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Abstract In this paper, we are interested in proving a general fixed point
theorem for multivalued mappings in fuzzy b−metric spaces. The results pre-
sented in this paper not only generalize the findings from [23], but also yield
additional specific outcomes. We present an application to establish the exis-
tence of a solution to the integral equation, demonstrating the significance of
our result.
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1. Introduction

Zadeh [26] first introduced the concept of fuzzy sets in 1965. A fuzzy set M in X is
a function with domain X and values in [0, 1]. Heilpern [16] introduced the notion
of fuzzy maps and established some fixed-point theorems for them.

In 1975, Kramosil and Michalek [17] proposed the idea of a fuzzy distance be-
tween two elements of a nonempty set, using the concepts of a fuzzy set and a
t-norm.

A binary operation T : [0, 1]× [0, 1] → [0, 1] is a continuous t-norm if it satisfies
the following conditions: T is continuous, associative and commutative, T (a, 1) = a
for all a ∈ [0, 1] and for all a, b, c, d ∈ [0, 1] if a ≤ c and b ≤ d then T (a, b) ≤ T (c, d).

Typical examples of a continuous t-norm are Tp(a, b) = a.b, Tmin(a, b) = min{a, b}
and TL(a, b) = max{a + b –1, 0}. George and Veeramani [11] generalized the con-
cept of fuzzy metric spaces introduced by Kramosil and Michalek [17]. Given a
non-empty set X, and T is a contnuous t-norm, the 3-tuple (X,M, T ) is said to be
a fuzzy metric space [11], [12] if M is a fuzzy set on X ×X × (0,∞) satisfying the
following conditions for all x, y, z ∈ X t, u > 0 :

1) M(x, y, t) > 0,

2) M(x, y, t) = M(y, x, t) = 1 iff x = y,

3) M(x, z, t+ u) ≥ T (M(x, y, t),M(y, z, u)),

4) M(x, y, .) is left continuous function from (0,∞) → [0, 1].
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In mathematics, the study of fixed point theory in metric spaces has several
applications, especially in solving differential equations. Many authors have studied
the new class of generalized metric space, known as b-metric space, introduced by
Bakhtin [5] in 1989. For example, see [1]- [4], [6]- [9], [20]. The relationship between
b-metric and fuzzy metric spaces is considered in [15]. Conversely, [24] introduced
the concept of a fuzzy b-metric space, substituting the triangle inequality with a
weaker one.

In this paper, we prove the existence and uniqueness of the fixed point in fuzzy b-
metric spaces. We present an application to determine the existence and uniqueness
of a solution to an integral equation, demonstrating the significance of our result.

Throughout this paper, C(X) will denote the family of nonempty compact
subsets of X. For all A,B ∈ C(X) and for all t > 0, we define a function on
C(X)× C(X)× (0,∞) by

HM (A,B, t) = min

{
inf
a∈A

M(a,B, t), inf
b∈B

M(A, b, t)

}
,

where M(C, y, t) = sup
z∈C

M(z, y, t).

The fuzzy b-metric induces HM , which we refer to as the Hausdorff fuzzy b-metric.
The triplet (C(X), HM , T ) is referred to as the Hausdorff fuzzy b-metric space.

We define also δM (A,B, t) as follows:

δM (A,B, t) = inf{M(a, b, t), a ∈ A b ∈ B}, t > 0.

It follows immediately from the definition of δM that

δM (A,B, t) = 1 ⇐⇒ A = B = {.} and

M(a, b, t) ≥ δM (A,B, t) ∀a ∈ A ∀b ∈ B, t > 0.

2. Preliminary

Definition 2.1 ( [24]). A 3-tuple (X,M, T ) is called a fuzzy b-metric space if X
is an arbitrary nonempty set, T is a continuous t-norm, and M is a fuzzy set on
X × X × (0,∞) satisfying the conditions for all x, y, z ∈ X, t, u > 0 and a given
real number s ≥ 1 :

(b1) M(x, y, t) > 0,

(b2) M(x, y, t) = 1 if and only if x = y,

(b3) M(x, y, t) = M(y, x, t),

(b4) M (x, z, s(t+ u)) ≥ T (M (x, y, t) ,M(y, z, u)) ,

(b5) M(x, y, .) : (0,∞) → [0, 1] is continuous.

Remark 2.1. In this paper we will further use a fuzzy b-metric space in the sense
of definition 2.1 with an additional condition lim

t→∞
M(x, y, t) = 1.

Note that every fuzzy metric space is a fuzzy b-metric space with s = 1. However,
the following example illustrates that the converse need not hold true.
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Example 2.1 ( [10]). Let M(x, y, t) = e−
|x−y|p

t , where p > 1 is a real number,
and T (a, b) = a.b for all a, b ∈ [0, 1]. Then (X,M, T ) is a fuzzy b-metric space with
s = 2p−1.

Definition 2.2 ( [24]). We say that a t-norm T is ofH-type if the family {Tn(x)}n∈N
is equicontinuous at x = 1, that is,

∀ ε ∈ (0, 1) ∃α ∈ (0, 1) : x > 1− α ⇒ Tn(x) > 1− ε, ∀n ∈ N,
where T1(x) = T (x, x), Tn+1(x) = T (Tnx, x), for every n ≥ 1.

The t-norm Tmin is a trivial example of t-norm of H-type.

Proposition 2.1 ( [23]). Let (xn) be a sequence in [0, 1] such that lim
n→∞

xn = 1,

and let T be a t-norm of H-type. Then lim
n→∞

T∞
i=nxi = lim

n→∞
T∞
i=1xn+1 = 1,

where T 1
i=1xi = x1, Tn

i=1xi = T (Tn−1
i=1 xi, xn) = T (x1, x2, ..., xn).

Definition 2.3 ( [10]). A function f : R → R is called s-nondecreasing, if x > sy
implies fx ≥ fy for each x, y ∈ R.

Lemma 2.1 ( [10]). Let (X,M, T ) be a fuzzy b-metric space with constant s. Then
M(x, y, t) is s−nondecreasing with respect to t, for all x, y ∈ X. Also,

M(x, y, snt) ≥ M(x, y, t), ∀n ∈ N.

Definition 2.4 ( [24], [25]). Let (X,M, T ) be a fuzzy b-metric space.

(i) A sequence (xn) converges to x if M(xn, x, t) → 1 as n → ∞ for each t > 0.
In this case, we write lim

n→∞
xn = x.

(ii) A sequence (xn) is called a Cauchy sequence if for all ε ∈ (0, 1) and t > 0,
there exists n0 ∈ N such that M(xn, xm, t) > 1− ε for all n,m ≥ n0.

(iii) The fuzzy b-metric space (X,M, T ) is said to be complete if every Cauchy
sequence is convergent.

(iv) A subset A ⊂ X is said to be closed if every sequence xn ∈ A such that
xn −→ x we have x ∈ A.

(v) A subset A ⊂ X is said to be compact if every sequence xn ∈ A has a
convergent subsequence.

Lemma 2.2 ( [24], [25]). In a fuzzy b−metric space (X,M, T ) we have

(i) If a sequence (xn) in X converges to x, then x is unique.

(ii) If a sequence (xn) in X converges to x, then it is a Cauchy sequence.

Proposition 2.2 ( [25] Prop 1.10). Let (xn) be a sequence in a fuzzy b-metric space
(X,M, T ) with constant s, and suppose that (xn) converges to x. Then we have

M

(
x, y,

t

s

)
≤ lim sup

n→∞
M(xn, y, t) ≤ M(x, y, st),

M

(
x, y,

t

s

)
≤ lim inf

n→∞
M(xn, y, t) ≤ M(x, y, st).
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Lemma 2.3 ( [23]). Let (xn) be a sequence in a fuzzy b-metric space (X,M, T )
with constant s. Suppose that there exists λ ∈ (0, 1

s ) such that

M (xn, xn+1, t) ≥ M

(
xn−1, xn,

t

λ

)
, n ∈ N, t > 0,

and υ ∈ (0, 1) such that lim
n→∞

T∞
i=nM(x0, x1,

t
υi ) = 1, t > 0. Then (xn) is a Cauchy

sequence.

Lemma 2.4 ( [19]). In a fuzzy b-metric space (X,M, T ), if the function M is
continuous with respect to one of its variable, then it is continuous with respect to
the other.

Lemma 2.5 ( [19]). Let (X,M, T ) be a fuzzy b-metric space and let A ⊂ C(X). If
M is continuous with respect to one of its variables, then for all x ∈ X, there exists
y0 ∈ A such that

M(x,A, t) = sup
y∈A

M(x, y, t) = M(x, y0, t), t > 0.

Proposition 2.3 ( [19]). Let (X,M, T ) be a fuzzy b-metric space with constant s.
Then HM is a fuzzy set on C(X)× C(X)× (0,∞) satisfying the conditions for all
A,B,C ∈ C(X), t, u > 0:

(H1) HM (A,B, t) > 0,

(H2) HM (A,B, t) = 1 if and only if A = B,

(H3) HM (A,C, s(t+ u)) ≥ T (HM (A,B, t) , HM (B,C, u)) ,

(H4) HM (A,B, .) : (0,∞) → [0, 1] is continuous,

(H5) lim
t→∞

HM (A,B, t) = 1 if and only if lim
t→∞

M(x, y, t) = 1.

3. Main results

Lemma 3.1. Let (X,M, T ) be a fuzzy b-metric space with constant s.
For all k ∈ (0, 1), x ∈ X, t > 0 and A,B ∈ C(X).

(L1) If ,

HM (A,B, kt) ≥ HM (A,B, t) , then A = B. (3.1)

(L2) If ,

δM (A,B, kt) ≥ δM (A,B, t) , then A = B = {.}. (3.2)

(L3) If ,

M (A, x, kt) ≥ M (A, x, t) , then x ∈ A. (3.3)

Proof. (L1) By (3.1) we have

HM (A,B, t) ≥ HM

(
A,B,

t

kn

)
, n ∈ N.
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Now

HM (A,B, t) ≥ lim
n→∞

HM

(
A,B,

t

kn

)
= 1.

By using the Proposition 2.3 (H2) it follows that A = B.
(L2) Similarly by (3.2) we have

δM (A,B, t) ≥ lim
n→∞

δM

(
A,B,

t

kn

)
= 1.

Then, δM (A,B, t) = 1, hence A = B = {.}.
(L3) Similarly by (3.3) we have

M (A, x, t) ≥ lim
n→∞

M

(
A, x,

t

kn

)
= 1.

So, x ∈ A.

Definition 3.1. Let T be a t-norm, and ΦT be the set of all continuous functions
ϕT (t1, t2, t3, t4, t5, t6) : [0, 1]

6 −→ R such that:
(ϕT1) : ϕT is nondecreasing in variable t1 and non-increasing in variable t3, t4, t5, t6.
(ϕT2) : ∀u, v, w ∈ [0, 1] ϕT (u, v, v, w, T (v, w), 1) ≥ 0 =⇒ u ≥ min{v, w}.
(ϕT3) : ∀u, v,∈ [0, 1] ϕT (u, 1, 1, v, v, 1) ≥ 0 or ϕT (u, v, 1, 1, v, v) ≥ 0 =⇒ u ≥ v.

Example 3.1. ϕT (t1, t2, t3, t4, t5, t6) = t1 − t2.

Example 3.2. ϕT (t1, t2, t3, t4, t5, t6) = β(t2) − β(t1), with β : (0, 1] → [0,∞) and
β(1) = 0 is a continuous function strictly decreasing.

Example 3.3. ϕT (t1, t2, t3, t4, t5, t6) = t1 −min{t2, t3, t4}.

Example 3.4. ϕT (t1, t2, t3, t4, t5, t6) = 2t1 − t3 − t4 + |t3 − t4|.

Example 3.5. ϕTmin(t1, t2, t3, t4, t5, t6) = t1 −min{t2, t3, t4, t5, t6}.

Example 3.6. ϕTp(t1, t2, t3, t4, t5, t6) = t1 −min{t2, t3, t4,
√
t5,

√
t6}.

Theorem 3.1. Let (X,M, T ) be a complete fuzzy b-metric space with constant
s. We suppose that M is continuous with respect to one of its variables, and let
F : X −→ C (X) .

Suppose that there exist k ∈]0, 1
s [, x0 ∈ X and υ ∈ (0, 1).

lim
n→∞

T∞
i=nM(x0, x1,

t
υi ) = 1, x1 ∈ Fx0. Let ϕT ∈ ΦT such that: ∀x, y ∈ X, t > 0,

ϕT

HM (Fx, Fy, kt) ,M (x, y, t) ,M (Fx, x, t) ,M (Fy, y, t) ,

M (x, Fy, 2st) ,M (Fx, y, t)

 ≥ 0. (3.4)

Then F has a fixed point x ∈ X.
Moreover, if x is absolutely fixed for F ( which means that F (x) = {x}), then

the fixed point is unique.

Proof. Existence. Let x0 ∈ X, and x1 ∈ Fx0. For x = x0 and y = x1 in (3.4)
we have:

ϕT

HM (Fx0, Fx1, kt) ,M (x0, x1, t) ,M (Fx0, x0, t) ,M (Fx1, x1, t) ,

M (x0, Fx1, 2st) ,M (Fx0, x1, t)

 ≥ 0.
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Since x1 ∈ Fx0, then

M(Fx0, x0, t) ≥ M(x1, x0, t) and M(Fx1, x1, t) ≥ HM (Fx1, Fx0, t), ∀t > 0.

According to (ϕT1) we have

ϕT

HM (Fx0, Fx1, kt) ,M (x0, x1, t) ,M (x1, x0, t) , HM (Fx0, Fx1, t) ,

T (M (x0, x1, t) ,M (x1, Fx1, t)), 1

 ≥ 0.

This implies

ϕT

HM (Fx0, Fx1, kt) ,M (x0, x1, t) ,M (x0, x1, t) , HM (Fx0, Fx1, t) ,

T (M (x0, x1, t) , HM (Fx0, Fx1, t)), 1

 ≥ 0.

By (ϕT2) we have

HM (Fx0, Fx1, kt) ≥ min {M (x0, x1, t) , HM (Fx0, Fx1, t)} .

If HM (Fx0, Fx1, kt) ≥ HM (Fx0, Fx1, t) , t > 0, then by Lemma 3.1 it follows
that x1 ∈ Fx0 = Fx1. So,

HM (Fx0, Fx1, kt) ≥ M (x0, x1, t) , t > 0.

Since x1 ∈ Fx0, we get

M (x1, Fx1, kt) ≥ HM (Fx0, Fx1, kt) ≥ M (x0, x1, t) .

By Lemma 2.5 there exists x2 ∈ Fx1 such that:

M (x1, x2, kt) = M (x1, Fx1, kt) ≥ M (x0, x1, t) .

By recurrence, we construct a sequence (xn) such that xn+1 ∈ Fxn, which satisfies:

M (xn+1, xn, kt) ≥ M (xn, xn−1, t) , n ∈ N∗, t > 0.

By Lemma 2.3, (xn) is a Cauchy sequence in X. Since (X,M,T) is complete, hence
there exists x ∈ X such that lim

n→∞
M(xn, x, t) = 1, t > 0.

Next we show that x ∈ Fx, indeed, by (3.4) we have:

ϕT

HM (Fxn, Fx, kt) ,M (xn, x, t) ,M (Fxn, x, t) ,M (Fx, x, t) ,

M (xn, Fx, 2st) ,M (Fxn, x, t)

 ≥ 0.

According to (ϕT1) we have

ϕT

M (xn+1, Fx, kt) ,M (xn, x, t) ,M (xn+1, x, t) ,M (Fx, x, t) ,

T (M (xn, x, t) ,M (x, Fx, t)),M (xn+1, x, t)

 ≥ 0.

Letting n → ∞,

ϕT

(
M (x, Fx, kt) , 1, 1,M (Fx, x, t) ,M (x, Fx, t) , 1

)
≥ 0.
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By (ϕT3) we get

M (Fx, x, kt) ≥ M (Fx, x, t) , t > 0.

By Lemma 3.1, x ∈ Fx.
Unicity. Suppose that y ∈ X is another fixed point of f, then by (3.4) we have

ϕT

HM (Fx, Fy, kt) ,M (x, y, t) ,M (Fx, x, t) ,M (Fy, y, t) ,

M (x, Fy, 2st) ,M (Fx, y, t)

 ≥ 0

⇒ ϕT

HM ({x}, Fy, kt) ,M (x, y, t) ,M (x, x, t) ,M (Fy, y, t) ,

T (M (x, y, t) ,M (y, Fy, t)),M (x, y, t)

 ≥ 0.

Since HM ({x}, Fy, kt) = inf
z∈Fy

M({x}, z, kt) ≤ M(x, y, kt), by (ϕT1) we get

ϕT

(
M (x, y, kt) ,M (x, y, t) , 1, 1,M (x, y, t) ,M (x, y, t)

)
≥ 0.

By (ϕT3) we get

M (x, y, kt) ≥ M (x, y, t) , t > 0.

By Lemma 3.1, x = y.

Theorem 3.2. Let (X,M, T ) be a complete fuzzy b-metric space with constant s
and let F : X −→ CL (X) .

Suppose that there exist k ∈]0, 1
s [, x0 ∈ X and υ ∈ (0, 1),

lim
n→∞

T∞
i=nM(x0, x1,

t
υi ) = 1, x1 ∈ Fx0. Let ϕT ∈ ΦT such that: ∀x, y ∈ X, t > 0,

ϕT

 δM (Fx, Fy, kt) ,M (x, y, t) ,M (Fx, x, t) ,M (Fy, y, t) ,

M (x, Fy, 2st) ,M (Fx, y, t)

 ≥ 0. (3.5)

Then F has a fixed point x ∈ X.
Moreover, if x is absolutely fixed for F ( which means that F (x) = {x}), then

the fixed point is unique.

CL(X) will denote the family of nonempty closed subsets of X.
Proof. Existence. Let x0 ∈ X, and define the sequence (xn) of elements from X
such that: xn+1 ∈ Fxn for every n ∈ N.

According to (3.5), with x = xn−1 and y = xn we have

ϕT

(
δM (Fxn−1, Fxn, kt) ,M (xn−1, xn, t) ,M (Fxn−1, xn−1, t) ,M (Fxn, xn, t) ,

M (xn−1, Fxn, 2st) ,M (Fxn−1, xn, t)

)
≥ 0.

Since xn ∈ Fxn−1 and xn+1 ∈ Fxn we get

M (Fxn−1, xn−1, t) ≥ M (xn, xn−1, t) , M (Fxn, xn, t) ≥ M (xn+1, xn, t)

and δM (Fxn−1, Fxn, kt) ≤ M (xn, xn+1, kt) .
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By (ϕT1) we have

ϕT

M (xn, xn+1, kt) ,M (xn−1, xn, t) ,M (xn, xn−1, t) ,M (xn+1, xn, t) ,

T (M (xn−1, xn, t) ,M (xn, Fxn, t)),M (xn, xn, t)

 ≥ 0

⇒ ϕT

M (xn, xn+1, kt) ,M (xn−1, xn, t) ,M (xn, xn−1, t) ,M (xn+1, xn, t) ,

T (M (xn−1, xn, t) ,M (xn, xn+1, t)), 1

 ≥ 0.

According to (ϕT2) we get

M (xn, xn+1, kt) ≥ min {M (xn−1, xn, t) ,M (xn, xn+1, t)} .

If M (xn, xn+1, kt) ≥ M (xn, xn+1, t) then by Lemma 3.1 it follows that
xn = xn+1 ∈ Fxn. So

M (xn, xn+1, kt) ≥ M (xn−1, xn, t) , n ∈ N∗, t > 0.

By lemma 2.3, (xn) is a Cauchy sequence in X. Since (X,M,T) is complete, hence
there exists x ∈ X such that lim

n→∞
M(xn, x, t) = 1, t > 0. Next we show that

x ∈ Fx, indeed, by (3.5) we have:

ϕT

 δM (Fxn, Fx, kt) ,M (xn, x, t) ,M (Fxn, x, t) ,M (Fx, x, t) ,

M (xn, Fx, 2st) ,M (Fxn, x, t)

 ≥ 0.

According to (ϕT1) we have

ϕT

M (xn+1, Fx, kt) ,M (xn, x, t) ,M (xn+1, x, t) ,M (Fx, x, t) ,

T (M (xn, x, t) ,M (x, Fx, t)),M (xn+1, x, t)

 ≥ 0.

Letting n → ∞,

ϕT

(
lim sup
n→∞

M (xn+1, Fx, kt) , 1, 1,M (Fx, x, t) ,M (x, Fx, t) , 1

)
≥ 0.

By (ϕT3) we get

lim sup
n→∞

M (xn+1, Fx, kt) ≥ M (Fx, x, t) , t > 0.

By proposition 2.2 we get

lim sup
n→∞

M (xn+1, Fx, kt) ≤ M (Fx, x, skt) , t > 0.

Then

M (Fx, x, αt) ≥ M (Fx, x, t) , α = sk ∈ (0, 1), t > 0.

By Lemma 3.1, x ∈ Fx.
Unicity. Suppose that y ∈ X is another fixed point of f, with by (3.5) we have

ϕT

 δM (Fx, Fy, kt) ,M (x, y, t) ,M (Fx, x, t) ,M (Fy, y, t) ,

M (x, Fy, 2st) ,M (Fx, y, t)

 ≥ 0
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⇒ ϕT

(
M (x, y, kt) ,M (x, y, t) , 1, 1,M (x, y, t) ,M (x, y, t)

)
≥ 0.

By (ϕT3) we get

M (x, y, kt) ≥ M (x, y, t) , t > 0.

By Lemma 3.1, x = y.
As a consequence of Theorem 3.2, if F = ℑ is single-valued mapping, then we

obtain the following.

Corollary 3.1. Let (X,M, T ) be a complete fuzzy b-metric space with constant s,
and let ℑ : X −→ X. Suppose that there exist k ∈ (0, 1

s ), x0 ∈ X and υ ∈ (0, 1)
such that lim

n→∞
T∞
i=nM(x0,ℑx0,

t
υi ) = 1. Let ϕT ∈ ΦT , for all x, y ∈ X, t > 0, such

that

ϕT

M (ℑx,ℑy, kt) ,M (x, y, t) ,M (ℑx, x, t) ,M (ℑy, y, t) ,

M (x,ℑy, 2st) ,M (ℑx, y, t)

 ≥ 0. (3.6)

Then ℑ has a unique fixed point x ∈ X.

Example 3.7. Let X be the subset of R3 defined by X = {A,B,C,D}, where
A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1) and D = (2, 2, 2). T (c, d) = c.d for all
c, d ∈ [0, 1] and (X,M, T ) is a complete fuzzy b−metric space such that:

M(x, y, t) = e
−d(x,y)

t , x, y ∈ X, t > 0,

where d(x, y) denotes the Euclidean distance of R3.
Let ℑ : X → X be given by ℑ(A) = ℑ(B) = ℑ(C) = A,ℑ(D) = B.

To show that for all x, y ∈ X, k ∈ (
√
2
3 , 1).

ϕT

M (ℑx,ℑy, kt) ,M (x, y, t) ,M (ℑx, x, t) ,M (ℑy, y, t)

M (x,ℑy, 2t) ,M (ℑx, y, t)

 ≤ 0,

with ϕT as in Example 3.2, and β(t) = −ln(t).
Indeed: If x, y ∈ {A,B,C} we have M (ℑx,ℑy, kt) = M (A,A, kt) = 1.
So β(M (x, y, t))− β(M (ℑx,ℑy, kt)) = β(M (x, y, t)) ≥ 0.
If x ∈ {A,B,C} and y = D we find

M (ℑx,ℑy, kt) = e
−

√
2

kt and M (x, y, t) = e
−3
t .

So β(M (x, y, t))− β(M (ℑx,ℑy, kt)) = 3k −
√
2

kt
≥ 0.

For x0 ∈ X, we have lim
n→∞

M(x0,ℑx0,
t
kn ) = 1, then

lim
n→∞

T∞
i=nM(x0,ℑx0,

√
3
i
t) = 1, with k =

√
3

3
.

Now, all the hypotheses of Corollary 3.1 are satisfied and thus ℑ has a unique
fixed point, that is x = A.

Remark 3.1. From Corollary 3.1 and Example 3.1 we obtain Theorem 2.4 [23].

Remark 3.2. From Corollary 3.1 and Example 3.3 we obtain Theorem 2.5 [23].
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4. Application

Let X = C([a, b],R) be the set of real continuous functions defined on [a, b], and
T (c, d) = c.d for all c, d ∈ [0, 1] and let (X,M, T ) be a complete fuzzy b−metric
space with s = 2 and fuzzy b−metric

M(x, y, t) = e−
sup

u∈[a,b]
|x(u)−y(u)|2

t , x, y ∈ X, t > 0.

Consider the following integral equation

x(u) = g(u) +

∫ b

a

G(u, v)f(v, x(v))dv, u ∈ [a, b], (4.1)

where f : [a, b] × R −→ R and g : [a, b] −→ R are two continuous functions and
G : [a, b]× [a, b] −→ R+ is a function such that G(u, .) ∈ L1([a, b]) for all u ∈ [a, b].

Consider the operator F : X −→ X defined by

Fx(u) = g(u) +

∫ b

a

G(u, v)f(v, x(v))dv, u ∈ [a, b]. (4.2)

Theorem 4.1. Suppose that the following conditions are satisfied:
(H1) there exists θ : X ×X −→ R+ for all v ∈ [a, b],

| f(v, x(v))− f(v, y(v)) | ≤ θ(x, y) | x(v)− y(v) | ∀x, y ∈ X,

(H2) there exists λ ∈ [0, 1
2 ), such that

sup
u∈[a,b]

∫ b

a

G(u, v)θ(x, y)dv ≤
√
λ.

Then the integral equation (4.1) has a unique solution in X.

Proof. It is clear that any fixed point of (4.2) is a solution of (4.1). By conditions
(H1) and (H2), we have

sup
u∈[a,b]

|Fx(u)− Fy(u)|2 = sup
u∈[a,b]

∣∣∣∣∣
∫ b

a

G(u, v)f(v, x(v))dv −
∫ b

a

G(u, v)f(v, y(v))dv

∣∣∣∣∣
2

= sup
u∈[a,b]

∣∣∣∣∣
∫ b

a

G(u, v)[f(v, x(v))− f(v, y(v))]dv

∣∣∣∣∣
2

≤ sup
u∈[a,b]

(∫ b

a

G(u, v)θ(x, y) |x(v)− y(v)| dv

)2

≤ sup
u∈[a,b]

|x(u)− y(u)|2 ×

(
sup

u∈[a,b]

∫ b

a

G(u, v)θ(x, y))dv

)2

≤ λ sup
u∈[a,b]

|x(u)− y(u)|2 .



A Fixed Point in Hausdorff Fuzzy b−Metric Spaces 935

This implies

e−
sup

u∈[a,b]
|Fx(u)−Fy(u)|2

t ≥ e

−λ sup
u∈[a,b]

|x(u)−y(u)|2

t , x, y ∈ X, t > 0.

Therefore,

M (Fx, Fy, λt) ≥ M (x, y, t) ,

≥ min {M (x, y, t) ,M (Fx, x, t) ,M (Fy, y, t)} x, y ∈ X, t > 0.

For x0 ∈ X, we have lim
n→∞

M(x0, Fx0, 2
nt) = 1, then lim

n→∞
T∞
i=nM(x0, Fx0, 2

it) = 1.

Then all conditions of Corollary 3.1 are satisfied with ϕT as in Example 3.3. Thus
the operator F has a unique fixed point, which means the integral has a unique
solution in X.

Example 4.1. The following integral equation has a solution in X = (C[1, e],R).

x(u) =
1

1 + u2
+

∫ e

1

ln(u.v)

e2
x(v)dv, u ∈ [1, e]. (4.3)

Proof. Let F : X −→ X defined by

Fx(u) =
1

1 + u2
+

∫ e

1

ln(u.v)

e2
x(v)dv, u ∈ [1, e].

By specifying G(u, v) =
ln(u.v)

e2
, f(v, x) = x and g(t) = 1

1+u2 in Theorem 4.1,

we get :
(1) For all x(.), y(.) ∈ X, it is clear that the condition (H1) in Theorem 4.1 is
satisfied with θ = 1.
(2)

sup
u∈[1,e]

∫ e

1

ln(u.v)

e2
dv =

1

e2
sup

u∈[1,e]

∫ e

1

(ln(v) + ln(u))dv

=
1

e2
sup

u∈[1,e]

[v ln(v)− v + v ln(u)]e1

=
1

e2
sup

u∈[1,e]

(ln(u)(e− 1) + 1)

=
1

e
≤

√
λ, λ ∈

(
1

e2
,
1

2

)
.

Therefore, all conditions of Theorem 4.1 are satisfied, hence the mapping F has a
fixed point in X, which is a solution to equation (4.3).

5. Conclusion

In this paper, we are interested in proving a fixed point theorem for multivalued
mappings in fuzzy b−metric spaces. Some examples in this space are presented.
Additionally, some new fixed-point results in this space are formulated and proven,
which extend the results of [23], and the existence and uniqueness of the fixed point
in such a space are demonstrated.

The approach proposed may pave the way for new developments in generalized
metrical structures and fixed-point theory.
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