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Abstract We consider a first-order nonlinear neutral differential equation.
By employing Krasnoselskii’s fixed point theorem, we provide several new
criteria for the existence of positive periodic solutions to this equation. The
theorems we have formulated are exemplified through a specific example.
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1. Introduction

In this current study, we explore the existence of positive ω-periodic solutions for a
first-order neutral differential equation given by

(a(t)x(t))′ = −b(t)x(t) + c(t)x′(t− h(t)) + f(t, x(t− h(t))), (1.1)

where a ∈ C1(R, (0,∞)), b ∈ C(R, (0,∞)), c ∈ C1(R,R), h ∈ C2(R, (0,∞)) with
h′(t) ̸= 1 for all t ∈ [0, ω], which are ω-periodic functions. Additionally, f ∈
C(R× R,R) is an ω-periodic function in t, and ω is a positive constant.

In fact, neutral differential equations and periodic phenomena appear in different
models from real world applications; please see, e.g., [1, 7, 9, 13]. Our investigation
builds upon the positive periodic solutions of the equation

x′(t) = −a(t)x(t) + c(t)x′(t− g(t)) + q(t, x(t− g(t))), (1.2)

with 0 ⩽ c(t)
1−g′(t) < 1, −1 ⩽ c(t)

1−g′(t) ⩽ 0, initiated in [18]. Our study extends and

generalizes the results from [18] by considering the special case when a(t) = 1,
leading to the equation above. This indicates that our findings not only encompass,
but also offer broader insight compared to those obtained in [18], particularly for
the more general equation.

In summary, our study provides generalizations and new criteria for positive
periodic solutions in (1.1), complementing existing research in [2, 3, 5, 6, 8, 10–12,
14–17, 19] that explores positive periodic solutions in various types of first-order
neutral differential equations. Additionally, the work in [4] focuses on positive
periodic solutions to second-order neutral differential equations.
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2. Main results

Consider a function space Φω consisting of ω-periodic continuous functions equipped
with the supremum norm, denoted as ∥x∥ = sup

t∈[0,ω]

|x(t)|. It is evident that the pair

(Φω, ∥ · ∥) forms a Banach space. Let a0 = min
t∈[0,ω]

a(t) and a1 = max
t∈[0,ω]

a(t).

Theorem 2.1. Let 0 ⩽ c0 ⩽ c(t)
a(t)(1−h′(t)) ⩽ c1 < 1. Furthermore, assume that there

exist positive constants m0 and m1 with m0 < m1 such that

(1− c0)a1m0 ⩽
a(t)

b(t)

(
f(t, x)− r(t)x

)
⩽ (1− c1)a0m1 (2.1)

for all t ∈ [0, ω], x ∈ [m0,m1], where

r(t) =

(
c′(t) + b(t)

a(t)c(t)
)(

1− h′(t)
)
+ h′′(t)c(t)(

1− h′(t)
)2 .

Then, (1.1) has at least one positive ω-periodic solution x(t) ∈ [m0,m1].

Proof. Clearly, obtaining an ω-periodic solution of (1.1) is equivalent to finding
an ω-periodic solution for the following integral equation

x(t) =
1

a(t)

[ c(t)

1− h′(t)
x(t− h(t))

+

∫ t+ω

t

G(t, s)
[
f(s, x(s− h(s)))− r(s)x(s− h(s))

]
ds
]
,

where

G(t, s) =
e
∫ s
t

b(u)
a(u)

du

e
∫ ω
0

b(u)
a(u)

du − 1
.

Consider the set Φ = {x ∈ Φω : m0 ⩽ x(t) ⩽ m1, t ∈ [0, ω]}, which forms a bounded
closed and convex subset of Φω. Now, define the operators T ,S : Φ → Φω as follows:

(T x)(t) =
c(t)

a(t)(1− h′(t))
x(t− h(t)) (2.2)

and

(Sx)(t) = 1

a(t)

∫ t+ω

t

G(t, s)
[
f(s, x(s− h(s)))− r(s)x(s− h(s))

]
ds. (2.3)

For every x ∈ Φ and t ∈ R, deducing from (2.2) and (2.3), it becomes evident that

(T x)(t+ ω) =
c(t+ ω)

a(t+ ω)(1− h′(t+ ω))
x(t+ ω − h(t+ ω))

=
c(t)

a(t)(1− h′(t))
x(t− h(t))

= (T x)(t)
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and

(Sx)(t+ ω) =
1

a(t+ ω)

∫ t+2ω

t+ω

G(t+ ω, s)
[
f(s, x(s− h(s)))− r(s)x(s− h(s))

]
ds

=
1

a(t+ ω)

∫ t+ω

t

G(t+ ω, v + ω)
[
f(v + ω, x(v + ω − h(v + ω)))

− r(v + ω)x(v + ω − h(v + ω))
]
dv

=
1

a(t)

∫ t+ω

t

G(t, v)
[
f(v, x(v − h(v)))− r(v)x(v − h(v))

]
dv

= (Sx)(t).

This indicates that T (Φ) ⊂ Φω and S(Φ) ⊂ Φω. Next, we demonstrate that
T x+ Sy ∈ Φ for all x, y ∈ Φ and t ∈ R. Utilizing (2.1), (2.2), and (2.3), we obtain

(T x)(t) + (Sy)(t) = c(t)

a(t)(1− h′(t))
x(t− h(t))

+
1

a(t)

∫ t+ω

t

G(t, s)
[
f(s, y(s− h(s)))− r(s)y(s− h(s))

]
ds

⩽ c1m1 +
1

a0

∫ t+ω

t

G(t, s)
b(s)

a(s)

[
a(s)

b(s)

(
f(s, y(s− h(s)))− r(s)y(s− h(s))

)]
ds

⩽ c1m1 +
1

a0
(1− c1)a0m1

∫ t+ω

t

G(t, s)
b(s)

a(s)
ds

= m1

and

(T x)(t) + (Sy)(t) = c(t)

a(t)(1− h′(t))
x(t− h(t))

+
1

a(t)

∫ t+ω

t

G(t, s)
[
f(s, y(s− h(s)))− r(s)y(s− h(s))

]
ds

⩾ c0m0 +
1

a1

∫ t+ω

t

G(t, s)
b(s)

a(s)

[
a(s)

b(s)

(
f(s, y(s− h(s)))− r(s)y(s− h(s))

)]
ds

⩾ c0m0 +
1

a1
(1− c0)a1m0

∫ t+ω

t

G(t, s)
b(s)

a(s)
ds

= m0.

This indicates that T x+Sy ∈ Φ for all x, y ∈ Φ. Now, we aim to demonstrate that
T is a contraction mapping on Φ. For x, y ∈ Φ, we observe

|(T x)(t)− (T y)(t))| =

∣∣∣∣∣ c(t)

a(t)(1− h′(t))
x(t− h(t))− c(t)

a(t)(1− h′(t))
y(t− h(t))

∣∣∣∣∣
⩽

c(t)

a(t)(1− h′(t))

∣∣∣∣x(t− h(t))− y(t− h(t))

∣∣∣∣.
By considering the supremum norm on both sides, it is evident that

∥T x− T y∥ ⩽ c1∥x− y∥.
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This establishes that T is a contraction mapping. We will illustrate that S is
continuous. Let {xn} ∈ Φ be a convergent sequence of elements such that xn(t) →
x(t) as n → ∞. As Φ is closed, it implies x ∈ Φ. For t ∈ [0, ω], we have

|(Sxn)(t)− (Sx)(t)| =

∣∣∣∣∣ 1

a(t)

∫ t+ω

t

G(t, s)
[
f(s, xn(s− h(s)))− r(s)xn(s− h(s))

]
ds

− 1

a(t)

∫ t+ω

t

G(t, s)
[
f(s, x(s− h(s)))− r(s)x(s− h(s))

]
ds

∣∣∣∣∣
⩽

1

a0

∫ t+ω

t

G(t, s)|r(s)|
∣∣∣xn(s− h(s))− x(s− h(s))

∣∣∣ds
+

1

a0

∫ t+ω

t

G(t, s)
∣∣∣f(s, xn(s− h(s)))− f(s, x(s− h(s)))

∣∣∣ds.
By the continuity of f and by the Lebesgue dominated convergence theorem, it
follows that

lim
n→∞

∥(Sxn)− (Sx)∥ = 0.

This indicates that S is continuous. Now, we show that the family of functions
{Sx : x ∈ Φ} is uniformly bounded and equicontinuous on [0, ω]. We observe from
(2.1) that

|(Sx)(t)| =

∣∣∣∣∣ 1

a(t)

∫ t+ω

t

G(t, s)
[
f(s, x(s− h(s)))− r(s)x(s− h(s))

]
ds

∣∣∣∣∣
⩽

∣∣∣∣∣ 1

a(t)

∫ t+ω

t

G(t, s)
b(s)

a(s)

[
a(s)

b(s)

(
f(s, x(s− h(s)))− r(s)x(s− h(s))

)]
ds

∣∣∣∣∣
⩽

1

a0
(1− c1)a0m1

∫ t+ω

t

G(t, s)
b(s)

a(s)
ds

= (1− c1)m1

and it follows that

∥Sx∥ ⩽ (1− c1)m1.

Moreover, by using (2.1), we derive

|(Sx)′(t)| =

∣∣∣∣∣ ddt[ 1

a(t)

∫ t+ω

t

G(t, s)
[
f(s, x(s− h(s)))− r(s)x(s− h(s))

]
ds

∣∣∣∣∣
⩽

∣∣∣∣∣ ddt[ 1

a(t)

]
a(t)(Sx)(t) + 1

a(t)

[
G(t, t+ ω)

[
f(t, x(t− h(t)))− r(t)x(t− h(t))

]
−G(t, t)

[
f(t, x(t− h(t)))− r(t)x(t− h(t))

]]
− b(t)(Sx)(t)

∣∣∣∣∣
⩽

∣∣∣∣∣−a′(t)

a(t)
(Sx)(t)
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+
1

a(t)

[
b(t)

a(t)

[
a(t)

b(t)

(
f(t, x(t− h(t)))− r(t)x(t− h(t))

)]
− b(t)(Sx)(t)

]∣∣∣∣∣
⩽

1

a0

[
∥a′∥∥Sx∥+ ∥b∥(1− c1)m1 + ∥b∥∥Sx∥

]

⩽
1

a0

[
∥a′∥+ 2∥b∥

]
(1− c1)m1.

Thus, {Sx : x ∈ Φ} is uniformly bounded and equicontinuous on [0, ω]. Conse-
quently, SΦ is relatively compact. These observations lead us to the conclusion
that S is completely continuous. Applying the fixed-point theorem of Krasnosel-
skii, we infer the existence of x ∈ Φ such that T x+ Sx = x. This implies that x(t)
is a positive ω-periodic solution of (1.1).

Theorem 2.2. Let −1 < c0 ⩽ c(t)
a(t)(1−h′(t)) ⩽ c1 ⩽ 0. Furthermore, assume that

there exist positive constants m0 and m1 with m0 < m1 such that

(m0 − c0m1)a1 ⩽
a(t)

b(t)

(
f(t, x)− r(t)x

)
⩽ (m1 − c1m0)a0 (2.4)

for all t ∈ [0, ω], x ∈ [m0,m1], where

r(t) =

(
c′(t) + b(t)

a(t)c(t)
)(

1− h′(t)
)
+ h′′(t)c(t)(

1− h′(t)
)2 , t ∈ [0, ω].

Then, (1.1) has at least one positive ω-periodic solution x(t) ∈ [m0,m1].

Proof. We define Φ, G(t, s), T , and S as outlined in the proof of Theorem 2.1. It
is evident from the proof of Theorem 2.1 that T (Φ) ⊂ Φω and S(Φ) ⊂ Φω. Next,
we demonstrate that T x + Sy ∈ Φ for all x, y ∈ Φ and t ∈ R. By utilizing (2.2),
(2.3), and (2.4), we obtain

(T x)(t) + (Sy)(t) = c(t)

a(t)(1− h′(t))
x(t− h(t))

+
1

a(t)

∫ t+ω

t

G(t, s)
[
f(s, y(s− h(s)))− r(s)y(s− h(s))

]
ds

⩽ c1m0 +
1

a0

∫ t+ω

t

G(t, s)
b(s)

a(s)

[
a(s)

b(s)

(
f(s, y(s− h(s)))− r(s)y(s− h(s))

)]
ds

⩽ c1m0 +
1

a0
(m1 − c1m0)a0

∫ t+ω

t

G(t, s)
b(s)

a(s)
ds

= m1

and

(T x)(t) + (Sy)(t) = c(t)

a(t)(1− h′(t))
x(t− h(t))

+
1

a(t)

∫ t+ω

t

G(t, s)
[
f(s, y(s− h(s)))− r(s)y(s− h(s))

]
ds
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⩾ c0m1 +
1

a1

∫ t+ω

t

G(t, s)
b(s)

a(s)

[
a(s)

b(s)

(
f(s, y(s− h(s)))− r(s)y(s− h(s))

)]
ds

⩾ c0m1 +
1

a1
(m0 − c0m1)a1

∫ t+ω

t

G(t, s)
b(s)

a(s)
ds

= m0.

This results in T x + Sy ∈ Φ for all x, y ∈ Φ. Now, let’s establish that T is a
contraction mapping on Φ. For x, y ∈ Φ, we observe

|(T x)(t)− (T y)(t))| =

∣∣∣∣∣ c(t)

a(t)(1− h′(t))
x(t− h(t))− c(t)

a(t)(1− h′(t))
y(t− h(t))

∣∣∣∣∣
⩽

−c(t)

a(t)(1− h′(t))

∣∣∣∣x(t− h(t))− y(t− h(t))

∣∣∣∣.
Taking the supremum norm on both sides, we get

∥T x− T y∥ ⩽ −c0∥x− y∥.

Therefore, T is a contraction mapping. As the remainder of the proof parallels that
of Theorem 2.1, it will be omitted to avoid redundancy.

Example 2.1. Consider the first-order neutral differential equation

(2e
cos(t)

10 x(t))′ = −10e
11 cos(t)

10 x(t) + e−
cos(t)

5 x′(t− e
cos(t)

5 )

+ e1−0.16 sin(t)+0.8 cos(t)
(
12 + 2x(t− e

cos(t)
5 )

)
. (2.5)

It can be seen that (2.5) is of the form (1.1) with a(t) = 2e
cos(t)

10 , b(t) = 10e
11 cos(t)

10 ,

c(t) = e−
cos(t)

5 , h(t) = e
cos(t)

5 , ω = 2π, f(t, x) = e1−0.16 sin(t)+0.8 cos(t)(12 + 2x),
a0 = min

t∈[0,ω]
a(t) = 1.8090, and a1 = max

t∈[0,ω]
a(t) = 2.2103. After straightforward

calculation, we can obtain

c′(t) =
sin(t)

5
e−

cos(t)
5 , h′(t) = − sin(t)

5
e

cos(t)
5 ,

h′′(t) = e
cos(t)

5

[− cos(t)

5
+

sin2(t)

25

]
,

r(t) =

(
c′(t) + b(t)

a(t)c(t)
)(

1− h′(t)
)
+ h′′(t)c(t)(

1− h′(t)
)2

=

(
sin(t)

5 + 5ecos(t)
)(

e−
cos(t)

5 + sin(t)
5

)
+
(

− cos(t)
5 + sin2(t)

25

)
(
1 + sin(t)

5 e
cos(t)

5

)2 ,

0 ⩽ 0.3444 = c0 ⩽
c(t)

a(t)(1− h′(t))
=

e−
cos(t)

5

2e
cos(t)

10

(
1 + sin(t)

5 e
cos(t)

5

) ⩽ c1 = 0.7083 < 1,
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(1− c0)a1m0 = (1− 0.3444)(2.2103)2 = 2.8981 and
(1− c1)a0m1 = (1− 0.7083)(1.8090)21 = 11.0814. Therefore,

2.8981 = (1− c0)a1m0 < 5.1345 ⩽
a(t)

b(t)

(
f(t, x)− r(t)x

)
⩽ 9.6196

< (1− c1)a0m1 = 11.0814.

It shows that the conditions of Theorem 2.1 are satisfied when m0 = 2 and m1 = 21.
Thus (2.5) has at least one 2π-periodic positive solution x(t) satisfying 2 ⩽ x(t) ⩽
21.
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