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Abstract The objective of this article is to present a new class of vector
interval-valued variational-like inequality problems. Based on the concepts of
LU optimal and weakly LU optimal solutions, we derive some relations between
the interval-valued programming and variational-like inequality problems. The
study of the interplay between interval-valued optimization problems (IVOP)
and vector variational-like inequalities (VVLI) combines theoretical advance-
ments under the concept of differentiability and µ- invexity. Furthermore,
to demonstrate the established linkages, we provide examples and an exam-
ple demonstrates how well the vector variational inequality problems may be
applied to deal with (MOIVP) problems.
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1. Introduction

In 1980, Giannessi [11] initially introduced vector variational inequality (VVI) in
Euclidean space via finite dimensions. The relationship between variational-like in-
equality and certain mathematical programming problems was identified by Parida
et al. [25], who also offered a theory for the existence of a solution to variational-like
inequalities. Later on Deng [9] enunciated necessary and sufficient conditions for
the existence of weak minima in constrained convex vector optimization problems.
New iterative techniques that, under certain conditions, can be used to solve mixed
variational-like inequalities were studied by Noor et al. [22] using convergence anal-
ysis. In Variational Inequalities, along with their spectrum of applications, Kinder-
lehrer et al. [17] and Mordukhovich [20] introduced an applicative approach along
with exciting emerging fields like medicine, finance, optimization, system stability,
environmental, science and phase transformations (also see [34]).
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Oveisiha et al. [23] considered two generalized minty vector variational like in-
equalities and investigated the relations between their solutions and vector opti-
mization problems for non-differentiable α-invex functions. In general mathematical
programming coefficients are always considered as deterministic value, but in reality
it observed that the parameters may not be known certainly. Numerous techniques,
such as fuzzy numbers and stochastic processes, can be used to manage uncertainty
in the real world. Still, given the complexity and incompleteness of the data, it can
be challenging to identify a suitable probability distribution or membership func-
tion. Because of this, there has been a lot of interest in the uncertain optimization
problem recently. An approach to overcome the uncertain optimization problem
where only the range of the coefficients is known, is interval-valued programming
and it does not require the assumption of probabilistic (stochastic programming)
and possibility distributions (fuzzy programming).

As an extension of convexity, Zhang et al. [36] explored LU-convexity to figure
out the optimality criteria for real-valued maps with the consideration for optimal
solutions with interval values. The role of invexity in variational-like inequalities
is the same as that of classical convexity in variational inequalities; this indicates
that variational-like inequalities are well-defined in terms of invexity. It has been
noted that all the results for variational-like inequalities are derived in the setting
of classical convexity, (see Gupta et al. [12], and Jennane et al. [15]). Subsequently,
numerous analogous inequalities were obtained for various categories of preinvex
functions; (refer to Noor et al. [21]).

Very recently, the equivalence between generalized Stampacchia vector varia-
tional inequality and quasi LU-efficient solutions to interval-valued vector opti-
mization challenges was established through Upadhyay et al. [30], who additionally
defined a generalized LU-approximately convex function. In the meantime, Laha
et al. [18] linked multi-objective optimization problems and vector variational-like
inequalities in this chain. Since optimization algorithms usually offer only approx-
imate solutions and terminate in a finite number of steps in a wide range of real-
world problems, Evtushenko [10] provided an association between Farkas’ theorem
and linear and quadratic programming. It has recently been established that vector
variational inequalities and vector optimization problems are related to convexifi-
cators by Bhardwaj et al., [4] khan et al. [16], Pany et al. [24], and Upadhyay et
al. [31] .

Over the past few years, various extensions and generalizations of the variational
inequalities have been introduced. A number of outstanding reviews, including
those by Chang et al. [6] , Mohapatra et al. [19], have been published to provide an
overview of the state of knowledge on the variational-like inequalities. In the recent
past, Antczak et al. [2,3], Abdulaleem N. [1], Huy et al. [14], and Treanţă [29] have
shown that vector variational inequalities can describe the optimality conditions
for vector optimization problems under some certain conditions. Recently, many
researchers have opened up a new dimension of best proximity point (BPP) results
for an applicative approach to optimization. For this, Younis et al. [33] invoked the
BPP for multivalued mappings with the application of the equation of motion. For
further applications in this set up, one can see the noteworthy work done in Dar et
al. [8].

In this paper, by utilizing the concepts of LU optimal and weakly LU optimal
solutions some relations are investigated between the interval-valued optimization
and variational-like inequality problems. Moreover, examples are given to validate
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the derived relations. The rest of the paper is organized as follows. Sections 2 and
3 review some terminology and basic definitions needed for the following sections,
while Section 4 focuses on establishing some connections between variational-like
inequality problems and interval-valued optimization, supported by relevant exam-
ples. In Section 5, a conclusion and additional developments are provided.

2. Notation and preliminaries

Let ℑ represents the collection of all bounded and closed intervals in ℜ. Suppose
A ∈ ℑ. After that, we write A = [ρL, ρU ], where ρL and ρU denotes, respectively
A′s lower and upper bounds. We make use of the following closed interval attribute
throughout this paper.

κA = {κρ : ρ ∈ A} =


[
κρL, κρU

]
if κ ≥ 0,[

κρU , κρL
]

if κ < 0,

where κ is a real number.
A non-empty open subset of ℜn is denoted by X. The n-dimensional Euclidean

space is written by ℜn. It is referred to as an interval-valued function, F : ℜn → ℑ.
The interval-valued function F may be expressed as follows: F(ν) = [FL(ν),FU (ν)]
for each ν ∈ ℜn, where FL(ν) and FU (ν) are real valued functions defined on ℜn

and meet the following condition: FL(ν) ≤ FU (ν).
Given that A = [ρL, ρU ] and B = [℘L, ℘U ] as two closed intervals, we can use

A ≤LU B if and only if ρL ≤ ℘L and ρU ≤ ℘U . Also we can put A <LU B if and
only if A ≤LU B and A ≠ B. Equivalently, A <LU B if and only if

ρL < ℘L, ρU < ℘U ,
or, ρL ≤ ℘L, ρU < ℘U ,
or, ρL < ℘L, ρU ≤ ℘U .

Remark 2.1. Let A = [ρL, ρU ] be a closed interval. Then

κA ≥LU 0,

which means that κρL ≥ 0 and κρU ≥ 0, where κ is a positive real number and
0 = [0, 0].

Definition 2.1. [13] A non-empty set X is said to be an invex set at υ ∈ X, if
there exists µ : X× X → ℜn such that

υ + ℵ µ(ν, υ) ∈ X, for any ν ∈ X, ℵ ∈ [0, 1].

Remark 2.2. We say that the set X is invex, if X is invex at any υ ∈ X.

Definition 2.2. [13] µ : X × X → ℜn at υ ∈ X is said to be invex for the
differentiable function f : X → ℜ if for all ν ∈ X,

f(ν)− f(υ) ≥ µ(ν, υ)T ∇f(υ),

where “T ”is a vector or matrix transposition symbol.

Definition 2.3. [13] µ : X× X → ℜn at υ ∈ X is said to be strictly invex for the
differentiable function f : X → ℜ if for all ν ∈ X,

f(ν)− f(υ) > µ(ν, υ)T ∇f(υ), ν ̸= υ.
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Remark 2.3. If the functions FL and FU are both differentiable at υ, then the
interval-valued function F : X → ℑ is considered to be differentiable at υ ∈ X.

We are now going to focus on an interval-valued function’s invexity.

Definition 2.4. [32] The function F : X → ℑ, which is differentiable and interval-
valued, is considered invex at υ ∈ X if and only if both FL and FU are invex with
respect to the same µ at υ. The real valued function f is next considered.The class
of interval valued functions defined on µ-invex set K will be denoted as 𭟋K in the
remaining portions of this work.

Now, we can define the Continuous gH-Differentiable function.

Definition 2.5. [28] A function F : X → ℑ is continuously gH- differentiable if
its gH-derivative exists (Hukuhara difference) and is continuous on X .

3. Extended concepts

Consequently, in the LU -sense, Zhang et al. [35] extended the notions of preinvex-
ity, invexity, pseudo-invexity, and quasi-invexity to interval valued functions in the
following ways.

Definition 3.1. [35] Consider that f ∈ 𭟋K . Next, we state that

1. If f(ν+ℵµ(ν∗, ν)) ≾LU ℵf(ν∗)+(1−ℵ)f(ν), for each ν ∈ K and every ℵ ∈ [0, 1],
then function f is LU -preinvex at ν∗ with respect to µ. Additionally, we show
that f is a LU -µ-preinvex function at ν∗.

2. If the real valued functions fL and fU are µ-invex at ν∗, then the function f is
invex (µ-invex) at ν∗. We further state that f is a LU -µ-invex function at ν∗

in this case.

3. If the real valued functions fL, fU and ℵLfL +ℵU fU are µ-pseudo-invex at ν∗,
then function f is pseudo-invex at ν∗ where 0 < ℵL,ℵU ∈ ℜ. We continue by
stating that ℵ is a LU -µ-pseudo-invex function at ν∗ in this case.

4. If the real valued functions fL, fU and ℵLfL+ℵU fU are µ-quasi-invex at ν∗,then
function f is quasi-invex at ν∗ where 0 < ℵL,ℵU ∈ ℜ. Additionally, we show
that in this case, f is a LU -µ-quasi-invex function at ν∗.

According to Additional [27], interval valued functions in the LS-sense are covered
by the previously mentioned ideas.

Definition 3.2. [27] [28] Let f ∈ 𭟋K . Then we state that function

1. f is LS-µ-preinvex at ν∗ if f(ν+ℵµ(ν∗, ν)) ≾LS ℵf(ν∗)+ (1−ℵ)f(ν), for every
ℵ ∈ [0, 1] and each ν ∈ K;

2. f is LS-µ-invex at ν∗ if the real valued functions fL and fS are µ-invex at ν∗;

3. f is LS-µ-pseudo-invex at ν∗ if the real valued functions fL, fS and ℵLfL+ℵSfS

are µ-pseudo-invex at ν∗, where 0 < ℵL,ℵS ∈ ℜ;

4. f is LS-µ-quasi-invex at ν∗ if the real valued functions fL, fS and ℵLfL+ℵU fS

are µ-quasi-invex at ν∗, where 0 < ℵL,ℵS ∈ ℜ.
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Proposition 3.1. Consider the differentiable interval-valued function f ∈ 𭟋K ,
which is defined on the convex set X ⊆ ℜn and ν∗ ∈ X. Then the following ar-
guments are true.

1. f is LU -µ-preinvex at ν∗ if fL and fU are µ-preinvex at ν∗ [35].

2. f is LS-µ-preinvex at ν∗ if fL and fS are µ-preinvex at ν∗.

3. If f is LS-µ-preinvex at ν∗. Then f is LU − µ-preinvex at ν∗.

Giannessi [11]) presented the Stampacchia vector variational inequalities that
we examine.
(VVIP) Identify a point ν∗ ∈ X where no ν ∈ X exists so that(〈

∇fL1 (ν
∗) +∇fU1 (ν

∗), µ(ν, ν∗)
〉
, ...,

〈
∇fLr (ν

∗) +∇fUr (ν
∗), µ(ν, ν∗)

〉)T ≤ 0.

(WVVIP) Identify a point ν∗ ∈ X where no ν ∈ X exists so that(〈
∇fL1 (x

∗) +∇fU1 (ν
∗), µ(ν, ν∗)

〉
, ...,

〈
∇fLr (ν

∗) +∇fUr (ν
∗), µ(ν, ν∗)

〉)T
< 0.

(SVVIP) Identify a point ν∗ ∈ X where no ν ∈ X exists so that(〈
∇fL1 (ν

∗), µ(ν, ν∗)
〉
, ...,

〈
∇fLr (ν

∗), µ(ν, ν∗)
〉)T

> 0,(〈
∇fU1 (ν

∗), µ(ν, ν∗)
〉
, ...,

〈
∇fUr (ν

∗), µ(ν, ν∗)
〉)T

> 0.

Now, for ζLi ∈ ∂fLi (ν
∗) and ζUi ∈ ∂fUi (ν

∗) we define the following problems.
(NVVIP) Identify a point ν∗ ∈ X where no ν ∈ X exists so that(〈

ζL1 + ζU1 , µ(ν, ν∗)
〉
, ...,

〈
ζLr + ζUr , µ(ν, ν∗)

〉)T ≤ 0.

(NWVVIP) Identify a point ν∗ ∈ X where no ν ∈ X exists so that(〈
ζL1 + ζU1 , µ(ν, ν∗)

〉
, ...,

〈
ζLr + ζUr , µ(ν, ν∗)

〉)T
< 0.

(NSVVIP) Identify a point ν∗ ∈ X where no ν ∈ X exists so that(〈
ζL1 , µ(ν, ν

∗)
〉
, ...,

〈
ζLr , µ(ν, ν

∗)
〉)T

> 0,(〈
ζU1 , µ(ν, ν∗)

〉
, ...,

〈
ζUr , µ(ν, ν∗)

〉)T
> 0.

Let SSV V IP , SV V IP and SWV V IP denote the solution set of the problem (SV V IP ),
(VV IP ) and (WV V IP ), respectively. It can be shown that SSV V IP ⊆ SV V IP ⊆
SWV V IP by the definitions, but the converse may be not true. Similar to the case
of smooth, let SNSV V IP , SNV V IP and SNWV V IP denote the solution set of the
problem SNSV V IP , SNV V IP and SNWV V IP , respectively. It also can be shown that
SNSV V IP ⊆ SNV V IP ⊆ SNWV V IP by the definitions, but the converse may be not
true.

Definition 3.3. The differentiable interval-valued function F : X → ℑ is said to
be strictly invex with respect to µ : X× X → ℜn at υ ∈ X if the functions FL and
FU both are strictly invex or at least one of FL or FU is strictly invex with respect
to the same µ at υ.
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In this paper, we consider the following interval-valued optimization problem:

(IVOP) min F(ν) = (F1(ν), ...Fr(ν))

subject to ν ∈ X,

where F : X → ℑr,Fi = [FL
i (ν),FU

i (ν)], i ∈ θr is a differentiable interval-valued
vector function. A vector A = (A1, ...,Ar) is said to be an interval valued vector if
Ak ∈ Kc, k = 1, ..., r. Also for any two interval valued vectors A = (A1, ...,Ar) and
B = (B1, ...,Br) we write A ⪯LU B if and only if Ak ⪯LU Bk for each k = 1, ..., r.
We also write A ≺LU B if and only if Ak ⪯LU Bk for each k = 1, ..., r and
Ah ≺LU Bh for at least one index h (Wu [32]).

Definition 3.4. (Wu [32]) Let ν∗ be a feasible solution of (MIP1). We say that
ν∗ is

1. LU -Pareto optimal solution of (MIP1) if there exists no ν̄ ∈ X, such that,
F(ν̄) ≺LU F(ν∗);

2. strongly LU -Pareto optimal solution of (MIP1) if there exists no ν̄ ∈ X. such
that., F(ν̄) ⪯LU F(ν∗);

3. weakly LU -Pareto optimal solution of (MIP1) if there exists no ν̄ ∈ X. such
that, fk(ν̄) ≺LU fk(ν

∗) for k = 1, · · · , r.

Remark 3.1. (Wu [32]) Let us denote by XLU
WP ,X

LU
P ,XLU

SP the set of weakly LU -
Pareto optimal solutions, LU -Pareto optimal solutions, and strongly LU -Pareto
optimal solutions respectively. Then XLU

SP ⊆ XLU
P ⊆ XLU

WP .

For another solution concept, we denote by w(A) = ρS = ρU − ρL the width
(spread) of A = [ρL, ρU ]. In this paper we shall consider only the minimization
problem without loss of generality. In this sense, for A,B ∈ Kc we write A ⪯LS B
if and only if ρL ≤ ℘L and ρS ≤ ℘S . We also write A ≺LS B if and only if A ⪯LS B
and A ≠ B, i.e., A ≺LS B if and only if ρL < ℘L

ρS ≤ ℘S ,
or

 ρL ≤ ℘L

ρS < ℘S ,
or

 ρL < ℘L

ρS < ℘S .
(3.1)

For details one is referred to Chalco et al. [5].
Let A and B be interval valued vectors. Then we write A ⪯LS B if and only

if Ak ⪯LS Bk, k = 1, ..., r. We also write A ≺LS B if and only if Ak ⪯LS Bk for
k = 1, ..., r and Ah ≺LS Bh for at least one index h.

Definition 3.5. [27] Let ν∗ be a feasible solution of (MIP1). We say that ν∗ is

1. LS-Pareto optimal solution of (MIP1) if there exists no ν̄ ∈ X, such that,
F(ν̄) ≺LS F(ν∗);

2. strongly LS-Pareto optimal solution of (MIP1) if these exists no ν̄ ∈ X. such
that, F(ν̄) ⪯LS F(ν∗);

3. weakly LS-Pareto optimal solution of (MIP1) if these exists no ν̄ ∈ X. such
that, fk(ν̄) ≺LS fk(ν

∗), k = 1, · · · , r.

Remark 3.2. [27] Let us denote by XLS
WP ,X

LS
P ,XLS

SP the set of weakly LS-Pareto
optimal solutions, LS-Pareto optimal solutions, and strongly LS-Pareto optimal
solutions respectively. Then XLS

SP ⊆ XLS
P ⊆ XLU

WP .
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Proposition 3.2. [27] Let A,B be two closed intervals in Kc.

1. If A ⪯LS B then A ⪯LU B. (Chalco et al. [5]).

2. If A ≺LS B then A ≺LU B.(Singh et al. [27]).

Proposition 3.3. [27] Let A = (A1, ...,Ar) and B = (B1, ...,Br) be interval valued
vectors.

1. If A ⪯LS B then A ⪯LU B.

2. If A ≺LS B then A ≺LU B.

Theorem 3.1. [27] Let X be a feasible set of (MIP1). Then

1. XLU
SP ⊆ XLS

SP ,

2. XLU
P ⊆ XLS

P ,

3. XLU
WP ⊆ XLS

WP .

Definition 3.1. [36] 1. Assume that ν∗ is a feasible solution to the IVOP problem.
For any ν̄ ∈ X ∩ U , ν∗ is considered a local weak efficient solution to the (IVOP)
problem if there is a neighbourhood U of ν∗ such that the following cannot hold for
all k = 1, 2, ..., q

fk(ν̄) ≺LU fk(ν
∗).

2. Assume that ν∗ is a feasible solution to the IVOP problem. If there exists
α ∈ int(Rr

+) and a neighbourhood U of ν∗ such that for any ν̄ ∈ X ∩ U , ν∗ is said
to be a local quasi efficient solution to the IVOP problem, the following is not true.

f(ν̄) + α||ν̄ − ν∗|| ≺LU f(ν∗).

3. Assume that ν∗ is a feasible solution to the IVOP problem. If there exists
αk ∈ int(R+) and a neighbourhood U of ν∗ such that for each ν̄ ∈ X ∩ U , then ν∗

is a local weak quasi efficient solution to the problem of (IVOP), and the following
is not true for all k = 1, 2, ..., r

fk(ν̄) + αk||ν̄ − ν∗|| ≺LU fk(ν
∗).

4. Assume that ν∗ is a feasible solution to the IVOP problem. If there exists
αk ∈ int(R+) such that for each ν̄ ∈ X, then ν∗ is considered a weak quasi efficient
solution to the problem of (IVOP) , and the following is not true for all k = 1, 2, ..., r

fk(ν̄) + αk||ν̄ − ν∗|| ≺LU fk(ν
∗).

5. Assume that ν∗ is a feasible solution to the IVOP problem. If there is
α ∈ int(Rr

+) and a neighborhood U of ν∗ such that for each ν̄ ∈ X ∩ U , then ν∗ is
a local strong quasi efficient solution to the problem of (IVOP), and the following
is not true

f(ν̄) + α||ν̄ − ν∗|| ⪯LU f(ν∗).

Remark 3.3. [36] 1. The definitions make it clear that any local efficient solution
to the IVOP problem is also a local quasi efficient solution , although the converse
may not always hold true. Similarly, every local weak efficient solution to the IVOP
problem is a local weak quasi efficient solution, although the converse may not
always hold true.
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2. Let Xlsqe,Xlqe and Xlwqe represent the collection of all local strong quasi effi-
cient solutions, local quasi efficient solutions and local weak quasi efficient solutions
to the IVOP problem , respectively. It is clear that Xlsqe ⊆ Xlqe by the definitions,
but the converse may be not true.

3. From the definitions, it can be clear that Xlqe ⊆ Xlwqe. However, the rela-
tionship of Xlqe ⊂ Xlwqe between Xlqe and Xlwqe does not hold true . Assume that
ν∗ represents a local weak quasi-efficient solution, but not a local quasi-efficient one,
to the IVOP problem. α ∈ int(ℜr

+) and a neighborhood U of ν∗ exist, by Definition
3.1, such that for each ν̄ ∈ X ∩ U , the following holds

f(ν̄) + α||ν̄ − ν∗|| ≺LU f(ν∗),

which means that for all k = 1, 2, ..., r, the following

fk(ν̄) + αk||ν̄ − ν∗|| ⪯LU fk(ν
∗)

is satisfied and
fh(ν̄) + αh||ν̄ − ν∗|| ≺LU fh(ν

∗)

is satisfied with respect to each index h., which is in opposition to ν∗ ∈ Xlwqe.

Now, we introduce the following interval-valued variational-like inequality prob-
lems:
(IVVLIP) An interval-valued variational-like inequality problem is to find a point
υ ∈ X, such that

⟨µ(ν, υ), ∇F(υ)⟩ ≥LU 0, ∀ ν ∈ X,

where ∇F = [∇FL, ∇FU ] is an interval-valued function.
(IVWVLIP) An interval-valued weak variational-like inequality problem is to find
a point υ ∈ X, such that

⟨µ(ν, υ), ∇F(υ)⟩ >LU 0, ∀ ν ∈ X and ν ̸= υ.

4. Relationships between interval-valued optimiza-
tion and variational like inequality problems

In this section, based on the idea of LU and LS µ-optimal and weakly LU and LS op-
timal solutions, some relations are derived between the interval-valued optimization
and (weak) variational-like inequality problems.

Theorem 4.1. Let F : X → ℑr be a continuously gH-differentiable function on X.
Suppose that Fi, i ∈ θr are LU-µ-invex at ϑ ∈ X.

(1): If ϑ solves interval-valued variational-like inequality problem (VVIP), then ϑ
is a LU-efficient solution to (IVOP).

(2): If ϑ solves interval-valued variational-like inequality problem (SVVIP), then
ϑ is a strong LU-efficient solution to (IVOP).

Proof. ((1):). Suppose contrary to the result that y is not a LU efficient solution
to (IVOP). Then there exists a point ν ∈ X, such that

F(ν) ≺LU F(ϑ).
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That is, FL
i (ν) ≤ FL

i (ϑ) and FU
i (ν) ≤ FU

i (ϑ), i ∈ θr ,
and

FL
h (ν) < FL

h (ϑ) and FU
h (ν) < FU

i (ϑ),

or
FL

h (ν) < FL
h (ϑ) and FU

h (ν) ≤ FU
i (ϑ),

or
FL

h (ν) ≤ FL
h (ϑ) and FU

h (ν) < FU
i (ϑ),

for at least one index h.
The above inequalities together with the LU-µ-invexity of Fi, i ∈ θr at ϑ, yield〈

µ(ν, ϑ)T ,∇FL
i (ϑ)

〉
≤ 0 and

〈
µ(ν, ϑ)T ,∇FU

i (ϑ)
〉
≤ 0 (4.1)

and 
〈
µ(ν, ϑ)T ,∇FL

h (ν)
〉
< 0 and

〈
µ(ν, ϑ)T ,∇FU

h (ν)
〉
≤ 0,〈

µ(ν, ϑ)T ,∇FL
h (ν)

〉
< 0 and

〈
µ(ν, ϑ)T ,∇FU

h (ν)
〉
≤ 0,〈

µ(ν, ϑ)T ,∇FL
h (ν)

〉
≤ 0 and

〈
µ(ν, ϑ)T ,∇FU

h (ν)
〉
< 0,

(4.2)

for at least one index h.
Combining the above two inequalities, we have(〈

µ(ν, ϑ), ∇(FL
1 + FU

1 )(ϑ)
〉
, ...,

〈
µ(ν, ϑ), ∇(FL

r + FU
r )(y)

〉)
≤ 0,

which shows that ϑ cannot be a solution to interval-valued weak variational-like
inequality problem (VVIP). This contradiction leads to the result.

((2):). Suppose contrary to the result that ϑ is not a strong LU efficient solution
to (IVOP). Then there exists a point ν ∈ X, such that

Fi(ν) ⪯LU Fi(ϑ), i ∈ θr.

That is,
FL

i (ν) ≤ FL
i (ϑ) and FU

i (ν) ≤ FU
i (ϑ), i ∈ θr.

The above inequalities together with the LU-µ-invexity of Fi, i ∈ θr at ϑ, yield〈
µ(ν, ϑ)T ,∇FL

i (ϑ)
〉
≤ 0 and

〈
µ(ν, ϑ)T ,∇FU

i (ϑ)
〉
≤ 0, i ∈ θr. (4.3)

Combining the above two inequalities, we have
(〈
µ(ν, ϑ), ∇(FL

1 )(ϑ)
〉
, ...,

〈
µ(ν, ϑ), ∇(FL

r )(ϑ)
〉)

≤ 0,(〈
µ(ν, ϑ), ∇(FU

1 )(ϑ)
〉
, ...,

〈
µ(ν, ϑ), ∇(FU

r )(ϑ)
〉)

≤ 0,

which shows that ϑ cannot be a solution to interval-valued variational-like inequality
problem (SVVIP). This contradiction leads to the result.

Algorithm 1. A LU-efficient solution identifying algorithm for (VVIP).

Step 1: Given input FL
i ,FU

i for i ∈ θr.
Step 2: Check the functions FL

i ,FU
i are continuously gH-differentiable function on

X.
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Step 3: Define invexity function µ(ν, ϑ) on µ : X× X → ℜ.
Step 4: Check the invexity of FL

i ,FU
i w.r.t define µ at ϑ.

Step 5: Combining the inequalities (4.1) and (4.2), we get(〈
µ(ν, ϑ), ∇(FL

1 + FU
1 )(ϑ)

〉
, ...,

〈
µ(ν, ϑ), ∇(FL

r + FU
r )(y)

〉)
≤ 0.

Step 6: This contradiction leads to the result.

In the next part, we cite an example to validate the above result.

Example 4.1. (Verification of the Theorem 4.1) Let X = {ν : 1 ≤ ν ≤ 2} and
consider the following interval-valued problem:
(IVP1) min F(ν) = [FL(ν),FU (ν)]

= [2 ln (ν2 − ν + 5) + 5, 3 ln (ν2 − ν + 5) + 7]
subject to ν ∈ X,

where F : X → ℑ is an interval-valued function.
We have to find a point ϑ ∈ X, such that it solves (IVWVLIP).
Let µ : X× X → ℜ be defined by µ(ν, ϑ) = ν − 1.

At ϑ = 1, we have
FL(ν)−FL(ϑ)− µ(ν, ϑ)∇FL(ϑ)

=
(
2 ln (ν2 − ν + 5) + 5

)
−
(
2 ln 5 + 5

)
− 2

5 (ν − 1)

= 2 ln (ν2 − ν + 5)− 2 ln 5− 2
5 (ν − 1)

= 2
(
ln (ν2 − ν + 5)− ln 5− 1

5 (ν − 1)
)

≥ 0, ∀ ν ∈ X,
which shows that FL is an invex with respect to µ at ϑ = 1. Similarly, we can show
that FU is an invex with respect to same µ at ϑ = 1. Thus, we conclude that F is
an invex with respect to µ at ϑ = 1.

On the other hand, for ϑ = 1 ( ν ̸= ϑ) we have


µ(ν, ϑ)∇FL(ϑ)

= (ν − 1) 2(2ϑ−1)
ϑ2−ϑ+5

= 2
5 (ν − 1) > 0, ∀ ν ∈ X

and


µ(ν, ϑ)∇FU (ϑ)

= (ν − 1) 3(2ϑ−1)
ϑ2−ϑ+5

= 3
5 (ν − 1) > 0, ∀ ν ∈ X

.

Therefore, ⟨µ(ν, ϑ), ∇F(ϑ)⟩ >LU 0, at ϑ = 1 and so ϑ = 1 solves (IVWVLIP).
Furthermore, it is easy to verify that ϑ = 1 is also a LU optimal solution to

(IVP1). Hence all the conditions of the Theorem are contended.

Figure 1. Surface view of FL(ν) and FU (ν) for Exa. 4.1
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Theorem 4.2. Let Fi : X → ℑ, i ∈ θr be continuously gH-differentiable functions
on X. Suppose that −Fi, i ∈ θr are strictly LU-µ-invex at ϑ ∈ X and for all
ν ∈ X, ν ̸= ϑ such that fi(ν) and fi(ϑ) are comparable for all i ∈ θr. If ϑ is a
weak LU efficient solution to (IVOP), then ϑ solves interval-valued variational-like
inequality problem (SVVIP).

Proof. Suppose contrary to the result that ϑ does not solve (SVVIP). Then there
exists a point ν ∈ X, such that

⟨µ(ν, ϑ), ∇Fi(ϑ)⟩ ⪯LU 0, i ∈ θr

and

⟨µ(ν, ϑ), ∇Fh(ϑ)⟩ ≺LU 0

for at least one index h.
It implies that〈

µ(ν, ϑ), ∇FL
i (ϑ)

〉
≤ 0 and

〈
µ(ν, ϑ), ∇FU

i (ϑ)
〉
≤ 0, i ∈ θr

and
〈
µ(ν, ϑ), ∇FL

h (ϑ)
〉
< 0〈

µ(ν, ϑ), ∇FU
h (ϑ)

〉
< 0

, or


〈
µ(ν, ϑ), ∇FL

h (ϑ)
〉
≤ 0〈

µ(ν, ϑ), ∇FU
h (ϑ)

〉
< 0

,

or


〈
µ(ν, ϑ), ∇FL

h (ϑ)
〉
< 0〈

µ(ν, ϑ), ∇FU
h (ϑ)

〉
≤ 0

,

for at least one index h.
The above inequalities together with the strict LU-µ-invexity of −Fi, i ∈ θr at

ϑ, yield

FL
i (ν)−FL

i (ϑ) ≤ 0 and FU
i (ν)−FU

i (ϑ) ≤ 0, i ∈ θr

andFL
h (ν)−FL

h (ϑ) < 0

FU
h (ν)−FU

h (ϑ) < 0
, or

FL
h (ν)−FL

h (ϑ) ≤ 0

FU
h (ν)−FU

h (ϑ) < 0
, or

FL
h (ν)−FL

h (ϑ) < 0

FU
h (ν)−FU

h (ϑ) ≤ 0
,

(4.4)
for at least one index h.

Since for all ν ∈ X, ν ̸= ϑ such that the two interval-valued functions fi(ν) and
fi(ϑ) are comparable for all i ∈ θr, then

Fi(ν) ⪯LU Fi(ϑ) or Fi(ν) ⪰LU Fi(ϑ) for some ν ∈ X. (4.5)

From the inequality Fi(ν) ⪯LU Fi(ϑ) of (4.5), we see that the following is satisfied
for some ν ∈ X,

FL
i (ν)−FL

i (ϑ) ≤ 0 and FU
i (ν)−FU

i (ϑ) ≤ 0 i ∈ θr, (4.6)

or from the inequality fi(ν) ≺LU fi(ϑ) of (4.5), we have the following formulas which
are satisfied for some ν ∈ X,

FL
i (ν)−FL

i (ϑ) ≥ 0 and FU
i (ν)−FU

i (ϑ) ≥ 0 i ∈ θr. (4.7)
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Combining (4.4) and (4.5)–(4.6), there exists ν ∈ X for some index h such that

Fh(ν) <LU Fh(ϑ),

which shows that ϑ is not a weak LU efficient optimal solution to (IVOP). This
contradiction leads to the result.

Remark 4.1. Since every efficient solution is also a weak efficient solution to
(IVOP), the following result is trivial to prove.

Let Fi : X → ℑ, i ∈ θr be continuously gH-differentiable functions on X. Suppose
that −Fi, i ∈ θr are strictly LU-µ-invex at ϑ ∈ X and for all ν ∈ X, ν ̸= ϑ such that
fi(ν) and fi(ϑ) are comparable for all i ∈ θr. If ϑ is a LU efficient solution to (IVOP),
then ϑ solves the interval-valued variational-like inequality problem (SVVIP).

Algorithm 2. A weak LU-efficient solution identifying algorithm to (IVOP).

Step 1: Given input FL
i ,FU

i for i ∈ θr.
Step 2: Check the functions FL

i ,FU
i are continuously gH-differentiable function on

X.
Step 3: Define invexity function µ(ν, ϑ) on µ : X× X → ℜ.
Step 4: Check the strictly invexity of −FL

i ,−FU
i w.r.t define µ at ϑ such that fi(ν)

and fi(ϑ) are comparable for all i ∈ θr.
Step 5: Combining (4.4) and (4.5)–(4.6), there exists ν ∈ X,

Fh(ν) <LU Fh(ϑ).

Step 6: This contradiction shows that ϑ is not a weak LU efficient optimal solution
to (IVOP), which leads to the result.

Now, we present an example which verifies the above result.

Example 4.2. (Verification of the Theorem 4.2) Let X = {ν : 0 ≤ ν ≤ π} and
consider the following interval-valued problem:
(IVP2) min F(ν) = [FL(ν), FU (ν)]

= [2 sin ν + 1, 5 sin ν + 3]
subject to ν ∈ X.

Let µ : X× X → ℜ be defined by µ(ν, ϑ) = 8ν − ϑ.

Similar to Example 4.1, it is easy to verify that −FL and −FU are strictly invex
with respect to µ at ϑ = 0 and therefore −F is strictly invex with respect to µ at
ϑ = 0.

Clearly, ϑ = 0 is a weakly LU optimal solution to (IVP2).

To illustrate Theorem 4.2, we have to show that ϑ = 0 solves (IVVLIP).

Now, at ϑ = 0 we have


µ(ν, ϑ)∇FL(ϑ)

= 2(8ν − ϑ) cos ϑ

= 16ν ≥ 0, ∀ ν ∈ X

and


µ(ν, ϑ)∇FU (ϑ)

= 5(8ν − ϑ) cos ϑ

= 40ν ≥ 0, ∀ ν ∈ X

.

Therefore, ⟨µ(ν, ϑ), ∇F(ϑ)⟩ ≥LU 0, at ϑ = 0 and so ϑ = 0 solves (IVVLIP).
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Figure 2. Surface view of FL(ν) and FU (ν) for Exa. 4.2

Theorem 4.3. Let Fi : X → I, i ∈ θr be continuously gH-differentiable functions
on X. Suppose that Fi, i ∈ θr are strictly LU-µ-pseudo-invex at ϑ ∈ X. If ϑ solves
the interval-valued variational-like inequality problem (WVVIP), then ϑ is a weak
LU efficient solution to (IVOP).

Proof. Suppose contrary to the result that ϑ is not a weak LU efficient solution
to (IVOP), then there exists a point ν ∈ X, such that

Fi(ν) ≺LU Fi(ϑ), i ∈ θr.

That is for all i ∈ θr we have

FL
i (ν) < FL

i (ϑ) and FU
i (x) < FU

i (ϑ),

or
FL

i (ν) < FL
i (ϑ) and FU

i (x) ≤ FU
i (ϑ),

or
FL

i (ν) ≤ FL
i (ϑ) and FU

i (x) < FU
i (ϑ).

It implies that
FL

i (ν) + FU
i (ν) < FL

i (ϑ) + FU
i (ϑ).

The above inequalities together with the LU-µ-pseudo-invexity of Fi, i ∈ θr at ϑ,
yield (〈

µ(ν, ϑ), ∇(FL
1 + FU

1 )(ϑ)
〉
, ...,

〈
µ(ν, ϑ), ∇(FL

r + FU
r )(ϑ)

〉)
≤ 0,

which shows that ϑ cannot be a solution to interval-valued weak variational-like
inequality problem (WVVIP). This contradiction leads to the result.

Remark 4.2. When it comes to real-valued vector optimization, Theorem 4.3 in
Ruiz-Garzron et al. [26] states that for the case of µ(ν, ϑ) = ν − ϑ, the solution
of (WVVIP) is also a weak efficient solution to the real-valued vector optimization
problem, which is a necessary and sufficient optimality condition under certain
conditions.

Even so, in the context of interval-valued vector optimization, (WVVIP) simply
provides a sufficient condition for a weak efficient solution to the (IVOP). The
vector variational inequality problems can be effectively solved using this method,
as shown by the example that follows (IVOP).
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Theorem 4.4. Let X be an invex set. If ϑ ∈ X is a LU optimal solution to (IVOP).
Then ϑ solves interval-valued weak variational-like inequality problem (WVVIP).

Proof. Let ϑ be a LU optimal solution to (IVOP). Then there exists no ν ∈ X,
such that for all i ∈ θr and 0 < ℵ < 1

Fi(ϑ+ ℵ µ(ν, ϑ))−Fi(ϑ) ≤LU 0.

That is for all i ∈ θr and 0 < ℵ < 1

FL
i (ϑ+ ℵ µ(ν, ϑ))−FL

i (ϑ) ≤ 0 and FU
i (ϑ+ ℵ µ(ν, ϑ))−FU

i (ϑ) ≤ 0.

Now for FL
i (ϑ+ ℵ µ(ν, ϑ))−FL

i (ϑ) ≤ 0, i ∈ θr we see that[
FL

i (ϑ) + ℵ µ(ν, ϑ)T ∇FL
i (ϑ) + ...

]
−FL

i (ϑ) ≤ 0, i ∈ θr.

Dividing the above inequality by ℵ and taking the limit as ℵ tends to zero, we have
for all i ∈ θr

µ(ν, ϑ)T ∇FL
i (ϑ) ≤ 0. (4.8)

Similarly, we get
µ(ν, ϑ)T ∇FU

i (ϑ) ≤ 0, i ∈ θr. (4.9)

Combining the inequalities (4.8) and (4.9), we obtain that there exists no ν ∈ X,
such that for all i ∈ θr 〈

µ(ν, ϑ), ∇gFi(ϑ)

〉
≤LU 0.

That is (〈
µ(ν, ϑ), ∇gF1(ϑ)

〉
, ...,

〈
µ(ν, ϑ), ∇gFi(ϑ)

〉)
≤LU 0.

Equivalently there exists a point ϑ, such that(〈
µ(ν, ϑ), ∇gF1(ϑ)

〉
, ...,

〈
µ(ν, ϑ), ∇gFi(ϑ)

〉)
>LU 0, ∀ ν ∈ X,

which shows that ϑ solves interval-valued weak variational-like inequality problem
(WVVIP). This completes the proof.

Next, we construct an example to validate the above theorem 4.4.

Example 4.3. (Verification of the Theorem 4.4) Let X = {ν : 1 ≤ ν ≤ 3} and
consider the following interval-valued problem:
(IVP3) min F(ν) = [FL(ν), FU (ν)]

= [3 ln (2ν2 + ν + 3) + 1, 7 ln (2ν2 + ν + 3) + 3]
subject to ν ∈ X.

It is easy to verify that ϑ = 1 is a LU optimal solution to (IVP3).
Now, we have

ϑ+ ℵ µ(ν, ϑ)
= ϑ+ ℵ ν−2ϑ+1

3 ∈ X, ∀ ν, ϑ ∈ X and ℵ ∈ [0, 1].
It follows that X is an invex set.

To illuminate Theorem 4.4, we have to show that ϑ = 1 solves (IVWVLIP).
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For ϑ = 1 (ν ̸= ϑ), we have


µ(ν, ϑ)∇FL(ϑ)

= 1
3 (ν − 2ϑ+ 1) 3(4ϑ+1)

2ϑ2+ϑ+3

= 5
6 (ν − 1) > 0, ∀ ν ∈ X

and


µ(ν, ϑ)∇FU (ϑ)

= 1
3 (ν − 2ϑ+ 1) 7(4ϑ+1)

2ϑ2+ϑ+3

= 35
18 (ν − 1) > 0, ∀ ν ∈ X

.

Therefore, ⟨µ(ν, ϑ), ∇F(ϑ)⟩ >LU 0, at ϑ = 1 and so ϑ = 1 solves (IVWVLIP).
Hence all the conditions of the Theorem are satisfied.

Figure 3. Surface view of FL(ν) and FU (ν) for Exa.4.3

Theorem 4.5. Let Fi : X → ℑ, i ∈ θr be gH-differentiable functions on X. Suppose
that F is strictly LU-µ-invex at ϑ ∈ X. If ϑ solves interval-valued variational-like
inequality problem (VVIP) with respect to the same µ, then ϑ is a weakly LU optimal
solution to (IVOP).

Proof. Suppose contrary to the result thar ϑ is not a weakly LU optimal solution
to (IVOP), then there exists a point ν ∈ X, such that

Fi(ν) ≺LU Fi(ϑ), i ∈ θr.

That is for all i ∈ θr, we haveFL
i (ν)−FL

i (ϑ) < 0

FU
i (ν)−FU

i (ϑ) < 0
, or

FL
i (ν)−FL

i (ϑ) ≤ 0

FU
i (ν)−FU

i (ϑ) < 0
, or

FL
i (ν)−FL

i (ϑ) < 0

FU
i (ν)−FU

i (ϑ) ≤ 0
.

The above inequalities together with the strict LU-µ-invexity of Fi, i ∈ θr at ϑ,
yieldµ(ν, ϑ)T ∇FL

i (ϑ) < 0

µ(ν, ϑ)T ∇FU
i (ϑ) < 0

, or

µ(ν, ϑ)T ∇FL
i (ϑ) ≤ 0

µ(ν, ϑ)T ∇FU
i (ϑ) < 0

, or

µ(ν, ϑ)T ∇FL
i (ϑ) < 0

µ(ν, ϑ)T ∇FU
i (ϑ)ϑ ≤ 0

.

That is for all i ∈ θr we have

µ(ν, ϑ)T
(
∇FL

i (ϑ) +∇FU
i (ϑ)

)
< 0.

It follows from the above relations
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(〈
µ(ν, ϑ), ∇FL

i (ϑ) +∇FU
i (ϑ)

〉
, ...,

〈
µ(ν, ϑ), ∇FL

i (ϑ) +∇FU
i (ϑ)

〉)
≺LU 0,

which shows that ϑ does not solve interval-valued variational-like inequality problem
(VVIP). This contradiction leads to the result.

We provide the following examples that authenticates Theorem 4.5.

Example 4.4. (Verification of the Theorem 4.5) Let X = {ν : 1 ≤ ν ≤ 4} and
consider the following interval-valued problem:
(IVP4) min F(ν) = [FL(ν), FU (ν)]

= [3ν2 + ν + 2, 4ν2 + 3ν + 5]
subject to ν ∈ X.

Let µ : X× X → ℜ be defined by µ(ν, ϑ) = 1
12 ln ν.

Now, it is easy to verify that FL and FU are strictly invex with respect to µ at
ϑ = 1 and so F is strictly invex with respect to µ at ϑ = 1.

On the other hand, for ϑ = 1
µ(ν, ϑ)∇FL(ϑ)

= 1
12 (6ϑ+ 1) ln ν

= 7
12 ln ν ≥ 0, ∀ ν ∈ X

and


µ(ν, ϑ)∇FU (ϑ)

= 1
12 (8ϑ+ 3) ln ν

= 11
12 ln ν ≥ 0, ∀ ν ∈ X

.

Therefore, ⟨µ(ν, ϑ), ∇F(ϑ)⟩ ≥LU 0, at ϑ = 1 and so ϑ = 1 solves (IVVLIP).
Furthermore, it is easy to verify that ϑ = 1 is also a weakly LU optimal solution

to (IVP4).

Figure 4. Surface view of FL(ν) and FU (ν) for Exa. 4.4

Theorem 4.6. Let Fi : X → ℑ, i ∈ θr be gH-differentiable functions on X. Suppose
that Fi, i ∈ θr are strictly LU-µ-invex at ϑ ∈ X. If ϑ is a weakly LU optimal solution
to (IVOP), then ϑ is a LU optimal solution to (IVOP).

Proof. Suppose contrary to the result that ϑ is not a LU optimal solution to
(IVOP). Then there exists a point ν ∈ X such that

F(ν) ≤LU F(ϑ).
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That is,

i.e FL(ν) ≤ FL(ϑ) and FU (ν) ≤ FU (ϑ).

The above inequalities together with the strict LU-µ-invexity of F w.r.t. µ at ϑ,
yield that

along with the previous inequalities, we have F strict invexity with respect to µ at
ϑ, we getµ(ν, ϑ)T ∇FL(ϑ) < 0

µ(ν, ϑ)T ∇FU (ϑ) < 0
, or

µ(ν, ϑ)T ∇FL(ϑ) ≤ 0

µ(ν, ϑ)T ∇FU (ϑ) < 0
, or

µ(ν, ϑ)T ∇FL(ϑ) < 0

µ(ν, ϑ)T ∇FU (ϑ) ≤ 0
.

It follows from the above relations that

⟨µ(ν, ϑ), ∇F(ϑ)⟩ <LU 0,

which shows that ϑ does not solve interval-valued variational-like inequality problem
(IVVLIP). Hence, ϑ is not a weakly LU optimal solution to (IVP) according to the
previous Theorem 4.2, which goes contradictory to the presumption that it is.

5. Conclusions

Our paper presents a novel category of variational-like inequality problems that are
interval-valued. Additionally, we establish certain connections between variational-
like inequality problems and interval-valued optimization. Illustrative examples are
provided to clarify the inferred connections. It will be fascinating to discover the
outcomes shown in this research under generalized invexity assumptions for non-
smooth interval-valued optimization problems. By connecting IVOP with VVLI,
researchers can develop better strategies for optimizing under uncertain conditions,
leading to more robust and resilient solutions. Furthermore, upcoming research
aims to explore the uncertain environment of a similar nature to investigate the
optimality conditions that involve fuzzy parameters.
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