz criteria and it shows that roots of (3.4) are negative real.

Also, B1 is positive. If β1τ1Λ < µ(τ1 + ρδ + µ)(σ + µ) then B2 & B3 are
positive and also R1 < 1. Thus, B1B2 > B3. Therefore, (3.5) satisfies the Routh
Hurwitz criteria and it proves that the roots of (3.5) are negative real. This establish
that the disease free equilibrium point is locally stable if R0 < 1 and β1τ1Λ <
µ(τ1 + ρδ + µ)(σ + µ) .
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Theorem 3.2. The equilibrium point EP1 is local stable, if it satisfies the following
conditions,

Ai > 0, Bj > 0, (i =1, 2, 3), (j = 1, 2, · · · , 6),

A1A2 > A3, B1B2 > B3,B3M > B1N,

(B3N +B6)M > B5M
2 +B1N

2,

(B5M −B6)N(B3M −NB1) > M(B5N −B6) + (B3M −NB1)
2B6B1,

(3.6)

where

M = B1B2 −B3, (3.7)

N = B1B4 −B5,

B1 = −a11 − a22 + σ + µ− a77 − a88 − a99,

B2 = −β1S
01τ1 − a22(σ + µ) + a22a77 − (σ + µ)a77 + a22a88 − (σ + µ)a88 + a77a88

+ (a22 − (σ + µ) + a77 + a88)a99 + a11(a22 − (σ + µ) + a77 + a88 + a99),

B3 = β1S
01a21τ1 − β1S

01τ1σα+ β1S
01τ1a77 + a22(σ + µ)a77 + β1S

01τ1a88

+ a22(σ + µ)a88 − a22a77a88 + (σ + µ)a77a88 + (β1S
01τ1 + a22(σ + µ)

− a22a77 + (σ + µ)a77 − (a22 − (σ + µ) + a77)a88)a99 + a11(β1S
01τ1 − a77a88

+ a22((σ + µ)− a77 − a88 − a99)− (a77 + a88)a99 + (σ + µ)(a77 + a88 + a99)),

B4 = β1S
01a21τ1σα− β1S

01a21τ1a77 − β1S
01a21τ1a88 + β1S

01τ1σαa88

− β1S
01τ1a77a88 − a22(σ + µ)a77a88 − r1a21δργ2

− (β1S
01a21τ1 − β1S

01τ1σα+ β1S
01τ1a77 + a22(σ + µ)a77

+ (β1S
01τ1 + a22(σ + µ)− a22a77 + (σ + µ)a77)a88)a99

+ a11(β1S
01τ1σα− a22(σ + µ)a77 − a22(σ + µ)a88 + a22a77a88

− (σ + µ)a77a88 + (a77a88 − (σ + µ)(a77 + a88)

+ a22(−(σ + µ) + a77 + a88))a99 − β1S
01τ1(a77 + a88 + a99)),

B5 = a21τ1(β1S
01a77a88 − r1σαγ1)− r1a21((σ + µ)δρ− a77δρ+ τ1σ(1− α))γ2

+ ((−β1S
01τ1σα+ β1S

01τ1a77 + a22(σ + µ)a77)a88

+ β1S
01a21τ1(a77 + a88))a99 − β1S

01a21τ1σα(a88 + a99)

+ a11((β1S
01τ1 + a22(σ + µ))a77a88 + ((σ + µ)a77a88 + β1S

01τ1(a77 + a88)

+ a22(−a77a88 + (σ + µ)(a77 + a88)))a99 − β1S
01τ1σα(a88 + a99)),

B6 = r1a21((σ + µ)a77δργ2 + τ1(σαa88γ1 + a77σ(1− α)γ2 − σαργ2))

+ ((a21 + a11)β1S
01τ1σα− (β1S

01τ1(a21 + a11) + a11a22(σ + µ))a77)a88a99.

A1 = −a33 − a55 − a66,

A2 = −a35τ2 + a33a55 + a33a66 + a55a66,

A3 = −a36τ2a65 + a35τ2a66 − a33a55a66,

(3.8)

where aij are defined later.
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Proof. Define the Jacobi matrix at the equilibrium point EP1 of the model (1.1),

J(EP1) =



a11 0 0 −β1S
01 −β2S

01 −β3S
01 −β1S

01 0 r1 r2 r3

a21 a22 0 β1S
01 0 pβ3S

01 β1S
01 0 0 β1I

01
1 0

0 0 a33 0 a35 a36 0 0 0 0 0

0 τ1 0 −σ − µ −θ1bI
01
1 −bI011 0 0 0 0 0

0 0 τ2 0 a55 0 0 0 0 0 0

0 0 0 0 a65 a66 0 0 0 0 0

0 0 0 σα −θ3bA
01 −bA01 a77 0 0 0 0

0 δρ 0 σ(1− α) 0 0 ρ a88 0 0 0

0 0 0 0 −β2R
01
1 −β3R

01
1 γ1 γ2 a99 0 0

0 0 0 0 γ3 0 0 0 0 a00 0

0 0 0 0 0 γ4 0 0 0 0 −r3 − µ



,

(3.9)

where

a11 = −β1(I
01
1 +A01)− µ, a22 = −τ1 − ρδ − µ,

a35 = β2S
01 + β2R

01
1 , a36 = (1− p)β3S

01 + β3R
01
1 ,

a55 = −θ2bI
01
1 − γ3 − d2 − µ, a65 = θ1bI

01
1 + θ2bI

01
1 + θ3bA

01,

a66 = b(I011 +A01)− d3 − γ4 − µ, a77 = −ρ− γ1 − µ,

a88 = −γ2 − d1 − µ, a99 = −r1 − µ,

a00 = −r2 − β1I
01
1 − µ, a21 = β1I

01
1 +A01,

a33 = −τ2 − µ.

The Jacobian matrix J(EP1) has a characteristic polynomial of degree 11. We give
the characteristic polynomial of J(EP1) in the following form:

(x−a00)(x+a1)(x
3+A1x

2+A2x+A3)(x
6+B1x

5+B2x
4+B3x

3+B4x
2+B5x+B6) = 0,

where a1 = r3+µ and suppose M,N,A1, A2, A3, B1, B2, B3, B4, B5, B6 are satisfies
(3.6). Then according to the Routh-Hurwitz criteria, we can show that only negative
eigenvalues exist. This proves that the model (1.1) is locally stable at the point EP1.

Theorem 3.3. The equilibrium point EP2 is local stable, if it satisfies the following
conditions,

Ai > 0, Bi > 0,

A1A2 > A3, B1B2 > B3,

A3(A1A2 −A3) > A1A4(A1 + 1), B3(B1B2 −B3) > B1B4(B1 + 1),

(3.10)
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with

A1 = (−a00 − a11 + (τ2 + µ)− a55),

A2 = −a11((τ2 + µ)− a55) + a00(a11 − (τ2 + µ) + a55),

A3 = β2I
02
2 (τ2 + µ)a55 + a00(a11((τ2 + µ) + a55)),

A4 = −γ3r2β2I
02
2 τ2 − a00(β2S

02β2I
02
2 τ2),

(3.11)

B1 =− (a22 + a44 + a66 + a77),

B2 =− a24τ1 + a44a66 + a44a77 + a66a77 + a22(a44 + a66 + a77),

B3 =− a26τ1a64 + a24τ1a66 − a22a44a66 − a27τ1σα

+ (a24τ1 − a22a44 − (a22 + a44)a66)a77,

B4 =a27τ1a66σα− (a24τ1 − a22a44)a66a77 − a26τ1(θ3bI
02
2 σα− a64a77).

(3.12)

All aij ’s are defined further.

Proof. Let us define the Jacobin matrix at the Equilibrium point EP2 of the
model (1.1),

J(EP2) =



a11 0 0 −β1S
02 −β2S

02 −β3S
02 −β1S

02 0 r1 r2 r3

0 a22 0 a24 0 a26 a27 0 0 0 0

β2I
02
2 0 a33 0 β2S

02 a36 0 0 β2I
02
2 0 0

0 τ1 0 a44 0 0 0 0 0 0 0

0 0 τ2 −θ2bI
02
2 a55 −bI022 0 0 0 0 0

0 0 0 a64 0 a66 θ3bI
02
2 0 0 0 0

0 0 0 σα 0 0 a77 0 0 0 0

0 δρ 0 σ(1− α) 0 0 ρ a88 0 0 0

0 0 0 0 0 0 γ1 γ2 a99 0 0

0 0 0 −β1R
02
2 γ3 −β3R

02
2 0 0 0 a00 0

0 0 0 0 0 γ4 0 0 0 0 −r3 − µ



,

(3.13)

where

a11 = −β2I
02
2 − µ, a22 = −τ1 − ρδ − µ, a24 = β1(S

02 +R02
2 ),

a66 = bI022 − d3 − γ4 − µ, a36 = (1− p)β3S
02, a44 = −θ1bI

02
2 − σ − µ,

a55 = −γ3 − d2 − µ, a77 = −ρ− γ1 − θ3bI
02
2 − µ, a26 = β3(pS

02 +R02
2 ),

a33 = −τ2 − µ, a88 = −γ2 − d1 − µ, a99 = −γ2 − β2I
02
2 − µ,

a00 = −r2 − µ, a27 = β1S
02 + β3R

02
2 , a64 = (θ1 + θ2)bI

02
2 .

The above Jacobian matrix has a characteristic polynomial of order 11. We can
rewrite the 11th order polynomial as
(x−a88)(x−a99)(x+r3+µ)(x4+A1x

3+A2x
2+A3x+A4)(x

4+B1x
3+B2x

2+B3x+B4)
= 0.
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Since the polynomial satisfies the inequalities defined (3.10) for the coefficient
defined in (3.11). Then by Routh Hurwitz criteria says only negative eigenvalues
exist, which shows that the model (1.1) is locally stable at the point EP2.

Next, let us define the Routh-Hurwitz criteria for the 11th degree polynomial.
Consider the polynomial as follows:

x11+a1x
10+a2x

9+a3x
8+a4x

7+a5x
6+a6x

5+a7x
4+a8x

3+a9x
2+a10x+a11 = 0.

(3.14)
Here a′is are real for i = 1, 2, · · · , 11. Then the Routh Hurwitz criteria states that
if

ai > 0 (i = 1, 2, · · · , 11),

b1 = a2 − a3/a1 > 0, bi = a2∗i − a2∗i+1/a1, (i = 2, 3, 4, 5), bi = 0 (i > 5),

c1 = a3 − b2a2/b1 > 0, ci = a2∗i+1 − bi+1a1/b1, (i = 2, 3, 4, 5), ci = 0 (i > 5),

d1 = b2 − c2b1/c1 > 0, di = bi+1 − ci+1b1/c1, (i = 2, 3, 4), di = 0 (i > 4),

e1 = c2 − d2c1/d1 > 0, ei = ci+1 − di+1c1/d1, (i = 2, 3, 4), ei = 0 (i > 4),

f1 = d2 − e2d1/e1 > 0, fi = di+1 − ei+1d1/e1, (i = 2, 3), fi = 0 (i > 3),

g1 = e2 − f2e1/f1 > 0, gi = ei+1 − fi+1e1/f1, (i = 2, 3), gi = 0 (i > 3),

h1 = f2 − g2f1/g1 > 0, h2 = f3 − g3f1/g1, hi = 0 (i > 2),

k1 = g2 − h2g1/h1 > 0, k2 = g3 − h3g1/h1, ki = 0 (i > 2),

l1 = h2 − k2h1/k1 > 0, li = 0 (i > 1),

(3.15)
then the equation (3.2) have only real negative roots.

Theorem 3.4. Suppose that R0 > 1and satisfies the Routh-Hurwitz criteria (3.15),
then the endimic equilibrium point EE is local stable.

Proof. Let us define the Jacobi matrix at the Equilibrium point EE for the model
(1.1),

J(EE) =



a11 0 0 −β1S∗ −β2S∗ −β3S∗ −β1S∗ 0 r1 r2 r3

a21 a22 0 a24 0 a26 β1S∗ 0 0 a20 0

a31 0 −τ2 − µ 0 a35 a36 0 0 a39 0 0

0 τ1 0 a44 −θ1bI∗1 −bI∗1 0 0 0 0 0

0 0 τ2 −θ2bI∗2 a55 −bI∗2 0 0 0 0 0

0 0 0 a64 a65 a66 a67 0 0 0 0

0 0 0 σα −θ3bA∗ −bA∗ a77 0 0 0 0

0 δρ 0 σ(1− α) 0 0 ρ a88 0 0 0

0 0 0 0 −β2R∗
1 −β3R∗

1 γ1 γ2 a99 0 0

0 0 0 −β1R∗
2 γ3 −β3R∗

2 0 0 0 a00 0

0 0 0 0 0 γ4 0 0 0 0 −r3 − µ



. (3.16)
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Here

a21 = β1(I
∗
1 +A∗) + pβ3I

∗
3 , a22 = −τ1 − ρδ − µ,

a11 = −β1(I
∗
1 +A∗) + β2I

∗
2 − β3I

∗
3 − µ, a24 = β1S

∗ + β1R
∗
2,

a26 = pβ3S
∗ + β3R

∗
2, a65 = θ1bI

∗
1 + θ2bI

∗
1 + bI3 +

∗ θ3bA
∗,

a31 = β2I
∗
2 + (1− p)β3I

∗
3 , a35 = β2S

∗ + β2R
∗
1,

a36 = (1− p)β3S
∗ + β3R

∗
1, a39 = β2I

∗
2 + β3I3

∗,

a44 = −θ1bI
∗
2 − bI∗3 − σ − µ, a55 = −θ2bI

∗
1 − bI∗3 − γ3 − d2 − µ,

a64 = θ1bI
∗
2 + bI∗3 + θ2bI

∗
2 , a20 = β1I

∗
1 + β3I

∗
3 ,

a66 = b(I∗1 + I∗2 +A∗)− d3 − γ4 − µ, a67 = θ3bI
∗
2 + bI∗3 ,

a88 = −γ2 − d1 − µ, a77 = −ρ− γ1 − θ3bI
∗
2 − bI∗3 − µ,

a00 = −r2 − µ, a99 = −γ2 − β2I
∗
2 − β3I

∗
3 − µ,

a20 = β1I1 + β3I3.

The above Jacobian matrix has a characteristic polynomial of order 11, if that
polynomial satisfies the Routh-Hurwitz criteria (3.15), then the model (1.1) is locally
stable at the equilibrium point EE.

Next, we prove the global stability of the disease-free equilibrium point of the
model (1.1) using the Lyapunov function.

Theorem 3.5. The disease free equilibrium point of the model (1.1) is globally
stable if the model parameter satisfies µ2 > max {β1Λ, β2Λ, β3Λ} .

Proof. We define the Lyapunov function as,

L =

(
S − S∗ − S∗ln

(
S

S∗

))
+E1+E2+I1+I2+I3+A+Q+R1+R2+R3. (3.17)

Differentiate (3.17), we get

dL ≤
(
1− S∗

S

)
dS + dE1 + dE2 + dI1 + dI2 + dI3 + dA+ dQ+ dR1 + dR2 + dR3

≤ −d1Q+ d2I2 + d3I3 − µN − Λ2

µS
+ (β1 (I1 +A) + β2I2 + β3I3)

Λ

µ

≤
(
β1Λ

µ
− µ

)
I1 +

(
β2Λ

µ
− µ

)
I2 +

(
β3Λ

µ
− µ

)
I3,

(3.18)
provided µ2 > max {β1Λ, β2Λ, β3Λ}. Then dL < 0 and it shows that the disease
free equilibrium point is globally stable.

4. Sensitivity analysis

In this section, we study the sensitivity index of the basic reproduction number
with respect to the parameter values defined in the model (1.1).

First, we define sensitivity as in [6]. The sensitivity of Y with respect to the
parameter r is defined as

K =
r

Y

dY

dr
.
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Suppose that K > 0, then function Y is propositional to r. If K < 0, then the
function Y is inversely propositional to r.

Now, we perform for the basic reproduction number R0. We know that R0 is
equal to the maximum of R1 and R2. From (3.2), it is clear that R1 and R2

are functions of Λ and µ with other parameters. Therefore, first, we study the
sensitivity index of R0 with respect to Λ and µ.

Λ

Ri

dRi

dΛ
= 1 > 0 (i = 1, 2). (4.1)

By (4.1), for i = 1, 2, it is clear that
Λ

Ri

dRi

dΛ
are positive and equal to one. This

indicates that R0 increases/decreases when Λ increases/decreases. Next, we study
with respect to the parameter µ.

µ

R1

dR1

dµ
=

−µ

ρ+ γ1 + µ+ σα

(
σα

ρ+ γ1 + µ
+

(
1

µ
+

1

(σ + µ)
+

1

τ1 + ρδ + µ

))
< 0,

µ

R2

dR2

dµ
= −µ

(
1

µ
+

1

(τ2 + µ)
+

1

γ3 + d2 + µ

)
< 0.

(4.2)
In view of (4.2), if µ increases/decreases then R0 decreases/increases. Similarly, we
study for R1 with respect to the all other model parameters as below.

β1

R1

dR1

dβ1
= 1 > 0,

τ1
R1

dR1

dτ1
=

ρδ + µ

τ1 + ρδ + µ
> 0,

α

R1

dR1

dα
=

σα

(ρ+ γ1 + µ+ σα)
> 0.

(4.3)

(4.3) yields that if β1, τ1 and α are increasing then R0 is increasing otherwise it
decreases.

ρ

R1

dR1

dρ
=

−ρ

(ρ+ γ1 + µ+ σα)

(
σα

ρ+ γ1 + µ
+

(ρ+ γ1 + µ+ σα)δ

τ1 + ρδ + µ

)
< 0,

γ1
R1

dR1

dγ1
=

−γ1σα

(ρ+ γ1 + µ+ σα)(ρ+ γ1 + µ)
< 0,

δ

R1

dR1

dδ
= − δρ

(τ1 + ρδ + µ)
< 0.

(4.4)

From (4.4), if ρ, γ1 and δ are increasing then R0 is decreasing otherwise it increases.

σ

R1

dR1

dσ
=

σ

ρ+ γ1 + µσα

(
ασ − ρ− γ1 − µ

σ + µ

)
. (4.5)

We know that all the model parameters are positive and from (4.5), suppose ασ <
ρ + γ1 + µ then R0 is inversely propositional to σ. Otherwise, R0 is propositional
to σ.
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As similar as R1, we perform analysis for R2 with respect to the all other model
parameters.

γ3
R2

dR2

dγ3
=

−γ3
γ3 + d2 + µ

< 0,

d2
R2

dR2

dd2
=

−d2
γ3 + d2 + µ

< 0.
(4.6)

By (4.6), if γ3 ana d2 are increasing then R0 is decreasing otherwise it increases.

β2

R2

dR2

dβ2
= 1 > 0,

τ2
R2

dR2

dτ2
=

µ

τ2 + µ
> 0.

(4.7)

In view of (4.7), if β2, and τ2 are increasing then R0 is increasing otherwise it
decreases.

The sensitivity index of the model parameters are numerically shown below. Fur-
ther, all the parameter values Γ, β1, β2, β3, τ1, τ2, γ1, γ2, γ3, γ4, θ1, θ2, θ3, r1, r2,
r3, µ, ρ, δ, α, σ, p, b, d1, d2, d3 of the model are assumed as in the Table 2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
 

 

 τ
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2
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3
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 δ
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 γ
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1
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2
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 µ(R
1
)

 Λ

Figure 2. Plot represents the sensitivity of the parameters in the basic reproduction number of co-
infection model.

5. Optimal control problem

In this section, we introduce the control parameters u1(t), u2(t), and u3(t) in re-
covery classes of both diseases for the proposed co-infection model, and the same
is given below in (5.1). Then, we study the existence of optimal control for the
newly constructed co-infection control problem. Further, the first-order optimality
conditions are derived from attaining the optimal solution of the co-infection model
(5.1).

Control variables are introduced in the proposed model in order to reduce the
reinfection of the disease. We transform, ri i = 1, 2, 3 the rate of person going to
the class S from Ri i = 1, 2, 3 as control variables ui(t), i = 1, 2, 3 depends on time
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Table 2. Parameter values of the co-infection model (1.1)

Λ β1 β2 β3 τ1 τ2 γ1 γ2 γ3 γ4 θ1 θ2 θ3

5 0.16 0.135 0.23 0.34 0.28 0.3 0.53 0.15 0.5 0.3 0.28 0.42

r1 r2 r3 µ ρ δ α σ p b d1 d2 d3

0.9 0.5 0.87 0.3 0.73 1 0.23 0.48 0.67 0.41 0.1 0.8 0.1

t. Further, the remaining parameters are unchanged as in (1.1), and the resulting
optimal control problem is given as follows:

dS

dt
= Λ− β1S (I1 +A)− β3SI3 − β2SI2 + u1(t)R1 + u2(t)R2 + u3(t)R3 − µS,

dE1

dt
= β1S (I1 +A) + pβ3SI3 − τ1E1 − ρδE1 + β1I1R2 + β3I3R2 − µE1,

dE2

dt
= β2SI2 + (1− p)β3SI3 − τ2E2 + β2I2R1 + β3I3R1 − µE2,

dI1
dt

= τ1E1 − θ1bI1I2 − bI1I3 − σI1 − µI1,

dI2
dt

= τ2E2 − θ2bI1I2 − bI2I3 − γ3I2 − d2I2 − µI2,

dI3
dt

= θ1bI1I2 + bI1I3 + θ2bI1I2 + bI2I3 + θ3bAI2 + bAI3 − d3I3 − γ4I3 − µI3,

dA

dt
= σαI1 − ρA− γ1A− θ3bAI2 − bAI3 − µA,

dQ

dt
= σ(1− α)I1 + ρA− γ2Q− d1Q+ δρE1 − µQ,

dR1

dt
= γ1A+ γ2Q− u1(t)R1 − β2I2R1 − β3I3R1 − µR1,

dR2

dt
= γ3I2 − u2(t)R2 − β1I1R2 − β3I3R2 − µR2,

dR3

dt
= γ4I3 − u3(t)R3 − µR3.



.

(5.1)

We need to minimize the following objective functional for the proposed optimal
control problem (5.1).

J(u1, u2, u3) =

T∫
0

(
ϵ1R1 + ϵ2R2 + ϵ3R3 +

3∑
i=1

ρiu
2
i

2

)
dt. (5.2)
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Here ρi describe the cost coefficient and the terms
ρiu

2
i

2
represents cost for increase

the immunity of the persons. Also, the terms ϵi are the coefficients of balancing
factors. The set of control functions are defined as

U = {(u1, u2, u3)|ui(t) ∈ L2[0, T ] : 0 ≤ ui(t) ≤ uimax, i = 1, 2, 3}. (5.3)

The objective is to determine the optimal control value u∗
1, u

∗
2 and u∗

3 that satisfies

J(u∗
1, u

∗
2, u

∗
3) = min

U
J(u1, u2, u3). (5.4)

Theorem 5.1. There exists an optimal control functions u∗(t) = (u∗
1, u

∗
2, u

∗
3) and

the corresponding solution trajectories to the initial value problem (5.1) such that it
satisfies (5.4)

Proof. To show the existence of the control variables, the objective functional
satisfies the following properties:
(i) set of control variables and the state variables is non-empty. It is valid because

the nonlinear functions of (5.1) are uniformly Lipschitz continuous.

(ii) the space of control is closed and convex. We know that Lp is closed and
convex, and this proves the result.

(iii) the RHS of the model (5.1) is bounded. The boundedness of the state and
control variables prove the result.

(iv) the objective functional is convex with respect to control variables ui (i =
1, 2, 3). Let ũ, ṽ ∈ U and 0 < ς < 1. From (5.2), we get

J(ςũ+ (1− ς)ṽ) ≤
T∫

0

(
ϵ1R1 + ϵ2R2 + ϵ3R3 +

1

2

3∑
i=1

ςρiũ
2
i + (1− ς)ρiṽ

2
i

)
dt

≤ ςJ(ũ) + (1− ς)J(ṽ).

(5.5)

(v) there exists a positive constant C1, C2 such that:

L(X, t, u) = ϵ1R1 + ϵ2R2 + ϵ3R3 +
3∑

i=1

ρiu
2
i

2

≥ ρ1u
2
1

2
+

ρ2u
2
2

2
+

ρ3u
2
3

2

≥ min
{ρ1

2
,
ρ2
2
,
ρ3
2

}
(u2

1 + u2
2 + u2

3)

≥ C1|u|2 − C2.

(5.6)

Here C1 = min
{ρ1

2
,
ρ2
2
,
ρ3
2

}
, C2 > 0. This shows the bound of Lagrangian

function L of the objective function J.
Theorem 5.2. Let u∗(t) is the optimal control variable set for the optimal control
model (1.1) and X∗(t) is the corresponding optimal solution to the model. Then
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there exists a co-state variable λi (i = 1, · · · , 11) which satisfies the following:

dλ1

dt
= λ1(−β1 (I1 +A)−pβ3I3 − β2I2 − (1− p)β3I3 − µ)+λ2(β1 (I1 +A) + pβ3I3)

+λ3(β2I2 + (1− p)β3I3),
dλ2

dt
= λ2(−τ1 − ρδ − µ) + λ4(τ1) + λ8(ρδ),

dλ3

dt
= λ3(−τ2 − µ) + λ4(τ2),

dλ4

dt
= λ1(−β1S) + λ2(β1S + β1R2) + λ4(−θ1bI2 − bI3 − σ − µ) + λ5(−θ2bI2)

+λ6(θ1bI2 + bI3 + θ2bI2) + λ7(σα) + λ8(σ(1− α)) + λ10(−β1R2),
dλ5

dt
= λ1(−β2S) + λ3(β2S + β2R1)+λ4(−θ1bI1) + λ5(−θ2bI1 − bI3 − γ3 − d2 − µ)

+λ6(θ1bI1 + θ2bI1 + bI3 + θ3bA)− λ7θ3bA− λ9β2R1 + λ10γ3,
dλ6

dt
= λ1(−β3S) + λ2(β3(pS +R2)) + λ3(β3((1− p)S +R1))− λ4bI1 − λ5bI2

+λ6(b(I1 + I2 +A)− d3 − γ4 − µ)− λ7bA− λ9β3R1 − λ10(β3R2) + λ11γ4,
dλ7

dt
= λ1(−β1S) + λ2(β2S) + λ6(θ3bI2 + bI3) + λ7(−ρ− γ1 − θ3bI2 − bI3 − µ)

+λ8ρ+ λ9γ1,
dλ8

dt
= λ8(−γ2 − d1 − µ) + λ9γ2,

(5.7)
dλ9

dt
= λ1(u1) + λ3(β2I2 + β3I3) + λ9(−u1 − β2I2 − β3I3 − µ),

dλ10

dt
= λ1(u2) + λ2(β1I1 + β3I3) + λ10(−u2 − β1I1 − β3I3 − µ),

dλ11

dt
= λ1(u3) + λ11(−u3 − µ) + ϵ3,

with the boundary conditions λi(T ) = 0 (i = 1, · · · , 11). Further,

u∗
1 = min

{
max

{
umin,

(λ9 − λ9)R1

ρ1

}
, umax

}
,

u∗
2 = min

{
max

{
umin,

(λ10 − λ1)R2

ρ2

}
, umax

}
,

u∗
3 = min

{
max

{
umin,

(λ11 − λ1)R3

ρ3

}
, umax

}
.

(5.8)

Proof. Using the Pontryagin’s maximum principle, we transform the objective
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functional J to minimize the Hamiltonian function H and it is defined as follows:

H = L+
11∑
i=1

λiFi(X)

= ϵ1R1 + ϵ2R2 + ϵ3R3 +
3∑

i=1

ρiu
2
i

2
+ λ1(Λ− β1S (I1 +A)− pβ3SI3 − β2SI2

−(1− p)β3SI3 + r1R1 + r2R2 + r3R3 − µS) + λ2(β1S (I1 +A) + pβ3SI3

−τ1E1 − ρδE1 + β1I1R2 + β3I3R2

−µE1) + λ3(β2SI2 + (1− p)β3SI3 − τ2E2 + β2I2R1 + β3I3R1 − µE2)

+λ4(τ1E1 − θ1bI1I2 − bI1I3 − σI1 − µI1)

+λ5(τ2E2 − θ2bI1I2 − bI2I3 − γ3I2 − d2I2 − µI2) + λ6(θ1bI1I2 + bI1I3

+b(I2(θ2I1 + I3 + θ3A) + (AI3)− d3I3 − γ4I3 − µI3)

+λ7(σαI1 − ρA− γ1A− (θ3I2 + I3)bA− µA) + λ8(σ(1− α)I1 + ρA

−γ2Q− d1Q+ δρE1 − µQ) + λ9(γ1A+ γ2Q− r1R1 − β2I2R1

−β3I3R1 − µR1) + λ10(γ3I2 − r2R2 − β1I1R2 − β3I3R2 − µR2)

+λ11(γ4I3 − r3R3 − µR3).

(5.9)
Differentiate (5.9) with respect to the state variablesX(t). Then, we get the co-state
equations (5.7). Further, differentiate (5.9) with respect to the control variables
u(t), we get

∂H

∂u1
= ρ1u1 + (λ1 − λ9)R1 = 0,

∂H

∂u2
= ρ2u2 + (λ1 − λ10)R2 = 0,

∂H

∂u3
= ρ3u3 + (λ1 − λ11)R3 = 0.

(5.10)

From the above, it is easy to derive the optimality conditions (5.8).

6. Numerical simulations

In this section, we show some computations of the proposed co-infection COVID-19
and HIV mathematical model. First, we determine the changes in basic repro-
duction number R0 with respect to model parameters. Then, the evolution of the
unknown variables of the model equations is analyzed with disease-free equilibrium
and endemic equilibrium points. Finally, the co-infection model with optimal con-
trol is solved numerically, and their results are presented.

For all computations initial values of the unknown variables in the model are
assumed as X(0) = (10, 5, 5, 3, 3, 2, 1, 2, 1, 1, 1). Further, all the model parameters
are assumed as in Table 2. The basic reproduction number R0 is calculated for the
Table 2 values and it is given as max{0.4015, 0.869}. Now, we analyze the change
in R0 in the following four cases

Case (i): increase in recruitment rate (Λ),
Case (ii): increase in infection rate (β1),
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Case (iii): increase in testing rate (ρ),
Case (iv): increase in recovery rate of HIV individuals (γ3),

and the results are depicted in Fig. 3 (a)-(d). In all the above four cases, all other
parameters are fixed as in Table 2 except the parameter in the corresponding case.
In case (i), an increase in the recruitment rate of the susceptible class increases
the R0 value. For large Λ, R0 is greater than one, and it shows that the disease
is endemic, see Fig. 3(a) . In case (ii), we observe that R0 is constant till β1 is
less than 0.3. Then, R0 is increasing and infection becomes endemic for large β1,
see Fig. 3(b). In case (iii), we observe that R0 is decreasing till ρ is less than 0.1.
Then, R0 becomes constant and infection reduces for large ρ (R0 < 1) as shown in
Fig. 3(c). In case (iv), recovery rate of HIV population increases then it decrease
the value of R0, see Fig. 3(d).
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Figure 3. Plots represent the change in the value of R0 with respect to the parameter values. In (a)
R0 with respect to Λ. (b) R0 with respect to β1. (c) R0 with respect to ρ. (d) R0 with respect to γ3.
Except the parameter used in the x-axis all other values are taken from the Table. 2.

First, we consider the model parameters as in Table 2. This parameter values
satisfies the hypothesis of Theorem 3.1, that is, β1τ1Λ < µ(τ1 + ρδ + µ)(σ + µ). In
this case, the basic reproduction number, R0 is less than 1. Computational results
are depicted in Fig. 4 as dotted lines. In the next case, we assume that values of
βi (i = 1, 2, 3) are twice as in the Table 2, and the remaining parameters are not
changed in Table. 2. Therefore, it is easy to find that the basic reproduction number,
R0 is greater than 1. Numerical results are shown in Fig. 4 as solid lines. When
R0 < 1, then the model converges to a disease-free equilibrium point. However,
when R0 > 1, the model converges to an endemic equilibrium point. It is clearly
visible in Fig. 4(a)-4(e).

Finally, we investigate the effects of control variables in the co-infection model
equations. Admissible control values are assumed as lies between 0 to 0.9. Other
control parameter values are taken as in Table. 3. As we have seen earlier, control
parameters ui(t) are assumed in the reinfection rates of Ri (i = 1, 2, 3) respectively.
Numerical simulations are performed for model equations with and without con-
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Figure 4. Plot (a) represents the evolution of S of the model (1.1). Plot (b) represents the evolution of
’E1 & E2‘ of the model. Plot (c) represents the evolution of ’I1 & I2’ of the model. Plot (d) represents
the evolution of ’R1 & R2’ of the model. Plot (e) represents the evolution of ’I3 & R3’ of the model.
Here DE in the label denotes the condition β1τ1Λ < µ(τ1 + ρδ + µ)(σ + µ).

trol variables. Computationally identified results are shown in Fig. 5(a)-5(c) for
each class Ri (i = 1, 2, 3) respectively. It is observed that the recovery population
increases with the control variable; see Fig. 5.

7. Conclusion

A co-infection of a human or a pig with human influenza or COVID-19 strains
and H5N1 strain may result in a pandemic strain, causing a widespread deadly
pandemic. So, in this paper we consider the new model for co-infection of two
pathogen strains such as COVID-19 (rapid virus) and HIV (slow virous) diseases.
First, the model and its parameters are introduced in a detailed manner. Then, the
wellposedness (Loosely speaking, a differential equation model such as the model
(1.1) is well posed if through every point (initial condition), there exists a unique
solution.) of the model was studied with the non-negativity and boundedness of the
solution variables. Further, the basic reproduction number and the local stability for
all possible equilibrium points were derived. Also, a sensitivity analysis of the model
parameters was performed. A control problem was introduced for the proposed
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Figure 5. Plot (a) shows the change in the recovery population (R1) of pathogen-1 (COVID-19) of
the model (1.1). Plot (b) shows the change in the recovery population (R2) of pathogen-2 (HIV) of the
model (1.1). Plot (c) shows the change in the recovery population (R3) of co-infection model.

Table 3. Parameter values for the optimal control (1.1)

umin umax ρ1 ρ2 ρ3 ϵ1 ϵ2 ϵ3

0 0.9 0.2 0.5 0.3 0.1 0.2 0.15

model and analyzed with numerical computations.
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