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1. Introduction

In this paper, we study the existence and multiplicity of nontrivial solutions for the
following discrete anisotropic problem

(P )

 −
2∑

i=1

∆(|∆y(t− 1)|pi(t−1)−2∆y(t− 1)) = h(t, y(t)), t ∈ [1, N ]Z,

y(0) = y(N + 1) = 0,

where N ≥ 2 is an integer, [1, N ]Z is the discrete interval given by {1, 2, 3..., N},
∆y(t) = y(t + 1) − y(t) is the forward difference operator, h : [1, N ]Z × R −→ R is
a continuous function in the second variable and p1, p2 : [0, N ]Z −→ [2,∞[.

As usual, a solution of (P ) is a function y : [0, N + 1]Z −→ R which satisfies
both equations of (P ).

We would like to point out that issue (P ) is a discrete equivalent of the variable
exponent anisotropic problem

−
N∑
j=1

2∑
i=1

∂

∂xj

(
| ∂y
∂xj

|pi,j(x)−2 ∂y

∂xj

)
= h(x, y), x ∈ Ω,

y(x) = 0, x ∈ ∂Ω,

where Ω ⊂ RN , N ≥ 3, is a bounded domain with a smooth boundary, h ∈
C
(
Ω× R,R

)
is a given function that satisfies certain properties, and pi,j(x) are

continuous functions on Ω, with pi,j(x) ≥ 2 for (i, j, x) ∈ [1, 2]Z × [1, N ]Z × Ω.
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The theory of nonlinear difference equations has been widely used to study dis-
crete models appearing in many fields such as computer science, economics, neural
networks, ecology, cybernetics, mechanical engineering, statistics, optimal control,
electrical circuit analysis, population dynamics, biology and other fields; (see, for
example [1, 21, 22, 26]). The existence and multiplicity of solutions to boundary
value issues for difference equations with the p(.)-Laplacian operator have recently
attracted more attention. Fixed point theorems in cones are typically used to get
these results on this issue (see [3, 19, 23, 24] and references therein). It is widely
recognized that, variational methods, critical point theory and also monotonicity
methods are powerful tools to investigate the existence and multiplicity of solutions
of various problems, (see the monographs [4, 6–12,14–18,20,27–30]).

In this paper, we shall study the existence and multiplicity of nontrivial solutions
of (P ), via min-max methods and Mountain Pass Theorem.

To state our main results, we use the following notation:

p+i = max
t∈[0,N ]Z

pi(t), p−i = min
t∈[0,N ]Z

pi(t), for i = 1, 2;

p+max = max{p+1 , p
+
2 }, p−max = max{p−1 , p

−
2 }, p−min = min{p−1 , p

−
2 }.

The following theorems are the key findings of this paper:

Theorem 1.1. Assume that

(H1) there exists δ > 2p
+
max+1(N + 1)

p+max
2 such that

lim inf
|x|→∞

p−minH(t, x)

|x|p+
max

≥ δ, ∀t ∈ [1, N ]Z,

where

H(t, x) =

∫ x

0

h(t, s)ds for (t, x) ∈ [1, N ]Z × R.

Then the problem (P ) has at least one solution.

Example 1.1. Let us consider a continuous function h : [1, N ]Z × R −→ R given
by the formula

h(t, x) = 2p
+
max+2t p

+
max

p−min

(N + 1)
p+max

2 |x|p
+
max−2x.

Clearly

H(t, x) =
2p

+
max+2t

p−min

(N + 1)
p+max

2 |x|p
+
max .

It is easy to see that

lim inf
|x|→∞

p−minH(t, x)

|x|p+
max

= 2p
+
max+2t (N + 1)

p+max
2 ≥ 2p

+
max+2 (N + 1)

p+max
2 .

Then H(t, x) satisfies the condition (H1) with δ = 2p
+
max+2 (N + 1)

p+max
2 .
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Theorem 1.2. Suppose that (H1), (H2) and h(t, 0) = 0 for any t ∈ [1, N ]Z, where

(H2) lim
|x|→0

H(t, x)

|x|p+
max

= 0, ∀t ∈ [1, N ]Z.

Then the problem (P ) has at least two nontrivial solutions, one of which is non-
negative and the other is non-positive.

Example 1.2. Put h : [1, N ]Z × R −→ R by the formula

h(t, x) =


2p

+
max+2 p

+
max

p−min

(N + 1)
p+max

2 |x|p+
max−2xet, |x| > 1, t ∈ [1, N ]Z,

2p
+
max+2 p

+
max

p−min

(N + 1)
p+max

2 |x|p+
maxxet, |x| ≤ 1, t ∈ [1, N ]Z.

By the expression of h, we have for all t ∈ [1, N ]Z

H(t, x) =


2p

+
max+2

p−min

(N + 1)
p+max

2 |x|p+
maxet − 2p

+
max+3

p−min(p
+
max + 2)

(N + 1)
p+max

2 et, |x|>1,

2p
+
max+2 p+max

p−min(p
+
max + 2)

(N + 1)
p+max

2 |x|p+
max+2et, |x| ≤ 1.

Direct calculations yield

lim inf
|x|→∞

p−minH(t, x)

|x|p+
max

= 2p
+
max+2 (N + 1)

p+max
2 et ≥ 2p

+
max+2 (N + 1)

p+max
2 ,

and

lim
|x|→0

H(t, x)

|x|p+
max

= 0.

Thus H(t, x) satisfies the conditions (H1) with δ = 2p
+
max+2 (N + 1)

p+max
2 and (H2).

Theorem 1.3. Suppose that (H2) and (H3) hold, where

(H3) lim
|x|→∞

(
H(t, x)− 2p−max

(p−min)
2
λ+
N |x|p+

max

)
= +∞, for any t ∈ [1, N ]Z where

λ+
N = max

{
λ
(1)
N , λ

(2)
N

}
, with

λ
(i)
N = sup


N+1∑
t=1

|∆y(t− 1)|pi(t−1)

N∑
t=1

|y(t)|p+
i

| y ∈ EN : ∥y∥ ≥ 1

 , for i = 1, 2; (1.1)

EN = {y : [0, N + 1]Z −→ R | y(0) = y(N + 1) = 0 }, (1.2)

and

∥y∥ =

(
N+1∑
t=1

|∆y(t− 1)|2
) 1

2

.

Then the problem (P ) has at least two nontrivial solutions.
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Remark 1.1. It is easy to see that λ+
N > 0 and we will see later that λ+

N is finite.

Example 1.3. Let us consider a continuous function h : [1, N ]Z × R −→ R given
by the formula

h(t, x) =

{
ln(t+ 1)(1 + p+max ln |x|)|x|p

+
max−2x, |x| > 1, t ∈ [1, N ]Z,

ln(t+ 1)|x|p+
max−1x, |x| ≤ 1, t ∈ [1, N ]Z.

Clearly, we have

H(t, x) =

{
ln(t+ 1)(|x|p+

max ln |x|+ 1
p+
max+1

), |x| > 1, t ∈ [1, N ]Z,
ln(t+1)
p++1 |x|p+

max+1, |x| ≤ 1, t ∈ [1, N ]Z.

After a simple calculation, we get

lim
|x|→∞

(
H(t, x)− p−max

(p−min)
2
λ+
N |x|p

+
max

)
=+∞ and lim

|x|→0

H(t, x)

|x|p+
max

=0, for any t ∈ [1, N ]Z.

Then H(t, x) satisfies the conditions (H2) and (H3).

The structure of this paper is as follows: Section 2 contains some preliminary
lemmas. The main results will be proved in Section 3.

2. Preliminary lemmas

The vector space EN defined in (1.2) is an N -dimensional Hilbert space with the
inner product

⟨y, z⟩ =
N∑
t=1

∆y(t− 1)∆z(t− 1), ∀y, z ∈ EN ,

while the corresponding norm is given by

∥y∥ =

(
N+1∑
t=1

|∆y(t− 1)|2
) 1

2

.

We list also some inequalities that will be used later.

Lemma 2.1. (see [13]) Let p : [0, N ]Z −→ [2,∞[. Then put

p+ = max
t∈[0,N ]Z

p(t) and p− = min
t∈[0,N ]Z

p(t).

For every y ∈ EN , we have

(A1)
N+1∑
t=1

|∆y(t− 1)|p(t−1) ≥ N
p+−2

2 ∥y∥p+

, with ∥y∥ ≤ 1.

(A2)
N+1∑
t=1

|∆y(t− 1)|p(t−1) ≥ N
2−p−

2 ∥y∥p− − (N + 1), with ∥y∥ > 1.

(A3)
N∑
t=1

|y(t)|m ≤ N(N + 1)m−1
N+1∑
t=1

|∆y(t− 1)|m, ∀m > 1.
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(A4) max
t∈[1,N ]Z

|y(t)| < (N + 1)
1
q

(
N+1∑
t=1

|∆y(t− 1)|p
) 1

p

, ∀p, q > 1 with
1

p
+

1

q
= 1.

(A5)
N+1∑
t=1

|∆y(t− 1)|m ≤ 2m
N∑
t=1

|y(t)|m, ∀m ≥ 2.

(A6)
N+1∑
t=1

|∆y(t− 1)|p(t−1) ≤ (N + 1)∥y∥p+

+ (N + 1).

(A7)
N+1∑
t=1

|∆y(t− 1)|m ≤ (N + 1)∥y∥m, ∀m ≥ 1.

(A8)
N+1∑
t=1

|∆y(t− 1)|m ≥ (N + 1)
2−m

2 ∥y∥m, ∀m ≥ 2.

Remark 2.1. From (A6), it is easy to see that λ+
N defined in Theorem 1.5 is finite.

The functional associated to problem (P ) is defined by Φ : EN −→ R,

Φ(y) =

N+1∑
t=1

2∑
i=1

1

pi(t− 1)
|∆y(t− 1)|pi(t−1) −

N∑
t=1

H(t, y(t)). (2.1)

Since h : [1, N ]Z×R −→ R is a continuous function, then Φ is well defined, of classe
C1(EN ,R) and its Gâteaux derivative is given by

Φ′(y).z =

N+1∑
t=1

2∑
i=1

|∆y(t− 1)|pi(t−1)−2∆y(t− 1)∆z(t− 1)−
N∑
t=1

h(t, y(t))z(t), (2.2)

for any z ∈ EN .
By the summation by parts formula, Φ′ can be written as

Φ′(y).z =

N∑
t=1

[
−

2∑
i=1

∆(|∆y(t− 1)|pi(t−1)−2∆y(t− 1))− h(t, y(t))

]
z(t),

for any z ∈ EN .
Finding the solutions to the problem (P ) is equivalent to getting the critical

point of the functional Φ.
Now, we consider the truncated problem

(P±)

 −
2∑

i=1

∆(|∆y(t− 1)|pi(t−1)−2∆y(t− 1)) = h±(t, y(t)), t ∈ [1, N ]Z,

y(0) = y(N + 1) = 0,

where

h±(t, x) =

h(t, x) , if± x ≥ 0,

0 , otherwise.
(2.3)

For y ∈ EN , we denote by y+ = max(y, 0) and y− = max(−y, 0) the positive and
negative parts of y.

It is clear to see that y+ ≥ 0, y− ≥ 0, y = y+ − y−, y+.y− = 0, y± =
1

2
(|y| ± y)

and y± ≤ |y|.
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Lemma 2.2. All solutions of (P+) (resp. (P−)) are non-negative (resp. non posi-
tive) solutions of (P ).

Proof.
Define Φ± : EN −→ R,

Φ±(y) =

N+1∑
t=1

2∑
i=1

1

pi(t− 1)
|∆y(t− 1)|pi(t−1) −

N∑
t=1

H±(t, y(t))

=

N+1∑
t=1

2∑
i=1

1

pi(t− 1)
|∆y(t− 1)|pi(t−1) −

N∑
t=1

H(t, y±(t)),

where H±(t, x) =

∫ x

0

h±(t, s) ds.

It is easy to see that

∆y+(t− 1)∆y−(t− 1) ≤ 0, ∀t ∈ [1, N + 1]Z.

Now, we show that

|∆y−(t− 1)| ≤ |∆y(t− 1)|, ∀t ∈ [1, N + 1]Z.

Indeed,

|∆y−(t− 1)| = |y−(t)− y−(t− 1)|

= |1
2
(|y(t)| − y(t))− 1

2
(|y(t− 1)| − y(t− 1))|

≤ 1

2
[|y(t)− y(t− 1)||+ |y(t)− y(t− 1)|]

≤ |∆y(t− 1)|.

Let y be a solution of (P+), or equivalently y be a critical point of Φ+. Taking
z = y− in

⟨Φ′
+(y), z⟩ =

N+1∑
t=1

2∑
i=1

|∆y(t− 1)|pi(t−1)−2∆y(t− 1)∆z(t− 1)−
N∑
t=1

h+(t, y(t))z(t),

we have

⟨Φ′
+(y), y

−⟩ =
N+1∑
t=1

2∑
i=1

|∆y(t− 1)|pi(t−1)−2∆y(t− 1)∆y−(t− 1)

=

N+1∑
t=1

2∑
i=1

|∆y(t− 1)|pi(t−1)−2∆(y+(t− 1)− y−(t− 1))∆y−(t− 1)

=

N+1∑
t=1

2∑
t=1

|∆y(t− 1)|pi(t−1)−2∆y+(t− 1)∆y−(t− 1)

− |∆y(t− 1)|pi(t−1)−2(∆y−(t− 1))2.

Therefore, we deduce that

N+1∑
t=1

2∑
i=1

|∆y(t− 1)|pi(t−1)−2
[
−∆y+(t− 1)∆y−(t− 1)

]
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+

N+1∑
t=1

2∑
i=1

|∆y(t− 1)|pi(t−1)−2(∆y−(t− 1))2 = 0.

Since,
−∆y+(t− 1)∆y−(t− 1) ≥ 0, ∀t ∈ [1, N + 1]Z,

then, we get

|∆y(t− 1)|pi(t−1)−2(∆y−(t− 1))2 = 0, ∀(i, t) ∈ [1, 2]Z × [1, N + 1]Z.

On the other hand,

|∆y−(t− 1)|pi(t−1) = |∆y−(t− 1)|pi(t−1)−2
(
∆y−(t− 1)

)2
≤ |∆y(t− 1)|pi(t−1)−2

(
∆y−(t− 1)

)2
= 0,

for any (i, t) ∈ [1, 2]Z × [1, N + 1]Z.
So y− = 0 and y = y+ is also a critical point of Φ with critical value Φ(y) =

Φ+(y).
Similarly, nontrivial critical points of Φ− are non-positive solutions of (P ). The

proof is complete.

Definition 2.1. Let E be a real Banach space and Φ : E −→ R be a C1 functional.
We say that a functional Φ satisfies the Palais-Smale (PS) condition, if every se-
quence (yn) ⊂ E such that (Φ(yn)) is bounded and Φ′(yn) → 0 as n → ∞, contains
a convergent subsequence. The sequence (yn) is called a (PS) sequence.

Lemma 2.3. (see [25] ) Let E be a reflexive Banach space. If a functional Φ ∈
C1(E,R) is weakly lower semi continuous and anti-coercive, i.e. lim

∥y∥−→∞
Φ(y) =

−∞, then there exists y ∈ E such that Φ(y) = sup
y∈E

Φ(y) and u is also a critical

point of Φ, i.e Φ′(y) = 0.

Lemma 2.4. (Mountain Pass Lemma [2])
Let Φ be a C1 functional on a Banach space E that satisfies the (PS) condition and
Φ(0) = 0. Suppose that:

σ1) there exist ρ, α > 0 such that Φ(y) ≥ α for all y ∈ E with ∥y∥H = ρ,

σ2) there exists e ∈ E, with ∥e∥E > ρ such that Φ(e) ≤ 0.

Then,
c = inf

g∈Γ
max
s∈[0,1]

Φ(g(s)) ≥ α,

where
Γ = {g ∈ C([0, 1] , E) | g(0) = 0, g(1) = e}

is a critical value of Φ.

3. Proofs of the main results

3.1. Proof of Theorem 1.1.

From (H1), there exists R > 0 such that

H(t, x) ≥ 1

p−min

(δ − ε)|x|p
+
max , ∀(t, |x|) ∈ [1, N ]Z × ]R,+∞[ ,
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where

0 < ε < δ − 2p
+
max+1(N + 1)

p+max
2 . (3.1)

On the other hand, by the continuity of x −→ H(t, x) − 1

p−min

(δ − ε)|x|p+
max , there

exists d > 0 such that

H(t, x)− 1

p−min

(δ − ε)|x|p
+
max ≥ −d, ∀(t, |x|) ∈ [1, N ]Z × [0, R] .

Thus, we deduce that

H(t, x) ≥ 1

p−min

(δ − ε)|x|p
+
max − d, ∀(t, x) ∈ [1, N ]Z × R. (3.2)

According to (A5), (A8) and (3.2), we obtain

N∑
t=1

H(t, y(t)) ≥ (δ − ε)

p−min

N∑
t=1

|y(t)|p
+
max − dN

≥ 2−p+
max (N + 1)

2−p+max
2

(δ − ε)

p−min

∥y∥p
+
max − dN. (3.3)

Now, using the preceding inequality and (A6), we have

Φ(y) ≤ 2(N + 1)

p−min

∥y∥p
+
max − 2−p+

max

p−min

(δ − ε) (N + 1)
2−p+max

2 ∥y∥p
+
max +

2(N + 1)

p−min

+ dN

≤ 2−p+
max

p−min

(N + 1)
2−p+max

2

[
2p

+
max+1(N + 1)

p+max
2 − (δ − ε)

]
∥y∥p

+
max

+
2(N + 1)

p−min

+ dN.

Then, in view of (3.1), Φ(y) → −∞ as ∥y∥ → ∞. Thus, Φ is anti-coercive and
bounded from the above, hence there is a maximum point of Φ at some y∗ ∈ EN

i.e., Φ(y∗) = sup
y∈EN

Φ(y), which is a critical point of Φ. Hence y∗ is a solution of (P ).

The proof of Theorem 1.3 is complete.

3.2. Proof of Theorem 1.3.

To apply the Mountain Pass Theorem, we will do separate studies of the (PS)
condition compactness of Φ± and its geometry.

Lemma 3.1. Assume that (H1) holds. Then the functional Φ+ satisfies the (PS)
condition.

Proof. Let (yn) ⊂ EN be a (PS) sequence for the functional Φ+, i.e.,

|Φ+(yn)| ≤ C and Φ′
+(yn) −→ 0 as n → ∞,

where C is a constant. Let us show that (yn) is bounded in EN . Since yn = y+n −y−n ,
we will prove that (y+n ) and (y−n ) are bounded.
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Suppose that (y−n ) is unbounded. Then there exists an integer n0 > 0 such that

∥y−n ∥ ≥ 2(N + 1) for n ≥ n0. (3.4)

Since ∆y+n (t− 1)∆y−n (t− 1) ≤ 0 and |∆y−n (t− 1)| ≤ |∆yn(t− 1)|, ∀t ∈ [1, N +1]Z,
then, we have

⟨Φ′
+(yn), y

−
n ⟩ =

N+1∑
t=1

2∑
i=1

|∆yn(t− 1)|pi(t−1)−2∆yn(t− 1)∆y−n (t− 1)

−
N∑
t=1

h+(t, yn(t))y
−
n (t)

=

N+1∑
t=1

2∑
i=1

|∆yn(t− 1)|pi(t−1)−2∆y+n (t− 1)∆y−n (t− 1)

− |∆yn(t− 1)|pi(t−1)−2(∆y−n (t− 1))2

≤ −
N+1∑
t=1

2∑
i=1

|∆y−n (t− 1)|pi(t−1).

Using the above inequality and (A2), we obtain for any n ≥ n0

⟨Φ′
+(yn), y

−
n ⟩ ≤ −N

2−p
−
1

2 ∥y−n ∥p
−
1 −N

2−p
−
2

2 ∥y−n ∥p
−
2 + 2(N + 1).

This implies that

N
2−p

−
1

2 ∥y−n ∥p
−
1 +N

2−p
−
2

2 ∥y−n ∥p
−
2 − 2(N + 1) ≤ ⟨Φ′

+(yn),−y−n ⟩ ≤ ∥Φ′
+(yn)∥∥y−n ∥.

Therefore,

N
2−p

−
1

2 ∥y−n ∥p
−
1 ≤ ∥Φ′

+(yn)∥∥y−n ∥+ 2(N + 1),

and

N
2−p

−
1

2 ∥y−n ∥p
−
1 −1 ≤ ∥Φ′

+(yn)∥+ 1. (3.5)

Since Φ′
+(yn) −→ 0 as n → ∞, then for any ε > 0, there exists an integer n1 with

n1 ≥ n0 such that
∥Φ′

+(yn)∥ < ε, ∀n ≥ n1.

Combining the preceding inequality and (3.5), we get

∥y−n ∥p
−
1 −1 ≤ (ε+ 1)N

p
−
1 −2

2 for any n ≥ n1,

which means that (y−n ) is bounded. Thus we obtain a contradiction.
Now, we will prove that (y+n ) is bounded. We argue by contradiction. Suppose

that ∥y+n ∥ −→ ∞ as n → ∞.
From the proof of Theorem 1.1,

N∑
t=1

H(t, y+n (t)) ≥ 2−p+
max (N + 1)

2−p+max
2

(δ − ε)

p−min

∥y+n ∥p
+
max − dN, (3.6)
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where

0 < ε < δ − 2p
+
max(N + 1)

p+max
2 . (3.7)

By (A6) and (3.6), we have

Φ+(yn)

=

N+1∑
t=1

2∑
i=1

1

pi(t− 1)
|∆yn(t− 1)|pi(t−1) −

N∑
t=1

H(t, y+n (t))

≤
2∑

i=1

N + 1

p−i

[
∥y+n − y−n ∥p

+
i + 1

]
− 2−p+

max (N + 1)
2−p+max

2
(δ − ε)

p−min

∥y+n ∥p
+
max + dN

≤ 2(N + 1)

p−min

[(
∥y+n ∥+∥y−n ∥

)p+
max + 1

]
−2−p+

max (N + 1)
2−p+max

2
(δ − ε)

p−min

∥y+n ∥p
+
max

+ dN

≤ 2−p+
max (N + 1)

2−p+max
2

p−min

[
2p

+
max+1(N + 1)

p+max
2

(
1 +

∥y−n ∥
∥y+n ∥

)p+
max

− (δ − ε)

]

× ∥y+n ∥p
+
max +

2(N + 1)

p−min

+ dN.

So, we deduce that

−C ≤2−p+
max (N + 1)

2−p+max
2

p−min

[
2p

+
max+1(N + 1)

p+max
2

(
1 +

∥y−n ∥
∥y+n ∥

)p+
max

− (δ − ε)

]

× ∥y+n ∥p
+
max +

2(N + 1)

p−min

+ dN.

Then in view of (3.7) and the fact that (y−n ) is bounded, we get

2−p+
max (N + 1)

2−p+max
2

p−min

[
2p

+
max+1(N + 1)

p+max
2

(
1 +

∥y−n ∥
∥y+n ∥

)p+
max

− (δ − ε)

]
∥y+n ∥p

+
max

+
2(N + 1)

p−min

+ dN −→ −∞,

as n → ∞.
This is a contradiction, hence (y+n ) is bounded. It follows that (yn) is bounded.

The proof is complete.

Lemma 3.2. Assume that (H2) holds, then there exist r > 0 and α > 0 such that
Φ+(y) ≥ α, for all y ∈ ∂Br ∩ EN , where Br denote the open ball in EN about 0 of
radius r and ∂Br denote its boundary.

Proof. Using the condition (H2), for any ε > 0 there exists R > 0 such that

|H(t, x)| ≤ ε|x|p
+
max , ∀(t, |x|) ∈ [1, N ]Z × [0, R] . (3.8)

Let y ∈ EN such that ∥y∥ ≤ r with r = min

{
R√

N + 1
, 1

}
. From (A4) it follows

|y+(t)| ≤ |y(t)| ≤ max
t∈[1,N ]Z

|y(t)| ≤ R, ∀t ∈ [1, N ]Z.
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Therefore, we deduce that

|H(t, y+(t))| ≤ ε|y+(t)|p
+
max ≤ ε|y(t)|p

+
max , ∀t ∈ [1, N ]Z.

Using the preceding inequality and (A1), (A3), (A7), we obtain

Φ+(y) =

N+1∑
t=1

2∑
i=1

1

pi(t− 1)
|∆u(t− 1)|pi(t−1) −

N∑
t=1

H(t, y+(t))

≥

N p
+
1 −2

2

p+1
+

N
p
+
2 −2

2

p+2
− εN(N + 1)p

+
max

 ∥y∥p
+
max .

Let us choose ε > 0 such that ε <
1

N(N + 1)p
+
max

N p
+
1 −2

2

p+1
+

N
p
+
2 −2

2

p+2

. It follows

that there exist r > 0 and α > 0 such that

Φ+(y) ≥ α, ∀y ∈ ∂Br ∩ EN .

The proof of Lemma 3.2 is complete.
Proof of Theorem 1.3. In order to apply the Mountain Pass Theorem, we must
prove that

Φ+(sy) −→ −∞ as s → ∞, for certain y ∈ EN .

Let y ∈ EN , y > 0, ∥y∥ > 1 and s > 1. From (A6) and (3.6), we have

Φ+(sy)

≤
2∑

i=1

N + 1

p−i

[
sp

+
i ∥y∥p

+
i + 1

]
− 2−p+

max (N + 1)
2−p+max

2
(δ − ε)

p−min

sp
+
max∥y∥p

+
max + dN

≤2(N + 1)

p−min

[
sp

+
max∥y∥p

+
max + 1

]
− 2−p+

max (N + 1)
2−p+max

2
(δ − ε)

p−min

sp
+
max∥y∥p

+
max + dN

≤2−p+
max

p−min

(N + 1)
2−p+max

2 sp
+
max

(
2p

+
max+1(N + 1)

p+max
2 − (δ − ε)

)
∥y∥p

+
max

+
2(N + 1)

p−min

+ dN,

where 0 < ε < δ − 2p
+
max(N + 1)

p+max
2 . Therefore

Φ+(sy) −→ −∞ as s → ∞.

It follows that there exists y∗∗ ∈ EN such that ∥y∗∗∥ > r and Φ+(y
∗∗) < 0.

According to the Mountain Pass Theorem, Φ+ admits a critical value c ≥ α
which is characterized by

c = inf
g∈Γ

max
s∈[0,1]

Φ+(g(s)),

where
Γ = {g ∈ C([0, 1] , EN )/ g(0) = 0, g(1) = y∗∗}.

Then, the functional Φ+ has a critical point y+ with Φ+(y+) ≥ α.
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But, Φ+(0) = 0, that is y+ ̸= 0. Therefore, the problem (P+) has a nontrivial
solution which by Lemma 2.2, is non-negative solution of the problem (P ).

Similarly, using Φ−, we show that there exists furthermore a non-positive solu-
tion. The proof of Theorem 1.2 is now complete.
Proof of Theorem 1.4. From the condition (H2), for

ε =
1

2N(N + 1)p
+
max

N p
+
1 −2

2

p+1
+

N
p
+
2 −2

2

p+2


there exists R > 0 such that

|H(t, x)| ≤ ε|x|p
+
max , ∀(t, |x|) ∈ [1, N ]Z × [0, R] . (3.9)

Let y ∈ EN , ∥y∥ ≤ ρ with ρ = min

{
R√

N + 1
, 1

}
. By (A4) it follows

|y(t)| ≤ max
t∈[1,N ]Z

|u(t)| ≤ R, ∀t ∈ [1, N ]Z.

So, we deduce that

|H(t, y(t))| ≤ ε|y(t)|p
+
max , ∀t ∈ [1, N ]Z.

By (A1), (A3) and (A7), we have

Φ(y) ≥ N
p
+
1 −2

2

p+1
∥y∥p

+
1 +

N
p
+
2 −2

2

p+2
∥y∥p

+
2 − εN(N + 1)p

+
max∥y∥p

+
max

≥

N p
+
1 −2

2

p+1
+

N
p
+
2 −2

2

p+2
− εN(N + 1)p

+
max

 ∥y∥p
+
max

≥ 1

2

N p
+
1 −2

2

p+1
+

N
p
+
2 −2

2

p+2

 ∥y∥p
+
max .

Take α =
1

2

N p
+
1 −2

2

p+1
+

N
p
+
2 −2

2

p+2

 ρp
+
max > 0. Then,

Φ(y) ≥ α > 0, ∀y ∈ EN with ∥y∥ = ρ. (3.10)

Now, by contradiction we prove that Φ is anti-coercive. Let K ∈ R and (yn) ⊂ EN

such that

∥yn∥ −→ ∞ and Φ(yn) ≥ K.

Putting zn =
yn
∥yn∥

, one has ∥zn∥ = 1. Since dimEN < ∞, there exists z ∈ EN

such that

∥zn − z∥ −→ 0, as n → ∞ and ∥z∥ = 1.

In particular z ̸= 0, we pose Θ = {t ∈ [1, N ]Z/ z(t) ̸= 0}.
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For t ∈ Θ, |yn(t)| −→ ∞. Using (1.1), we have

K ≤ 1

p−1
λ
(1)
N

N∑
t=1

|yn(t)|p
+
1 +

1

p−2
λ
(2)
N

N∑
t=1

|yn(t)|p
+
2

−
N∑
t=1

[
H(t, yn(t))−

2p−max

(p−min)
2
λ+
N |yn(t)|p

+
max

]
− 2p−max

(p−min)
2
λ+
N

N∑
t=1

|yn(t)|p
+
max

≤ 2

p−min

λ+
N

[
1− p−max

p−min

] N∑
t=1

|yn(t)|p
+
max −

N∑
t=1

[
H(t, yn(t))−

2p−max

(p−min)
2
λ+
N |yn(t)|p

+
max

]
≤−

∑
t∈Θ

[
H(t, yn(t))−

2p−max

(p−min)
2
λ+
N |yn(t)|p

+
max

]
−

∑
t∈[1,N ]Z⧹Θ

[
H(t, yn(t))−

2p−max

(p−min)
2
λ+
N |yn(t)|p

+
max

]
.

From the condition (H3), we deduce that

−
∑
t∈Θ

[
H(t, yn(t))−

2p−max

(p−min)
2
λ+
N |yn(t)|p

+
max

]
−→ −∞, as n → ∞.

The sequence (yn(t)) is bounded for any t ∈ [1, N ]Z⧹Θ and H is continuous, then
there exists a constant M ∈ R such that

−
∑

t∈[1,N ]Z⧹Θ

[
H(t, yn(t))−

2p−max

(p−min)
2
λ+
N |yn(t)|p

+
max

]
≤ M.

Therefore, we get

K ≤ −
∑
t∈Θ

[
H(t, yn(t))−

2p−max

(p−min)
2
λ+
N |yn(t)|p

+
max

]
+M −→ −∞, as n → ∞.

This a contradiction. Hence Φ is anti-coercive on EN . So, we can choose e large
enough to ensure that Φ(e) < 0, and that any (PS) sequence (yn) is bounded. In
view of the fact that the dimension of EN is finite, we see that Φ satisfies the (PS)
condition. Since Φ(0) = 0, then all the conditions of Lemma 2.4 are satisfied. Thus
Φ possesses a critical value

c ≥ α =
1

2

N p
+
1 −2

2

p+1
+

N
p
+
2 −2

2

p+2

 ρp
+
max > 0,

where
c = inf

g∈Γ
max
s∈[0,1]

Φ(g(s)),

and
Γ = {g ∈ C([0, 1] , EN )/ g(0) = 0, g(1) = e}.

Let y1 ∈ EN such that Φ(y1) = c. Clearly, y1 is a nontrivial solution of the problem
(P ).
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On the other hand, since Φ is bounded from the above and anti-coercive, then there
is a maximum point of Φ at some y2 ∈ EN i.e., Φ(y2) = sup

y∈EN

Φ(y).

Using (3.10), we obtain

Φ(y2) = sup
y∈EN

Φ(y) ≥ sup
y∈∂Bρ

Φ(y) > 0.

Hence y2 is a nontrivial solution of the problem (P ).
If y1 ̸= y2, then we have two nontrivial solutions y1 and y2.
Otherwise, similar to the proof of Theorem 1.3 in [5], we get two different critical

points of Φ on EN .
Consequently, the problem (P ) has at least two nontrivial solutions. The proof

of Theorem 1.3 is complete.
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