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Two Minimal Residual NHSS Iteration Methods
for Complex Symmetric Linear Systems
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Abstract For the large sparse complex symmetric linear systems, by ap-
plying the minimal residual technique to accelerate a preconditioned variant
of new Hermitian and skew-Hermitian splitting (P∗NHSS) method and effi-
cient parameterized P∗NHSS (PPNHSS) method, we construct the minimal
residual P∗NHSS (MRP∗NHSS) method and the minimal residual PPNHSS
(MRPPNHSS) method. The convergence properties of the two iteration meth-
ods are studied. Theoretical analyses imply that the MRP∗NHSS method
and the MRPPNHSS method converge unconditionally to the unique solu-
tion. In addition, we also give the inexact versions of MRP∗NHSS method
and MRPPNHSS method and their convergence proofs. Finally, numerical
experiments show the high efficiency and robustness of our methods.
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1. Introduction

In this paper, we consider iterative methods for solving the complex symmetric
linear systems of the form:

Ax ≡ (W + iT )x = b, (1.1)

where i =
√
−1 denotes the imaginary unit, and W, T ∈ Rn×n are symmetric

positive semi-definite matrices with at least one of them being positive definite.
Furthermore, we assume that W is a symmetric positive definite matrix. In ad-
dition, b ∈ Cn is given and x ∈ Cn is what we need to get. The linear system
(1.1) appears in many applications, such as fast Fourier transform-based solution
of certain time-dependent PDEs [1], structural dynamics [2], diffuse optical tomog-
raphy [3], molecular scattering [4], parabolic and hyperbolic problems [5], and so
on.

In recent years, based on the Hermitian and skew-Hermitian splitting (HSS) of
matrix A, i.e., A = H(A) + S(A), with

H(A) =
1

2
(A+A∗) = W, S(A) =

1

2
(A−A∗) = iT,
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Bai, Golub and Ng [6] introduced an HSS iteration method to approximate the
solution of the system of linear equations. Nevertheless, a shifted skew-Hermitian
linear system needs to be solved at each iteration step of the HSS iteration method.
To improve this situation, Bai, Benzi and Chen [7] came up with a modified HSS
(MHSS) method. If sparse triangular factorizations are used to solve the linear
sub-systems involved at each step, the MHSS iteration method is likely to require
considerably less storage than the HSS iteration method since only two triangular
factors rather than three have to be computed and stored. To further increase
efficiency of MHSS method, Bai et al. proposed the preconditioned MHSS (PMHSS)
iteration method and applied it to the distributed control problems in [8, 9]. Since
an arbitrary matrix V is positive definite, αV + W and αV + T are both real
symmetric positive definite, the two sub-systems involved in each step of the PMHSS
iteration can be effectively solved either exactly by a sparse Cholesky factorization,
or inexactly by PCG method. Moreover, the PMHSS iteration method converges to
the unique solution of the system of linear equations (1.1) for any positive constant
α and any initial guess x(0).

Subsequently, the authors of [10] raised a new HSS (NHSS) method to solve the
non-Hermitian positive definite linear systems. The convergence analysis showed
that the NHSS method converges to the unique solution if σmax ≤ λmin, where
σmax is the maximum singular value of the matrix S(A) and λmin is the minimum
eigenvalue of the matrix H(A). Besides, numerical examples showed the NHSS
method performs very well when the Hermitian part of the coefficient matrix is
dominant. In 2018, based on the NHSS iteration method, Xiao, Wang and Yin [11]
introduced a preconditioned variant of NHSS (P∗NHSS) and an efficient parameter-
ized P∗NHSS (PPNHSS) iteration methods for solving a class of complex symmetric
linear systems. They proved that these iterative sequences are convergent to the
unique solution of the linear system for any initial guess under a loose restriction
on the parameters α and ω. Numerical results showed that the PPNHSS iteration
method outperforms PMHSS, NHSS and a preconditioned variant of the general-
ized successive over-relaxation (PGSOR) [12] methods from the point of view of
iterations and CPU times whether the experimental optimal parameters are used
or not. More iteration methods for solving a class of complex symmetric linear
systems, see [13–20].

Recently, Yang, Cao and Wu [21] proposed a minimum residual HSS (MRHSS)
method to improve the efficiency of the HSS method by making use of the minimum
residual technique to HSS iteration scheme. Numerical results revealed that the
MRHSS method is much more effective than the HSS method. Then, Yang [22]
improved the problem of inconvenient verification of the convergence of MRHSS.
In order to avoid shifted skew-Hermitian linear system, Zhang, Yang and Wu [23,
24] further used the minimum residual technique to the MHSS iteration scheme
and proposed the minimum residual MHSS (MRMHSS) method. Inspired by the
above idea, we apply the minimum residual technique on P∗NHSS and PPNHSS
methods and develop the minimum residual P∗NHSS (MRP∗NHSS) method and
the minimum residual parameterized P∗NHSS (MRPPNHSS) method to improve
the efficiency of the two methods of [11]. The corresponding convergence theories
are also established.

Throughout this paper, we denote by (x, y) = y∗x the Euclidean inner product
for any complex vectors x, y ∈ Cn, and denote by ∥x∥ =

√
(x, x) the Euclidean

norm for any complex vector x ∈ Cn. For an arbitrary matrix X ∈ Cn×n, ∥X∥
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denotes the spectral norm of X. In addition, we denote F(M) as the field values of
the complex matrix M ∈ Cn×n, i.e., F(M) = {(My, y)/(y, y)|0 ̸= y ∈ Cn}. What
is more, ℜ(·) represents the real part of the complex matrix or the complex number.

The paper is organized as follows. In Section 2, we show the derivation process
of the MRP∗NHSS method and its inexact version. Their convergence properties
are also considered. In Section 3, the convergence properties of the MRPPNHSS
iteration method and its inexact version are discussed. In Section 4, some numerical
examples are given to evaluate the effectiveness of the MRP∗NHSS and MRPPNHSS
iteration methods. Finally, a brief conclusion is drawn in Section 5.

2. The minimal residual P∗NHSS algorithm

The iteration scheme of the P∗NHSS iteration method [11] has the form of{
Wx(k+ 1

2 ) = −iTx(k) + b,

(αV +W )x(k+1) = (αV − iT )x(k+ 1
2 ) + b,

where α is a given positive constant and V ∈ Rn×n is a prescribed symmetric
positive definite matrix.

Using
W−1(−iT ) = I −W−1A

and
(αV +W )−1(αV − iT ) = I − (αV +W )−1A,

the P∗NHSS iteration scheme can be equivalently rewritten as{
x(k+ 1

2 ) = x(k) +W−1(b−Ax(k)),

x(k+1) = x(k+ 1
2 ) + (αV +W )−1(b−Ax(k+ 1

2 )).
(2.1)

To get the minimal residual P∗NHSS algorithm, we will modify the above iter-
ation scheme. Denoting r(k) = b − Ax(k) and r(k+

1
2 ) = b − Ax(k+ 1

2 ), the P∗NHSS
iteration scheme (2.1) can be rewritten as{

x(k+ 1
2 ) = x(k) +W−1r(k),

x(k+1) = x(k+ 1
2 ) + (αV +W )−1r(k+

1
2 ).

Then we introduce two parameters βk and γk to control the step sizes, which
lead to a new iteration scheme:{

x(k+ 1
2 ) = x(k) + βkW

−1r(k),

x(k+1) = x(k+ 1
2 ) + γk(αV +W )−1r(k+

1
2 ).

(2.2)

Note that A ∈ Cn×n and x, b ∈ Cn. It should be better to choose βk and γk
in the complex field C. At the same time, we denote M1 := AW−1 and M2 :=
A(αV +W )−1. After that, the residual form of the iteration scheme (2.2) can be
written as {

r(k+
1
2 ) = r(k) − βkM1r

(k),

r(k+1) = r(k+
1
2 ) − γkM2r

(k+ 1
2 ).
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Similar to [21], we can obtain the values of βk and γk by minimizing the residual

norms ∥r(k+ 1
2 )∥ and ∥r(k+1)∥,

∥r(k+ 1
2 )∥2 =∥r(k)∥2 − 2Re(βk)(H(M1)r

(k), r(k))− 2Im(βk)(iS(M1)r
(k), r(k))

+ (Re(βk)
2 + Im(βk)

2)∥M1r
(k)∥2

and

∥r(k+1)∥2

=∥r(k+ 1
2 )∥2 − 2Re(γk)(H(M2)r

(k+ 1
2 ), r(k+

1
2 ))− 2Im(γk)(iS(M2)r

(k+ 1
2 ), r(k+

1
2 ))

+ (Re(γk)
2 + Im(γk)

2)∥M2r
(k+ 1

2 )∥2,

where Re(·) and Im(·) denote the real and the imaginary parts of a complex number,
respectively. It is easily observed that these two norms can be viewed as four real
valued convex functions of two variables Re(βk) and Im(βk), Re(γk) and Im(γk),
respectively. So, the minimum point of each function can be directly derived as

Re(βk) =
(H(M1)r

(k), r(k))

∥M1r(k)∥2
, Im(βk) =

(iS(M1)r
(k), r(k))

∥M1r(k)∥2
(2.3)

and

Re(γk) =
(H(M2)r

(k+ 1
2 ), r(k+

1
2 ))

∥M2r(k+
1
2 )∥2

, Im(γk) =
(iS(M2)r

(k+ 1
2 ), r(k+

1
2 ))

∥M2r(k+
1
2 )∥2

. (2.4)

For easy computation, we can represent above form as

βk = Re(βk) + iIm(βk) =
(H(M1)r

(k), r(k))

∥M1r(k)∥2
+ i

(iS(M1)r
(k), r(k))

∥M1r(k)∥2

=
(r(k),M1r

(k))

∥M1r(k)∥2

(2.5)

and

γk = Re(γk) + iIm(γk) =
(H(M2)r

(k+ 1
2 ), r(k+

1
2 ))

∥M2r(k+
1
2 )∥2

+ i
(iS(M2)r

(k+ 1
2 ), r(k+

1
2 ))

∥M2r(k+
1
2 )∥2

=
(r(k+

1
2 ),M2r

(k+ 1
2 ))

∥M2r(k+
1
2 )∥2

.

(2.6)

Thus, we can complete the form of MRP∗NHSS in Algorithm 1:
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Algorithm 1 The MRP∗NHSS method

1. Input: A, b, positive constants α, the stop tolerance ϵ, evaluate r(0) = b and
initial estimate x(0).

2. Output: approximate x(k) solving Ax = b.

3. for k = 0, 1, 2... until satisfying the stopping criteria ||b−Ax(k)||
||b|| ≤ ε

(a) Solve Wt1 = r(k);

(b) Compute t2 = At1;

(c) Compute βk = (r(k),t2)
∥t2∥2 ;

(d) Set x(k+ 1
2 ) ← x(k) + βkt1 and evaluate r(k+

1
2 ) = b−Ax(k+ 1

2 );

(e) Solve (αV +W )t3 = r(k+
1
2 );

(f) Compute t4 = At3;

(g) Compute γk = (r(k+1
2
),t4)

∥t4∥2 ;

(h) Set x(k+1) ← x(k+ 1
2 ) + γkt3 and evaluate r(k+1) = b−Ax(k+1);

(i) k = k + 1.

4. end for.

Along the same lines as in Theorem 1 of [23], we can easily get

Theorem 2.1. The quadruple (Re(βk), Im(βk), Re(γk), Im(γk)) obtained by (2.3)
and (2.4) is a global minimum point of ∥r(k+1)∥, which implies that the values of
βk and γk defined by (2.5) and (2.6) are optimal in the complex field C.

Remark 2.1. When we choose βk = γk = 1 at each iteration step of above method,
the MRP∗NHSS iteration method immediately reduces to the P∗NHSS iteration
method.

Next, we give the following convergence property of the MRP∗NHSS iteration
method.

Theorem 2.2. Let W and T be symmetric positive definite and symmetric positive
semi-definite, respectively. The MRP∗NHSS iteration method used for solving the
complex symmetric linear system (1.1) is convergent unconditionally for any initial
guess x(0) ∈ Cn. Furthermore, the residuals satisfy

∥r(k+1)∥ ≤
√
∥AW−1∥2 − ξ21
∥AW−1∥

√
∥A(αV +W )−1∥2 − ξ22
∥A(αV +W )−1∥

∥r(k)∥, (2.7)

where ξ1 and ξ2 represent the distances from zero to F(AW−1) and F(A(αV +
W )−1), respectively.

Proof. At the beginning, we consider the first half of the iteration method.
Note that

(r(k+
1
2 ),M1r

(k)) =((I − βkM1)r
(k),M1r

(k))

=(r(k),M1r
(k))− (r(k),M1r

(k))

∥M1r(k)∥2
(M1r

(k),M1r
(k)) = 0,
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i.e.,

r(k+
1
2 )⊥M1r

(k).

Subsequently, by using above condition, we can obtain the relation between r(k)

and r(k+
1
2 ):

(r(k+
1
2 ), r(k+

1
2 )) =(r(k) − βkM1r

(k), r(k+
1
2 ))

=(r(k), r(k+
1
2 ))− βk(M1r

(k), r(k+
1
2 ))

=(r(k), r(k+
1
2 ))

=(r(k) − βkM1r
(k), r(k))

=(r(k), r(k))− βk(M1r
(k), r(k))

=(r(k), r(k))− (M1r
(k), r(k))

∥M1r(k)∥2
(M1r

(k), r(k))

=(r(k), r(k))− (M1r
(k), r(k))2

∥M1r(k)∥2∥r(k)∥2
(r(k), r(k))

=(r(k), r(k))(1− cos2 ∠k)

=(r(k), r(k)) sin2 ∠k,

(2.8)

where ∠k is the angle between r(k) and M1r
(k). In the same way, we can also get

r(k+1)⊥M2r
(k+ 1

2 )

and the relation between r(k+
1
2 ) and r(k+1):

(r(k+1), r(k+1)) = (r(k+
1
2 ), r(k+

1
2 )) sin2 ∠k+ 1

2
,

where ∠k+ 1
2
is the angle between r(k+

1
2 ) and M2r

(k+ 1
2 ). Thus, we have

∥r(k+1)∥2 = ∥r(k)∥2 · sin2 ∠k · sin2 ∠k+ 1
2
,

that is to say,

∥r(k+1)∥ = ∥r(k)∥ · | sin∠k| · | sin∠k+ 1
2
|.

To ensure that Algorithm 1 is convergent, we should guarantee | sin∠k| and | sin∠k+ 1
2
|

are not equal to one in the meantime. In other words, Algorithm 1 is convergent if
and only if

0 /∈ F(M1) ∩ F(M2).

As a matter of fact, since W is symmetric positive definite and T is symmetric
positive semi-definite, we have

ℜ(F(M1)) > 0.

Thus,

0 /∈ F(M1).

Therefore, the MRP∗NHSS iteration method converges unconditionally to the exact
solution of the system of linear equation (1.1).
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On the other hand, we define

ξ1 = min
0 ̸=y∈Cn

∣∣∣∣ (M1y, y)

(y, y)
− 0

∣∣∣∣ and ξ2 = min
0̸=y∈Cn

∣∣∣∣ (M2y, y)

(y, y)
− 0

∣∣∣∣ .
From (2.8), we can obtain

∥r(k+ 1
2 )∥2 =∥r(k)∥2 − (M1r

(k), r(k))

∥M1r(k)∥2
(M1r

(k), r(k))

=∥r(k)∥2
(
1−

∣∣∣∣ (M1r
(k), r(k))

∥r(k)∥2

∣∣∣∣2 ∥r(k)∥2

∥M1r(k)∥2

)

≤∥r(k)∥2(1− ξ21
∥M1∥2

).

In the similar way, we can also obtain

∥r(k+1)∥2 ≤∥r(k+ 1
2 )∥2

(
1− ξ22
∥M2∥2

)
.

Combining the above two inequalities, the proof can be completed.
Next, we will solve Wt = r(k) and (αV +W )t = r(k+

1
2 ) by iterative method and

then give the inexact version of the MRP∗NHSS method in Algorithm 2.

Algorithm 2 The IMRP∗NHSS method

1. Input: A, b, positive constants α, the stop tolerance ε, evaluate r̄(0) = b,
initial estimate x̄(0), δk and ηk, where k = 1, 2 . . ..

2. Output: Approximate x̄(k) solving Ax = b.

3. for k = 0, 1, 2, ... until satisfying the stopping criteria ||b−Ax̄(k)||
||b|| ≤ ε

(a) Solve Wg(k+
1
2 ) = r̄(k) inexactly by using CG(PCG) method until the

approximate solution g(k+
1
2 ) satisfying ∥u(k)∥ ≤ δk∥r̄(k)∥, where u(k) =

Wg(k+
1
2 ) − r̄(k);

(b) Compute h(k+ 1
2 ) = Ag(k+

1
2 );

(c) Compute β̄k = (r̄(k),h(k+1
2
))

∥h(k+1
2
)∥2

;

(d) Set x̄(k+ 1
2 ) ← x̄(k) + β̄kh

(k+ 1
2 ) and evaluate r̄(k+

1
2 ) = b−Ax̄(k+ 1

2 );

(e) Solve (αV + W )g(k+1) = r̄(k+
1
2 ) inexactly by using CG(PCG) method

until the approximate solution g(k+1) satisfying ∥u(k+ 1
2 )∥ ≤ ηk∥r̄(k+

1
2 )∥,

where u(k+ 1
2 ) = (αV +W )g(k+1) − r̄(k+

1
2 );

(f) Compute h(k+1) = Ag(k+1);

(g) Compute γ̄k = (r̄(k),h(k+1))
∥h(k+1)∥2 ;

(h) Set x̄(k+1) ← x̄(k+ 1
2 ) + γ̄kh

(k+1) and evaluate r̄(k+1) = b−Ax̄(k+1);

(i) k = k + 1.

4. end for.

The convergence theory of the IMRP∗NHSS method is given as follows.
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Theorem 2.3. Let the assumptions of Theorem 2.2 hold. If {x̄(k)} is an iterative
sequence obtained from the IMRP∗NHSS iteration method, then it holds that

∥r̄(k+1)∥ ≤ Υ(δk, ηk)∥r̄(k)∥

where

Υ(δk, ηk) =∥I − γkM2∥∥I − βkM1∥+ ηk∥γkM2∥∥I − βkM1∥
+ δk∥I − γkM2∥∥βkM1∥+ ηkδk∥γkM2∥∥βkM1∥.

Furthermore, if δmax = max{δk} and ηmax = max{ηk} satisfy

Υ(δmax, ηmax) < 1, (2.9)

then the sequence {x̄(k)} converges to the exact solution.

Proof. By applying the conditions ∥u(k)∥ ≤ δk∥r̄(k)∥ and ∥u(k+ 1
2 )∥ ≤ ηk∥r̄(k+

1
2 )∥,

we are going to get the relation between ∥r̄(k+ 1
2 )∥ and ∥r̄(k+1)∥:

∥r̄(k+1)∥ =∥r̄(k+ 1
2 ) − γ̄kAg(k+1)∥

≤∥r̄(k+ 1
2 ) − (r̄(k+

1
2 ),M2r̄

(k+ 1
2 ))

∥M2r̄(k+
1
2 )∥2

Ag(k+1)∥

=∥r̄(k+ 1
2 ) − (r̄(k+

1
2 ),M2r̄

(k+ 1
2 ))

∥M2r̄(k+
1
2 )∥2

M2(r̄
(k+ 1

2 ) + u(k+ 1
2 ))∥

≤∥r̄(k+ 1
2 ) − γkM2r̄

(k+ 1
2 )∥+ ∥γkM2u

(k+ 1
2 )∥

≤∥I − γkM2∥∥r̄(k+
1
2 )∥+ ∥γkM2∥∥u(k+ 1

2 )∥

≤∥I − γkM2∥∥r̄(k+
1
2 )∥+ ηk∥γkM2∥∥r̄(k+

1
2 )∥

=(∥I − γkM2∥+ ηk∥γkM2∥)∥r̄(k+
1
2 )∥.

(2.10)

The first inequality is because of the definition of γ̄k. In the similar way, we can
also obtain the relation between ∥r̄(k+ 1

2 )∥ and ∥r̄(k)∥:

∥r̄(k+ 1
2 )∥ ≤ (∥I − βkM1∥+ δk∥βkM1∥)∥r̄(k)∥. (2.11)

Thus, by combining (2.10) and (2.11) and simple calculations, we can obtain

∥r̄(k+1)∥ ≤(∥I − γkM2∥∥I − βkM1∥+ ηk∥γkM2∥∥I − βkM1∥
+δk∥I − γkM2∥∥βkM1∥+ ηkδk∥γkM2∥∥βkM1∥)∥r̄(k)∥.

It can be seen from the proof procedure of the MRP∗NHSS that ∥I−γkM2∥∥I−
βkM1∥ < 1. Besides, notice that ∥γkM2∥∥I − βkM1∥, ∥I − γkM2∥∥βkM1∥ and
∥γkM2∥∥βkM1∥ are all positive, let δmax = max{δk} and ηmax = max{ηk}, we have

Υ(δk, ηk) ≤ Υ(δmax, ηmax).

This implies that the IMRP∗NHSS iteration method is convergent if (2.9) holds.

Remark 2.2. In fact, the IMRP∗NHSS iteration method is going to be very close
to the MRP∗NHSS iteration method when δk → 0 and ηk → 0(k → +∞). Thus,
the IMRP∗NHSS iteration method is sure to be convergent when δmax and ηmax are
small enough.
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3. The minimal residual PPNHSS algorithm

The iteration scheme of the PPNHSS iteration method has the form of{
(ωW + T )x(k+ 1

2 ) = −i(ωT −W )x(k) + (ω − i)b,

(αV + ωW + T )x(k+1) = [αV − i(ωT −W )]x(k+ 1
2 ) + (ω − i)b,

(3.1)

where ω and α are given positive constants and V ∈ Rn×n is a prescribed symmetric
positive definite matrix.

Similar to (2.2), we can rewrite (3.1) as its residual form:{
x(k+ 1

2 ) = x(k) + (ω − i)(ωW + T )−1r(k),

x(k+1) = x(k+ 1
2 ) + (ω − i)(αV + ωW + T )−1r(k+

1
2 ).

(3.2)

Subsequently, we also bring in two parameters λk and θk:{
x(k+ 1

2 ) = x(k) + λk(ω − i)(ωW + T )−1r(k),

x(k+1) = x(k+ 1
2 ) + θk(ω − i)(αV + ωW + T )−1r(k+

1
2 ).

(3.3)

Further, we have{
r(k+

1
2 ) = r(k) − λk(ω − i)(ωW + T )−1r(k),

r(k+1) = r(k+
1
2 ) − θk(ω − i)(αV + ωW + T )−1r(k+

1
2 ).

(3.4)

What’s more, let G1 := A(ωW + T )−1 and G2 := A(αV + ωW + T )−1, we
calculate λk and θk similarly:

(Re(λk), Im(λk)) = (
(H((ω − i)G1)r

(k), r(k))

∥(ω − i)G1r(k)∥2
,
(iS((ω − i)G1)r

(k), r(k))

∥(ω − i)G1r(k)∥2
) (3.5)

and

(Re(θk), Im(θk)) = (
(H((ω − i)G2)r

(k), r(k))

∥(ω − i)G2r(k)∥2
,
(iS((ω − i)G2)r

(k), r(k))

∥(ω − i)G2r(k)∥2
). (3.6)

The expressions of λk and θk can be given as follows:

λk = Re(λk) + iIm(λk) =
(r(k), (ω − i)G1r

(k))

∥(ω − i)G1r(k)∥2
(3.7)

and

θk = Re(θk) + iIm(θk) =
(r(k+

1
2 ), (ω − i)G2r

(k+ 1
2 ))

∥(ω − i)G2r(k+
1
2 )∥2

. (3.8)

Therefore, the iteration scheme of the MRPPNHSS method is

x(k+ 1
2 ) = x(k) + (r(k),(ω−i)G1r

(k))
∥(ω−i)G1r(k)∥2 (ω − i)(ωW + T )−1r(k)

= x(k) + (r(k),(G1r
(k))

∥G1r(k)∥2 (ωW + T )−1r(k),

x(k+1) = x(k+ 1
2 ) + (r(k+1

2
),(ω−i)G2r

(k+1
2
))

∥(ω−i)G2r
(k+1

2
)∥2

(ω − i)(αV + ωW + T )−1r(k+
1
2 )

= x(k+ 1
2 ) + (r(k+1

2
),G2r

(k+1
2
))

∥G2r
(k+1

2
)∥2

(αV + ωW + T )−1r(k+
1
2 ).



Two Minimal Residual NHSS Iteration Methods for Complex Symmetric Linear Systems 913

We write the complete form of MRPPNHSS in Algorithm 3.

Algorithm 3 The MRPPNHSS method

1. Input: A, b, positive constants α and ω, symmetric positive definite matrix
V , the stop tolerance ϵ, evaluate r(0) = b and initial estimate x(0).

2. Output: approximate x(k) solving Ax = b.

3. for k = 0, 1, 2... until satisfying the stopping criteria ||b−Ax(k)||
||b|| ≤ ε

(a) Solve (ωW + T )t1 = r(k);

(b) Compute t2 = At1;

(c) Compute λ
′

k = (r(k),t2)
∥t2∥2 ;

(d) Set x(k+ 1
2 ) ← x(k) + λ

′

kt1 and evaluate r(k+
1
2 ) = b−Ax(k+ 1

2 );

(e) Solve (αV + ωW + T )t3 = r(k+
1
2 );

(f) Compute t4 = At3;

(g) Compute θ
′

k = (r(k+1
2
),t4)

∥t4∥2 ;

(h) Set x(k+1) ← x(k+ 1
2 ) + θ

′

kt3 and evaluate r(k+1) = b−Ax(k+1);

(i) k = k + 1.

4. end for.

Remark 3.1. When we choose λ′
k = θ′k = ω − i at each iteration step of above

method, then the MRPPNHSS iteration method reduces to the PPNHSS iteration
method.

Similar to the MRP∗NHSS method, we give the following theorem. The proof
is similar to Theorem 1 of [23] and we omit it.

Theorem 3.1. The quadruple (Re(λk), Im(λk), Re(θk), Im(θk)) obtained by (3.5)
and (3.6) is a global minimum point of ∥r(k+1)∥ of MRPPNHSS, which implies that
the values of λk and θk defined by (3.7) and (3.8) are optimal in the complex field
C.

The convergence properties of the MRPPNHSS iteration method are derived as
follows.

Theorem 3.2. Let the assumptions of Theorem 2.2 hold. The MRPPNHSS iter-
ation method used for solving the complex symmetric system of (1.1) is convergent
unconditionally for any initial guess x(0) ∈ Cn. Furthermore, the residuals satisfy

∥r(k+1)∥ ≤
√
∥A(ωW + T )−1∥2 − ρ21
∥A(ωW + T )−1∥

√
∥A(αV + ωW + T )−1∥2 − ρ22
∥A(αV + ωW + T )−1∥

∥r(k)∥, (3.9)

where ρ1 and ρ2 represent the distances from zero to F(A(ωW + T )−1) and
F(A(αV + ωW + T )−1), respectively.

Proof. First, we consider the first half of the iteration method.
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Note that

(r(k+
1
2 ), G1r

(k)) =((I − λk(ω − i)G1)r
(k), G1r

(k))

=(r(k), G1r
(k))− (r(k), (ω − i)G1r

(k))

∥(ω − i)G1r(k)∥2
((ω − i)G1r

(k), G1r
(k))

=0,

i.e.,

r(k+
1
2 )⊥G1r

(k).

Subsequently, by using above condition, we can obtain the relation between r(k)

and r(k+
1
2 ):

(r(k+
1
2 ), r(k+

1
2 )) =(r(k) − λk(ω − i)G1r

(k), r(k+
1
2 ))

=(r(k), r(k+
1
2 ))− λk((ω − i)G1r

(k), r(k+
1
2 ))

=(r(k), r(k+
1
2 ))

=(r(k) − λk(ω − i)G1r
(k), r(k))

=(r(k), r(k))− λk((ω − i)G1r
(k), r(k))

=(r(k), r(k))− ((ω − i)G1r
(k), r(k))

∥(ω − i)G1r(k)∥2
((ω − i)G1r

(k), r(k))

=(r(k), r(k))− ((ω − i)G1r
(k), r(k))2

∥(ω − i)G1r(k)∥2∥r(k)∥2
(r(k), r(k))

=(r(k), r(k))(1− cos2 ∠′
k)

=(r(k), r(k)) sin2 ∠′
k,

(3.10)

where ∠′
k is the angle between r(k) and G1r

(k). In the same way, we can also get

r(k+1)⊥G2r
(k+ 1

2 )

and the relation between r(k+
1
2 ) and r(k+1):

(r(k+1), r(k+1)) = (r(k+
1
2 ), r(k+

1
2 )) sin2 ∠′

k+ 1
2
,

where ∠′
k+ 1

2

is the angle between r(k+
1
2 ) and G1r

(k+ 1
2 ). The rest of proof is similar

to that of Theorem 2.2 and we omit it.

Next, we will solve Wt = r(k) and (αV + W )t = r(k+
1
2 ) systems by iterative

method and then give the inexact version of the MRPPNHSS method in Algorithm
4.
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Algorithm 4 The IMRPPNHSS method

1. Input: A, b, positive constants α and ω, the stop tolerance ε, evaluate r̄(0) = b,
initial estimate x̄(0), τk and υk, where k = 1, 2 . . ..

2. Output: Approximate x̄(k) solving Ax = b.

3. for k = 0, 1, 2... until satisfying the stopping criteria ||b−Ax̄(k)||
||b|| ≤ ε

(a) Solve (ωW + T )g(k+
1
2 ) = r̄(k) inexactly by using CG(PCG) method un-

til the approximate solution g(k+
1
2 ) satisfying ∥u(k)∥ ≤ τk∥r̄(k)∥, where

u(k) = (ωW + T )g(k+
1
2 ) − r̄(k);

(b) Compute h(k+ 1
2 ) = Ag(k+

1
2 );

(c) Compute λ̄
′

k = (r̄(k),h(k+1
2
))

∥h(k+1
2
)∥2

;

(d) Set x̄(k+ 1
2 ) ← x̄(k) + λ̄

′

kh
(k+ 1

2 ) and evaluate r̄(k+
1
2 ) = b−Ax̄(k+ 1

2 );

(e) Solve (αV + ωW + T )g(k+1) = r̄(k+
1
2 ) inexactly by using CG(PCG)

method until the approximate solution g(k+1) satisfying ∥u(k+ 1
2 )∥ ≤

υk∥r̄(k+
1
2 )∥, where u(k+ 1

2 ) = (αV + ωW + T )g(k+1) − r̄(k+
1
2 );

(f) Compute h(k+1) = Ag(k+1);

(g) Compute θ̄
′

k = (r̄(k),h(k+1))
∥h(k+1)∥2 ;

(h) Set x̄(k+1) ← x̄(k+ 1
2 ) + θ̄

′

kh
(k+1) and evaluate r̄(k+1) = b−Ax̄(k+1);

(i) k = k + 1.

4. end for.

Next, the convergence of IMRPPNHSS method is given as follows.

Theorem 3.3. Let the assumptions of Theorem 2.2 hold. If {x̄(k)} is an iterative
sequence obtained from the IMRPPNHSS iteration method, then it holds that

∥r̄(k+1)∥ ≤ Γ(τk, υk)∥r̄(k)∥,

where

Γ(τk, υk)

=(∥I − θk(ω − i)G2∥∥I − βk(ω − i)G1∥+ υk∥θk(ω − i)G2∥∥I − λk(ω − i)G1∥
+ τk∥I − θk(ω − i)G2∥∥λk(ω − i)G1∥+ υkτk∥θk(ω − i)G2∥∥λk(ω − i)G1∥)∥r̄(k)∥.

Furthermore, if τmax = max{τk} and υmax = max{υk} satisfy

Γ(τk, υk) < 1,

then the sequence {x̄(k)} converges to the exact solution.

Proof. Similar to the proof of Theorem 2.3, we first obtain the relation between
∥r̄(k+1)∥ and ∥r̄(k+ 1

2 )∥:

∥r̄(k+1)∥ =∥r̄(k+ 1
2 ) − (r̄(k+

1
2 ), (ω − i)G2g

(k+1))

∥(ω − i)G2g(k+1)∥2
(ω − i)Ag(k+1)∥
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≤∥r̄(k+ 1
2 ) − (r̄(k+

1
2 ), (ω − i)G2r̄

(k+ 1
2 ))

∥(ω − i)G2r̄(k+
1
2 )∥2

(ω − i)Ag(k+1)∥

=∥r̄(k+ 1
2 ) − (r̄(k+

1
2 ), (ω − i)G2r̄

(k+ 1
2 ))

∥(ω − i)G2r̄(k+
1
2 )∥2

(ω − i)G2(r̄
(k+ 1

2 ) + u(k+ 1
2 ))∥

≤∥r̄(k+ 1
2 ) − θk(ω − i)G2r̄

(k+ 1
2 )∥+ ∥θk(ω − i)G2u

(k+ 1
2 )∥

≤∥I − θk(ω − i)G2∥∥r̄(k+
1
2 )∥+ ∥θk(ω − i)G2∥∥u(k+ 1

2 )∥

≤∥I − θk(ω − i)G2∥∥r̄(k+
1
2 )∥+ υk∥θk(ω − i)G2∥∥r̄(k+

1
2 )∥

=(∥I − θkG2∥+ υk∥θkG2∥)∥r̄(k+
1
2 )∥.

The rest proof is similar to Theorem 2.3, so we omit it here.

Remark 3.2. In fact, the IMRPPNHSS iteration method is going to be very close
to the MRPPNHSS iteration method when τk → 0 and υk → 0(k → +∞). Thus,
the IMRPPNHSS iteration method is sure to be convergent when τmax and υmax

are small enough.

4. Numerical experiments

In this section, we will provide some numerical experiments on the sparse complex
symmetric linear system (1.1) with different examples for comparing our proposed
methods, including the MRP∗NHSS and the MRPPNHSS iteration methods, with
the following methods:

• The NHSS method [10].

• The P∗NHSS and PPNHSS methods [11].

• The MRMHSS method [23].

In addition, the results of the inexact versions of these methods are also given.
We show the number of iteration steps (denoted as ‘IT’) and the computing time

(denoted as ‘CPU’) in seconds of the above iterative algorithms for solving different
linear systems. All experiments were performed by using MATLAB (R2018b) on
a personal computer with 2.00 GHz central processing unit (Intel(R) Core(TM)
i5-1038NG7 CPU), 16.00GB memory, and Windows operating system (Windows
10).

We compute x(k+1) in the system Bx(k+1) = e(k) by using x(k+1) = B \ e(k)
for the sparse matrix B and vector e(k). Besides, for all tested inexact iteration
methods, the subsystems are solved by the PCG method with tolerance ηk = δk =
τk = υk = 10−3(k = 1, 2 . . .), for which are preconditioned by the corresponding
modified incomplete Cholesky factorization, and the related command of computing
preconditioner is ichol( ·, struct(type, ict, droptol, 1e−3, michol, on)). The CPU
time is recorded by the command “tic-toc”. In our experiments, we always take
the prescribed symmetric positive definite matrix V = W for P∗NHSS, PPNHSS,
MRP∗NHSS and MRPPNHSS iteration methods. The initial value is always chosen
to be zero vector and the stopping criteria for all the methods are

RES =
||b−Ax(k)||
||b||

≤ 10−6
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Table 1. The numerical results of Example 4.1 for different iteration methods when (ϖ,µ) = (0.01, 5).

Method Grid

16× 16 32× 32 64× 64 128× 128 256× 256

NHSS α∗ - - - - -

IT - - - - -

CPU - - - - -

P∗NHSS α∗ - - - - -

IT - - - - -

CPU - - - - -

PPNHSS α∗ 2.2 2.0 3.4 2.4 2.1

ω∗ 1 1 1 1 1

IT 14 14 14 14 14

CPU 0.0050 0.0225 0.1062 0.6370 3.0805

MRMHSS α∗ 0.1 0.2 0.2 0.4 0.6

IT 1 1 1 1 1

CPU 0.0067 0.0026 0.0088 0.0409 0.2070

MRP∗NHSS α∗ 7.7 6.7 9.7 8.3 9.1

IT 1 1 1 1 1

CPU 0.0001 0.0015 0.0072 0.0401 0.1904

MRPPNHSS α∗ 6.5 9.8 3.4 1.1 0.7

ω∗ 20 15 13 18 15

IT 1 1 1 1 1

CPU 0.0001 0.0015 0.0078 0.0410 0.1958

and we use “-” to denote the case where the IT of the algorithms does not converge
within 500 iterations.

For the choice of the parameter values of our test methods, we use the experi-
mentally found optimal ones, which lead to the least number of iteration steps. If
the optimal parameter values form an interval, then we use the one that belongs to
this interval and leads to the least CPU time.

Example 4.1. (see [25, 26]) Consider the following complex symmetric linear sys-
tem:

[(K −ϖ2M) + i(CH +ϖCV )]x = b,

where M and K are the inertia and the stiffness matrices, CV and CH are the
viscous and the hysteretic damping matrices, respectively, and ϖ is the driving
circular frequency. We take CH = µK with µ a damping coefficient, M = I, CV =
10I, and K the five-point centered difference matrix approximating the negative
Laplacian operator with homogeneous Dirichlet boundary conditions, on a uniform
mesh in the unit square [0, 1] × [0, 1] with the mesh-size h = 1/(m + 1). The
matrix K ∈ Rn×n possesses the tensor-product form K = I ⊗ Vm + Vm ⊗ I, with
Vm = h−2tridiag(−1, 2,−1) ∈ Rm×m. Hence, K is an n × n block-tridiagonal
matrix, with n = m2. In addition, we set the right-hand side vector b to be

bj =
(1 + i)j

h2(j + 1)2
, j = 1, 2, . . . , n.

Furthermore, we normalize the system by multiplying both sides through by h2.
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Example 4.2. (see [25,26]) Consider the following complex Helmholtz equation:

−∆u+ σ1u+ iσ2u = f,

where σ1, σ2 are real coefficient functions, and u satisfies Dirichlet boundary condi-
tions in the square D = [0, 1]×[0, 1]. We discretize this complex Helmholtz equation
with finite differences on an m×m grid with mesh size h = 1/(m+ 1). Therefore,
we obtain a system of linear equations

[(K + σ1I) + iσ2I]x = b,

where the matrix K ∈ Rn×n possesses the tensor-product form

K = I ⊗ Vm + Vm ⊗ I with Vm =
1

h2
tridiag(−1, 2,−1) ∈ Rm×m.

In fact, K is the five-point centered difference matrix approximating the negative
Laplacian operator L = −∆. In our tests, we take the right-hand side vector
b = (1 + i)A1, with 1 being the vector of all entries equal to 1. In addition, we
normalize the system by multiplying both sides by h2.

Example 4.3. (see [7, 23]) Consider the complex symmetric linear systems of the
form (1.1):

[(K +
3−
√
3

τ
I) + i(K +

3 +
√
3

τ
I)x = b

where τ is the time step-size and K is the matrix of a standard five point centered
difference formula, approximating the negative Laplacian operator with homoge-
neous Dirichlet boundary conditions on an uniform mesh in the two dimensional
unit square [0, 1]× [0, 1], and we set h = 1/(m+ 1), τ = h, where m is a number of
inner grid-points in one direction. Then, we can know that the matrix K ∈ Rn×n

is with the tensor product form

K = I ⊗ Vm + Vm ⊗ I with Bm =
1

h2
tridiag(−1, 2,−1) ∈ Rm×m.

What’s more, it is obvious that K is an n×n block tridiagonal matrix and n = m2.

In our tests, we take W = K+ 3−
√
3

τ I and T = K+ 3+
√
3

τ I, and the right-hand side
vector b with the jth entry bj being the form as follows

bj =
(1− i)j

h2(j + 1)2
, j = 1, 2, . . . , n.

In addition, we normalize the system by multiplying two sides by h2. And for other
details, we can refer to [23].
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Table 2. The numerical results of Example 4.1 for different iteration methods when (ϖ,µ) = (0.01, 5).

Method Grid

16× 16 32× 32 64× 64 128× 128 256× 256

INHSS α∗ - - - - -

IT - - - - -

CPU - - - - -

IP∗NHSS α∗ - - - - -

IT - - - - -

CPU - - - - -

IPPNHSS α∗ 1.8 1.5 0.9 0.7 0.1

ω∗ 20 20 20 20 20

IT 364 360 360 358 358

CPU 0.1481 0.2619 0.9465 4.5885 25.6811

IMRMHSS α∗ 5.3 9.5 0.2 5.5 8.7

IT 2 2 2 3 3

CPU 0.0012 0.0021 0.0244 0.0512 0.2649

IMRP∗NHSS α∗ 4.9 8.1 5.9 7.0 6.0

IT 2 3 2 3 3

CPU 0.0011 0.0030 0.0081 0.0511 0.2752

IMRPPNHSS α∗ 5.2 8.5 2.2 9.8 9.3

ω∗ 13 20 9 13 14

IT 2 2 2 2 3

CPU 0.0011 0.0031 0.0084 0.0569 0.2915

Table 3. The numerical results of Example 4.2 for different iteration methods when (σ1, σ2) = (1, 10).

Method Grid

16× 16 32× 32 64× 64 128× 128 256× 256

NHSS α∗ 1.8 5.8 6.7 5.7 4.7

IT 8 7 7 6 5

CPU 0.0023 0.0091 0.0488 0.2358 0.5931

P∗NHSS α∗ 0.4 0.3 0.4 0.6 0.2

IT 8 7 7 6 5

CPU 0.0026 0.0110 0.0494 0.2412 0.9612

PPNHSS α∗ 0.8 2.5 3.7 1.0 3.2

ω∗ 4 7 10 7 10

IT 5 5 5 4 4

CPU 0.0020 0.0080 0.0384 0.1930 0.9332

MRMHSS α∗ 2.3 4.9 1.8 1.4 1.6

IT 6 7 7 6 6

CPU 0.0012 0.0056 0.0262 0.1270 0.6446

MRP∗NHSS α∗ 2.8 8.8 2.4 9.7 3.5

IT 4 4 4 3 3

CPU 0.0013 0.0061 0.0301 0.1272 0.6237

MRPPNHSS α∗ 6 1.5 6.6 9.2 1.2

ω∗ 19 18 20 17 19

IT 4 4 4 3 3

CPU 0.0013 0.0060 0.0293 0.1225 0.6027
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Table 4. The numerical results of Example 4.2 for different iteration methods when (σ1, σ2) = (1, 10).

Method Grid

16× 16 32× 32 64× 64 128× 128 256× 256

INHSS α∗ 4.8 4.4 10 4.0 7.3

IT 8 7 7 6 6

CPU 0.0041 0.0060 0.0223 0.1149 0.6846

IP∗NHSS α∗ 0.4 0.2 0.4 0.4 0.6

IT 8 7 7 6 6

CPU 0.0054 0.0137 0.0270 0.1277 0.7554

IPPNHSS α∗ 0.2 0.4 0.3 0.1 0.3

ω∗ 1 1 1 1 1

IT 8 8 7 6 6

CPU 0.0066 0.0074 0.0285 0.1892 0.6123

IMRMHSS α∗ 2.9 8.4 3.7 10.0 3.3

IT 5 4 4 4 4

CPU 0.0042 0.0078 0.0360 0.2157 2.0062

IMRP∗NHSS α∗ 9.0 6.0 3.6 6.9 3.3

IT 4 4 4 4 4

CPU 0.0021 0.0038 0.0159 0.0798 0.4777

IMRPPNHSS α∗ 9.9 9.6 6.9 7.4 5.0

ω∗ 15 17 10 3 2

IT 4 4 4 4 4

CPU 0.0022 0.0038 0.0162 0.0833 0.4817

Table 5. The numerical results of Example 4.3 for different iteration methods.

Method Grid

16× 16 32× 32 64× 64 128× 128 256× 256

NHSS α∗ - - - - -

IT - - - - -

CPU - - - - -

P∗NHSS α∗ - - - - -

IT - - - - -

CPU - - - - -

PPNHSS α∗ 0.7 1.5 1.1 1.5 0.9

ω∗ 1 1 1 1 1

IT 7 8 8 8 8

CPU 0.0027 0.0130 0.0634 0.3547 1.7075

MRMHSS α∗ 7.1 5.0 8.9 9.4 7.2

IT 4 5 5 5 5

CPU 0.0013 0.0078 0.0366 0.2199 1.0838

MRP∗NHSS α∗ 1.5 9.9 4.3 3.6 0.9

IT 6 7 8 8 8

CPU 0.0019 0.0106 0.0596 0.3552 1.5589

MRPPNHSS α∗ 9.5 4.9 7.0 1.0 1.7

ω∗ 1 3 2 2 1

IT 4 5 5 5 4

CPU 0.0013 0.0075 0.0370 0.2130 0.8385
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Table 6. The numerical results of Example 4.3 for different iteration methods.

Method Grid

16× 16 32× 32 64× 64 128× 128 256× 256

INHSS α∗ - - - - -

IT - - - - -

CPU - - - - -

IP∗NHSS α∗ - - - - -

IT - - - - -

CPU - - - - -

IPPNHSS α∗ 0.6 0.4 1.1 0.6 0.1

ω∗ 4 6 7 8 10

IT 80 101 118 128 129

CPU 0.0377 0.0693 0.2085 0.7160 3.0958

IMRMHSS α∗ 5.9 6.4 8.0 7.6 3.3

IT 6 7 8 8 8

CPU 0.0031 0.0057 0.0213 0.0757 0.3579

IMRP∗NHSS α∗ 6.8 9.5 9.8 2.8 8.0

IT 6 8 8 8 8

CPU 0.0028 0.0054 0.0175 0.0599 0.2932

IMRPPNHSS α∗ 2.4 8.3 3.9 9.6 2.4

ω∗ 1 3 2 2 3

IT 4 5 5 5 5

CPU 0.0025 0.0037 0.0141 0.0464 0.2259

Figure 1. CPU of the convergent iteration methods with respect to the values of iteration parameter
α when m = 256.
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Figure 2. IT of the convergent iteration methods with respect to the values of iteration parameter α
when m = 256.

We show the results of our numerical examples under the exact version of these
five methods in Tables 1, 3, 5 and the inexact versions in Tables 2, 4, 6. It can be
observed that the MRP∗NHSS and MRPPNHSS methods are always superior to
the NHSS, P∗NHSS, PPNHSS and MRMHSS methods in terms of both the IT and
CPU time. In the inexact situation, the IMRP∗NHSS and IMRPPNHSS methods
also have good performance compared with the INHSS, IP∗NHSS, IPPNHSS and
IMRMHSS methods. Furthermore, even though the P∗NHSS and IP∗NHSS method
are not convergent in the Example 4.1, the MRP∗NHSS and IMRP∗NHSS methods
are still convergent to the exact point. Moreover, the inexact versions perform
better in terms of CPU than the exact versions in Examples 4.2 and 4.3, but a
little worse in Example 4.1. As we know, the inexact version generally has more IT
than the exact version. However, in our experiment, the IT of IMRP∗NHSS and
IMRPPNHSS methods are a little more than that of MRP∗NHSS and MRPPNHSS
methods. In addition, for our examples, the IT of our test methods is nearly h-
independent.

We plot the CPU and IT of the convergent iterative methods with respect to the
value of parameter α in figures 1 and 2 for m = 256, respectively. The results show
that whether accurate or inaccurate versions, we approach IT is hardly affected by
α and CPU only within the scope of the small fluctuations.

Therefore, we can conclude that the MRP∗NHSS and MRPPNHSS methods
discussed in this work are very efficient and robust when applied to solve the complex
symmetric system (1.1).
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5. Conclusion

In our work, we obtain MRP∗NHSS and MRPPNHSS methods by using the mini-
mum residual technique to the P∗NHSS and PPNHSS methods for solving a class
of complex symmetric linear systems. In addition, we also give their inexact ver-
sions. The convergence properties of our methods show that the MRP∗NHSS and
MRPPNHSS methods converge unconditionally. Finally, the numerical results il-
lustrate that our methods are all very robust and powerful.
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