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Optimal Control of a Delayed Spatiotemporal
Epidemic Model
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Abstract This study presents an advanced delayed spatiotemporal epidemi-
ological model that incorporates a Holling type II incidence rate to capture
the saturation effects observed in disease transmission dynamics during the
COVID-19 pandemic. The model integrates two crucial intervention measures
- vaccination of susceptible individuals and hospitalization of severe cases -
while accounting for both spatial diffusion and the latent period within the
epidemic compartments. This framework facilitates the precise optimization
of vaccination and hospitalization strategies as functions of spatial location
and temporal evolution, yielding new insights into spatially targeted public
health interventions. We rigorously analyze the model equilibrium points, es-
tablishing conditions for their existence and local stability. An optimal control
problem is formulated, uniquely considering the combined effects of spatial
diffusion and latent period, with controls dynamically varying across space
and time. The well-posedness of the control problem is verified, supported
by proofs of existence, uniqueness, positivity, and boundedness of the strong
solution. First-order necessary optimality conditions are derived, characteriz-
ing the optimal vaccination and hospitalization strategies through state and
adjoint variables. Numerical simulations across diverse intervention scenarios
demonstrate the effectiveness of adaptive, space-time-specific control strategies
in mitigating COVID-19 transmission. This work offers a novel mathematical
and computational approach to the optimal spatiotemporal management of
epidemic control measures.

Keywords Delayed spatiotemporal epidemic model, vaccination, hospital-
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1. Introduction

With the emergence of epidemics like SARS, Ebola, and COVID-19, which are
detrimental to individual health and societal stability, there is an increased need for
policymakers and researchers to understand the patterns, the behaviors, and the
dynamics of the diseases in order to prevent and control their spread. Mathemati-
cians and immunologists collaborate to create models that can predict the course
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of an epidemic. Classical compartmental models for epidemics use variables to de-
scribe the state of an infectious disease’s exposed subpopulation. Each parameter
incorporated represents a fundamental factor, such as the rate of transmission of the
infectious agent, the mortality rate, and other data. It is possible to build very reli-
able models that will allow determining the best treatments as well as the respective
impacts of the factors that influence this disease with a thorough knowledge not
only of applied mathematics but also of the biology of the disease. These models
are determined by the transmission method, the nature of the disease, its curability,
and the body’s ability to develop immunity after recovery, etc. [15, 18]. Following
the 1905 - 1906 Bombay plague epidemic, the year 1927 witnessed the emergence of
the SIR model, which is considered one of the first and most used compartmental
models [20]. This model assumes that the population is divided into three sub-
populations: susceptibles, infected, and recovered. Later, several compartmental
models were inspired by the SIR and have been widely applied to research infec-
tious disease outbreaks [10, 11, 18, 36, 44] and to examine potential policy responses.
Since the COVID-19 outbreak, many authors have examined the dynamics of the
disease’s spread in light of various situations [14, 32, 35]. In particular, Ndäırou
et al. [32] presented a compartmental model of COVID-19 transmission dynamics
with a case study of Wuhan where they focused on the transmissibility of super-
spreaders individuals. Samui et al. [35] proposed a compartmental mathematical
model to predict and control the transmission dynamics of COVID-19 pandemic
in India. They performed local and global stability analysis for the infection free
equilibrium point and the endemic equilibrium point with respect to the basic re-
production number. Diagne et al. [14] formulated and analyzed a mathematical
model of COVID-19 transmission incorporating two key therapeutic measures: vac-
cination of susceptible individuals and treatment of infected individuals. In their
model, they included a compartment (E) for exposed persons, responsible for the
incubation period. For a model in which the size of the problem is relevant, It is
preferable to attain the same dynamics with fewer compartments for a model. The
dynamics won’t, however, be exactly the same if a compartment (like E) is removed.
In fact, we think that the formulation of the delay equation could better capture the
effect of ”delay” brought on by the introduction of new measures (as was the case
with the COVID-19 pandemic), where there is a delay of several days between the
introduction of a new public health order and when its effects start to be noticed.
Additionally, delays may vary according to the stage of the epidemic, resulting in
state-dependent delays. Although we won’t look at such a case here, it is impor-
tant to first grasp the case of constant delay, which is what this present effort is
trying to do. Furthermore, from a mathematical perspective, such a formulation is
intriguing. Several authors have reflected on this matter by studying the existence
of solutions and bifurcations of time-delayed compartmental models [7, 19, 24, 27].
Furthermore, many studies seek the most effective strategy for reducing infection
rates while minimizing implementation costs [9, 25]. However, all these works didn’t
take into consideration the spatial diffusion that is crucial to the propagation of epi-
demics and must be taken into account when implementing control strategies (for
instance, an area that containts more infected individuals needs more attention).
As a result, some authors [2–5, 16, 21, 22] investigated spatiotemporal models in
which the disease spread was represented as a system of reaction-diffusion equa-
tions. However, to our knowledge, no deterministic model has treated an optimal
control problem that takes into consideration simultaneously the spatial diffusion
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and time delay in state variables. Incorporating delays and spatial diffusion allows
for a more realistic representation of disease spread, as COVID-19 transmission is
influenced not only by time-dependent processes (e.g., latent periods, temporary
immunity) but also by spatial factors such as population movement and geograph-
ical clustering. Delayed models account for the latency period between infection
and the onset of symptoms or infectiousness, which is crucial for modeling real-
world disease spread and intervention timing [23]. The delay helps align the model
with real epidemiological progression, as studies indicate that latent period impacts
disease dynamics [18]. Ignoring delays would lead to an unrealistic representation,
especially for diseases like COVID-19. Furthermore, this spatial-temporal approach
enables us to optimize control measures like vaccination and hospitalization based
on both position and time, offering practical insights into spatially adaptive public
health strategies. In this work, we propose and analyze a spatiotemporal epidemic
model with a Holling type-II saturated incidence rate and time delay in which we
incorporate two measures: vaccination and hospitalization of severe cases, as an ex-
tension of the model presented by Diagne et al. [14]. The Holling type-II functional
response is used here to capture the saturation effect observed in disease transmis-
sion [18]. In real-world scenarios, as susceptible individuals increase, contact and
transmission rates do not scale linearly due to factors such as healthcare capac-
ity limits and behavioral changes in response to rising case numbers. The Holling
type-II incidence rate, therefore, provides a more accurate description of COVID-19
transmission, particularly under conditions of high incidence where linear models
fail to capture this saturation effect. We formulate the optimal control problem
as a system of delayed reaction-diffusion equations. We verify that this problem is
mathematically and biologically well-posed, then we demonstrate that the system
has a unique strong solution, and we characterize the optimal controls. We conclude
our work by presenting numerical simulations for different scenarios to control the
spread of COVID-19.

2. Mathematical model

Herein, we first present the mathematical model that describes the dynamics of the
infectious disease. The population is distributed as follows: susceptible, vaccinated,
infected with no severe symptoms, severe cases that required hospitalization, and
recovered individuals. We assume that the initial population is in a bounded region
Ω in R2 with a smooth boundary ∂Ω and that the habitat is spatially heteroge-
neous. Furthermore, we suppose that the populations in every compartment diffuse
respectively with coefficients d1, d2, d3, d4 and d5. In each position x = (x1, x2), the

number of newly infected per time unit is proportional to SI(x,t−ζ)
1+αI(x,t−ζ) +δ

V I(x,t−ζ)
1+αI(x,t−ζ)

where ζ is the latent period and 1 − δ is the vaccine efficacy. The incidence terms
βSI(x,t−ζ)
1+αI(x,t−ζ) and δ βV I(x,t−ζ)

1+αI(x,t−ζ) describe the Holling type II incidence rates associated

respectively to susceptible and vaccinated subpopulations where β is the transmis-
sion rate. Both incidence terms include a time-delayed factor (t− ζ) to realistically
model transmission rates based on infectiousness onset. By incorporating a delay
in the incidence, the model effectively captures the staggered nature of COVID-19
transmission, where infections in various spatial locations reflect not only current
cases but also cases arising from earlier periods due to latent infections. Addition-
ally, the model accounts for the dynamics of immunity loss through the term λR,
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which signifies the gradual waning of immunity over time. This aligns with the
biological reality that individuals who recover from infection may lose their pro-
tective immunity, leading to a transition back into the susceptible compartment at
a rate proportional to λ. Clinical trials for COVID-19 vaccines initially reported
high efficacy rates shortly after completing the vaccination regimen [29]. However,
subsequent studies revealed a gradual decline in antibody levels and neutraliza-
tion capacity against emerging variants over time, with significant waning observed
around the three-month mark [39, 43]. This decline results from a reduced ability to
respond to future infections, compounded by decreasing antibody levels. While the
presence of antibodies is an important indicator of immunity, the immune system
also relies on memory B cells and T cells for long-term protection. λ quantifies the
rate of immunity loss, ensuring that the model accurately captures the epidemi-
ological implications of waning immunity on the dynamics of disease spread and
control.

Using the above assumptions we propose our model with Neumann boundary
condition:



∂tS(x, t) = d1∆S +Π − βSI(x,t−ζ)
1+αI(x,t−ζ) + λR− (v + µ)S,

∂tV (x, t) = d2∆V + vS − δ βV I(x,t−ζ)
1+αI(x,t−ζ) − µV,

∂tI(x, t) = d3∆I +
βSI(x,t−ζ)
1+αI(x,t−ζ) + δ βV I(x,t−ζ)

1+αI(x,t−ζ) − (r + µ) I,

∂tIs(x, t) = d4∆Is + r(1− ξ)I − (γ + d+ µ) Is,

∂tR(x, t) = d5∆R+ γIs + rξI − (λ+ µ)R.

(2.1)

∂ηS = ∂ηV = ∂ηI = ∂ηIs = ∂ηR = 0, on ∂Ω× R+. (2.2)

where η is the outward unit normal vector on the boundary.

Let ψ1, ψ2, ψ3, ψ4, ψ5 be nonnegative, bounded functions on Ω×[−ζ, 0] such that
ψ = (ψ1, ψ2, ψ3, ψ4, ψ5) ∈ C

(
[−ζ, 0], C

(
Ω,R5

))
and ψ(θ, .) is uniformly continuous

for θ ∈ [−ζ, 0]. The initial conditions are given, for all (x, θ) ∈ Ω × [−ζ, 0], by:

S(x, θ) =ψ1(x, θ), V (x, θ) = ψ2(x, θ), I(x, θ) = ψ3(x, θ),

Is(x, θ) =ψ4(x, θ) and R(x, θ) = ψ5(x, θ).
(2.3)

3. Basic properties

Let us define:

ℓ = (ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) = (S, V, I, Is, R).

If we consider the function Ψ defined by :

Ψ(t, Φ) = (Ψ1(t, Φ), Ψ2(t, Φ), Ψ3(t, Φ), Ψ4(t, Φ), Ψ5(t, Φ)) (3.1)
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Symbols Meaning

Π Birth rate

α Saturation rate

µ Natural death rate

β Transmission rate

γ Recovery rate due to treatment and hospitalization

v Vaccination rate

1− δ Vaccine efficacy

r Rate at which individuals leave the infected compartment

rξ Rate at which the infected individuals recover without hospitalization

d Disease induced death rate

λ Loss of immunity rate

ζ Latent period

Table 1. The different parameters and constants

with

Ψ1(t, Φ)(x) = Π− βΦ1(x,0)Φ3(x,−ζ)
1+αΦ3(x,−ζ) + λΦ5(x, 0)− (v + µ)Φ1(x, 0),

Ψ2(t, Φ)(x) = vΦ1(x, 0)− δ βΦ2(x,0)Φ3(x,−ζ)
1+αΦ3(x,−ζ) − µΦ2(x, 0),

Ψ3(t, Φ)(x) =
βΦ1(x,0)Φ3(x,−ζ)

1+αΦ3(x,−ζ) + δ βΦ2(x,0)Φ3(x,−ζ)
1+αΦ3(x,−ζ) − (r + µ)Φ3(x, 0),

Ψ4(t, Φ)(x) = r(1− ξ)Φ3(x, 0)− (γ + d+ µ)Φ4(x, 0),

Ψ5(t, Φ)(x) = rξΦ3(x, 0) + γΦ4(x, 0)− (λ+ µ)Φ5(x, 0),

(3.2)

and

Φ = (Φ1, Φ2, Φ3, Φ4, Φ5),

then the problem (2.1)-(2.3) can be written in the form:

∂tℓ(t) = Aℓ(t) + Ψ(t, ℓt) , t > 0,

ℓ0 = ψ,
(3.3)

where ℓt denotes the continuous function given by ℓt(θ) = ℓ(t + θ) for θ ∈ [−ζ, 0]
and A is the following linear operator:
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A =



d1∆ 0 0 0 0

0 d2∆ 0 0 0

0 0 d3∆ 0 0

0 0 0 d4∆ 0

0 0 0 0 d5∆


.

Since Ψ is locally Lipschitz, we deduce from [47] that the problem (2.1) - (2.3)
has a unique noncontinuable solution. Moreover, by the maximum principle we can
show that this solution is nonnegative and admits upper limit.

4. Stability analysis

First, we linearize the dynamical system (2.1) around arbitrary steady state Ē(S̄, V̄ ,
Ī, Īs, R̄) for small space and time dependent fluctuations and expand them into
Fourier space. For this, let ℓ(x, t) = eρt+i(kx1x1+kx2x2)ℓ̃, where ρ is the frequency,
kx1

and kx2
are respectively the wave parameters in the directions x1 and x2 such

that x = (x1, x2), and ℓ̄ = (S̄, V̄ , Ī, Īs, R̄). Substituting ℓ(x, t) in (2.1), we get the
following characteristic equation:

det



ρ+ βĪe−ρζ

1+αĪe−ρζ + v + µ+ k2xd1 0 βS̄e−ρζ

(1+αĪe−ρζ)2
0 −λ

−v ρ+ µ+ k2xd2
δβV̄ e−ρζ

(1+αĪe−ρζ)2
0 0

− βĪe−ρζ

1+αĪe−ρζ − δβĪe−ρζ

1+αĪe−ρζ ρ− β(S̄+δV̄ )e−ρζ

(1+αĪe−ρζ)2
+ r + µ+ k2xd3 0 0

0 0 −r(1− ξ) ρ+ γ + d+ µ+ k2xd4 0

0 0 −rξ −γ ρ+ λ+ µ+ k2xd5


= 0

(4.1)
with k2x = k2x1

+ k2x2
.

4.1. Disease-free equilibrium

Using the next generation matrix method, the basic reproduction number of disease

in the absence of spatial diffusion is given by: R0 = βΠ(µ+δv)
µ(r+µ)(v+µ) . The model always

admits a disease-free equilibrium (DFE) E0 = (S0, V0, 0, 0, 0) = ( Π
v+µ ,

vΠ
µ(v+µ) , 0, 0, 0)

which is feasible. The characteristic equation associated to system (2.1) and evalu-
ated at E0 is given by:

(
ρ+ v + µ+ k2xd1

) (
ρ+ µ+ k2xd2

)(
ρ+ r + µ+ k2xd3 −

βΠ(µ+ δv)

µ(v + µ)
e−ρζ

)
,(

ρ+ γ + d+ µ+ k2xd4
) (
ρ+ λ+ µ+ k2xd5

)
= 0.

The solutions ρ1(kx) = −(v + µ) − k2xd1, ρ2(kx) = −µ − k2xd2, ρ3(kx) = −(γ +
d+ µ)− k2xd4 and ρ4(kx) = −(λ+ µ)− k2xd5 are negative. Let us define Rm(kx) =

βΠ(µ+δv)
µ(r+µ+k2

xd3)(v+µ) =
r+µ

r+µ+k2
xd3

R0. Assume thatR0 < 1 (which implies thatRm(kx) <
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0) and let us suppose that the equation ρ + r + µ + k2xd3 −
βΠ(µ+δv)
µ(v+µ) e−ρζ = 0 ad-

mits a solution ρ5(kx) such that Re(ρ5(kx)) ≥ 0. Then Re(ρ5(kx)) ≤ βΠ(µ+δv)
µ(v+µ) −

k2xd3 − r − µ = (r + µ) (Rm(kx)− 1) < 0. We obtain a contradiction which implies
that: Re(ρ5(kx)) < 0 for all kx. Hence E0 is asymptotically stable. If R0 > 1
then, by using the intermediate value theorem, we can show that the equation

ρ + r + µ + k2xd3 −
βΠ(µ+δv)
µ(v+µ) e−ρζ = 0 has a positive real root if kx = 0. Hence E0

is unstable.

Let us now analyze the stability behavior of E0 at R0 = 1. The characteristic

equation associated to (2.1) and evaluated at R0 = 1 and β = µ(r+µ)(v+µ)
Π(µ+δv) = β∗:

det



ρ+ v + µ+ k2xd1 0 −β∗Π
v+µ e

−ρζ 0 −λ

−v ρ+ µ+ k2xd2 − β∗δvΠ
µ(v+µ)e

−ρζ 0 0

0 0 ρ+ k2xd3 0 0

0 0 −r(1− ξ) ρ+ γ + d+ µ+ k2xd4 0

0 0 −rξ −γ ρ+ λ+ µ+ k2xd5


= 0

has five negative roots. Hence, we proved the following result:

Theorem 4.1. If R0 ≤ 1 then the DFE E0 is asymptotically stable, and it is
unstable if R0 > 1.

4.2. Endemic equilibrium

Let us determine under what conditions does the system (2.1) admits an endemic
equilibrium E1(S

e, V e, Ie, Ies , R
e). We make the right side of the system (2.1) equal

to 0 which is rearranged to obtain:

Se =
(
Π+

λ(rξ(d+µ)+γr)Ie

(λ+µ)(γ+d+µ)

)
/
(

βIe

1+αIe +v+µ
)
,

V e = (r+µ)/
(

β
µ (µ+ δβIe

1+αIe )+ δβ
1+αIe

)
,

Ies = r(1−ξ)Ie

(γ+d+µ) ,

Re = rξ(d+µ)+γr
(λ+µ)(γ+d+µ)I

e.

Ie is given by the quadratic equation:

A2I
e2 +A1I

e +A0 = 0, (4.2)

where

A2 =

(
λγr(1− ξ)

(λ+ µ)(γ + d+ µ)
+

λrξ

λ+ µ
− (r + µ)

)
(µα+ δβ) < 0,

A1 =Π(µα+ δβ) + (µ+ δβ)

(
λγr(1− ξ)

(λ+ µ)(γ + d+ µ)
+

λrξ

λ+ µ
− (r + µ)

)
− µ2(r + µ)

vβ
(α(v + µ) + δβ) ,

A0 =Π (µ+ δβ)− µ2(r + µ)

vβ
(v + µ+ δβ) .
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By using Descartes’ rule of signs, the equation (4.2) admits a unique positive real so-
lution Ie (which means that the system (2.1) admits a unique endemic equilibrium)
if any one of the following conditions is verified:

• A1 > 0 and A0 > 0,

• A1 < 0 and A0 > 0.

Theorem 4.2. The system (2.1) admits a unique endemic equilibrium E1 if A1 ̸= 0
and A0 > 0.

The characteristic equation of system (2.1) evaluated at the endemic equilibrium
E1 is given by:

ρ5 +B4ρ
4 +B3ρ

3 +B2ρ
2 +B1ρ+B0 +

(
C4ρ

4 + C3ρ
3 + C2ρ

2 + C1ρ+ C0

)
e−ρζ = 0

(4.3)
where

B4 =r + u+ γ + d+ λ+ 5µ+
(δ + 1)βIe

1 + αIe
,

B3 =

(
µ+

δβIe

1 + αIe

)
(r + µ) + (γ + d+ µ) (λ+ µ)

+

(
βIe

1 + αIe
+ u+ γ + d+ λ+ 3µ

)(
δβIe

1 + αIe
+ r + 2µ

)
+

(
βIe

1 + αIe
+ u+ µ

)
(γ + d+ λ+ 2µ) ,

B2 =

(
βIe

1 + αIe
+ u+ µ

)
(γ + d+ µ) (λ+ µ)− λrξ

βIe

1 + αIe

+

(
βIe

1 + αIe
+ u+ γ + d+ λ+ 3µ

)(
µ+

δβIe

1 + αIe

)
(r + µ)

+

[
(γ + d+ µ) (λ+ µ) +

(
βIe

1 + αIe
+ u+ µ

)
(γ + d+ λ+ 2µ)

]
(

δβIe

1 + αIe
+ r + 2µ

)
,

B1 =

(
δβIe

1 + αIe
+ r + 2µ

)(
βIe

1 + αIe
+ u+ µ

)
(γ + d+ µ) (λ+ µ)

− λrβIe

1 + αIe

[
(ξ(d+ µ) + γ) + ξ

(
µ+ δu+

δβIe

1 + αIe

)]
+

[
(γ + d+ µ) (λ+ µ) +

(
βIe

1 + αIe
+ u+ µ

)
(γ + d+ λ+ 2µ)

]
(
µ+

δβIe

1 + αIe

)
(r + µ),

B0 =

(
βIe

1 + αIe
+ u+ µ

)
(γ + d+ µ) (λ+ µ)

(
µ+

δβIe

1 + αIe

)
(r + µ)

− (λrξ(d+ µ) + λrγ)
βIe

1 + αIe

(
µ+ δu+

δβIe

1 + αIe

)
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+
βSe

1 + αIe

[
(γ + d+ λ+ 2µ)

((
µ+

δβIe

1 + αIe

)
βIe

1 + αIe
+

δuβIe

1 + αIe

)
+

βIe

1 + αIe
(γ + d+ µ) (λ+ µ)

]
.

C4 = −βS
e + δβV e

(1 + αIe)
2 ,

C3 = −βS
e + δβV e

(1 + αIe)
2

(
(δ + 1)βIe

1 + αIe
+ u+ γ + d+ λ+ 4µ

)
+
δ2β2IeV e

(1 + αIe)
3 ,

C2 = −βS
e + δβV e

(1 + αIe)
2

(
βIe

1 + αIe
+ u+ γ + d+ λ+ 3µ

)(
µ+

δβIe

1 + αIe

)
− βSe + δβV e

(1 + αIe)
2

[
(γ + d+ µ) (λ+ µ) +

(
βIe

1 + αIe
+ u+ µ

)
(γ + d+ λ+ 2µ)

]
+
δ2β2IeV e

(1 + αIe)
3

(
βIe

1 + αIe
+ u+ γ + d+ λ+ 3µ

)
+ (γ + d+ λ+ 2µ)

βIe

1 + αIe

+
βSe

1 + αIe

[
δuβIe

1 + αIe
+

(
µ+

δβIe

1 + αIe

)
βIe

1 + αIe

]
,

C1 =

[
(γ + d+ µ) (λ+ µ) +

(
βIe

1 + αIe
+ u+ µ

)
(γ + d+ λ+ 2µ)

][
δ2β2IeV e

(1 + αIe)
3

−
(
µ+

δβIe

1 + αIe

)
βSe + δβV e

(1 + αIe)
2

]
− βSe + δβV e

(1 + αIe)
2

(
βIe

1 + αIe
+ u+ µ

)
(γ + d+ µ)

+
βSe

1 + αIe

[
(γ + d+ λ+ 2µ)

((
µ+

δβIe

1 + αIe

)
βIe

1 + αIe
+

δuβIe

1 + αIe

)
+

βIe

1 + αIe
(γ + d+ µ) (λ+ µ)

]
,

C0 =
βSe

1 + αIe

[(
µ+

δβIe

1 + αIe

)
βIe

1 + αIe
+

δuβIe

1 + αIe

]
+

(
βIe

1 + αIe
+ u+ µ

)
(γ + d+ µ) (λ+ µ)

[
δ2β2IeV e

(1 + αIe)
3

−
(
µ+

δβIe

1 + αIe

)
βSe + δβV e

(1 + αIe)
2

]
.

Let us define: B
′

0 = B0 +C0, B
′

1 = B1 +C1, B
′

2 = B2 +C2, B
′

3 = B3 +C3, and
B

′

4 = B4 + C4.

Theorem 4.3. The endemic equilibrium E1 is locally asymptotically stable for ζ =
0 if B

′

4 > 0, B
′

4B
′

3 − B
′

2 > 0, (B
′

1B
′

2 − B
′

0B
′

3)/B
′

2 > 0, and (B
′

4B
′

3 − B
′

2)B
′

2/B
′

4 −
(B

′

1B
′

2 −B
′

0B
′

3)B
′

4/B
′

2 > 0.

Proof. If ζ = 0, then the equation (4.3) reduces to:

ρ5 +B
′

4ρ
4 +B

′

3ρ
3 +B

′

2ρ
2 +B

′

1ρ+B
′

0 = 0

and by using the Routh–Hurwitz criterion, we get the result.
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Once again, we need to define: D4 = B2
4 − 2B3 − C2

4 , D3 = B2
3 + 2B1 −

2B2B4 − C2
3 + 2C2C4, D2 = B2

2 + 2B0B4 − 2B1B3 − 2C0C4 + 2C1C3 − C2
2 , D1 =

B2
1 − 2B0B2 − C2

1 + 2C0C2 and D0 = B2
0 − C2

0 .

Theorem 4.4. The endemic equilibrium E1 is locally asymptotically stable for ζ >
0 if D4 > 0, D4D3 −D2 > 0, (D1D2 −D0D3)/D2 > 0, and (D4D3 −D2)D2/D4 −
(D1D2 −D0D3)D4/D2 > 0.

Proof. If the endemic equilibrium E1 is unstable for a value of ζ it follows that,
from [34], there exists θ > 0 such that ρ = iθ is a root of the characteristic equation
(4.3). By contradiction, suppose such a root exists. It follows that:(
C3θ

3 − C1θ
)
cos(θζ) +

(
C4θ

4 − C2θ
2 + C0

)
sin(θζ) = θ5 −B3θ

3 +B1θ, (4.4)(
C4θ

4 − C2θ
2 + C0

)
cos(θζ)−

(
C3θ

3 − C1θ
)
sin(θζ) = −B4θ

4 +B2θ
2 −B0, (4.5)

which implies:((
C3θ

3 − C1θ
)
cos(θζ) +

(
C4θ

4 − C2θ
2 + C0

)
sin(θζ)

)2
=
(
θ5 −B3θ

3 +B1θ
)2
,

(4.6)((
C4θ

4 − C2θ
2 + C0

)
cos(θζ)−

(
C3θ

3 − C1θ
)
sin(θζ)

)2
=
(
B4θ

4 −B2θ
2 +B0

)2
.

(4.7)

By adding both sides of (4.6) and (4.7), we get:

θ10 +D4θ
8 +D3θ

6 +D2θ
4 +D1θ

2 +D0 = 0. (4.8)

Let X = θ2,the equation (4.8) becomes:

X5 +D4X
4 +D3X

3 +D2X
2 +D1X +D0 = 0. (4.9)

According to the Routh–Hurwitz criterion, because all the roots of the equation (4.9)
have negative real parts if the theorem’s conditions are met, we get a contradiction,
and thus the endemic equilibrium E1 is locally asymptotically stable for all ζ > 0.

5. Optimal control problem

The two controls in this section, v and γ, are functions of time and space. The
vaccination strategy implemented focuses on immunizing a sufficient number of in-
dividuals based on their spatial location to effectively eradicate the epidemic. By
considering the spatial distribution of the population, the strategy optimizes vac-
cination efforts to target areas with the highest concentration of susceptible and
infected individuals. This spatially adaptive approach aims to minimize the density
of susceptible individuals, infected individuals, and severe cases while minimizing
the cost of vaccination and hospitalization by focusing resources where they’re most
needed, minimizing wasted efforts and costs. We obtain the following control prob-
lem:
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

∂tS = d1∆S +Π− βS(x,t)I(x,t−ζ)
1+αI(x,t−ζ) + λR(x, t)− (v(x, t) + µ)S(x, t),

∂tV = d2∆V + v(x, t)S(x, t)− δ βV (x,t)I(x,t−ζ)
1+αI(x,t−ζ) − µV (x, t),

∂tI = d3∆I +
βS(x,t)I(x,t−ζ)
1+αI(x,t−ζ) + δ βV (x,t)I(x,t−ζ)

1+αI(x,t−ζ) − (r + µ) I(x, t), (x, t) ∈ Ξ,

∂tIs = d4∆Is + r(1− ξ)I(x, t)− (γ(x, t) + d+ µ) Is(x, t),

∂tR = d5∆R+ rξI(x, t) + γ(x, t)Is(x, t)− (λ+ µ)R(x, t).

(5.1)

with Neumann conditions:

∂ηS = ∂ηV = ∂ηI = ∂ηIs = ∂ηR = 0, on ∂Ω× [0, T ], (5.2)

S = ψ1, V = ψ2, I = ψ3, Is = ψ4 and R = ψ5 on Ω × [−ζ, 0], (5.3)

where T represents the final time and Ξ = Ω× [0, T ]. The objective functional can
be given by :

J(S, I,R, u) =

∫ T

0

∫
Ω

(κ1S(x, t) + κ2I(x, t) + κ3Is(x, t)) dxdt

+
α1

2
∥v∥2L2(Ξ) +

α2

2
∥γ∥2L2(Ξ) ,

(5.4)

where (v, γ) ∈ Uad = {(v, γ) ∈ L∞(Ξ); 0 ≤ v ≤ vmax and 0 ≤ γ ≤ γmax on Ξ}.
The constants κ1, κ2, κ3, α1 and α2 are balancing constants related to cost

factors. Since there is no linear relationship between the effects of intervention
and the cost of intervention (the total cost includes the cost of treatment, beds,
transport,...), we use a nonlinear cost functional. In this sequel, we apply the
quadratic objective functional for measuring the cost of the control as used in several
works [1, 33, 45, 46].

The control variables v and γ interact with the state variables in the following
ways:

• Vaccination Impact: The vaccination rate v(x, t) affects the susceptible popu-
lation S directly, as it increases the number of vaccinated individuals V while
simultaneously decreasing the number of susceptible individuals. The term
v(x, t)S(x, t) in the equation for ∂tV captures this interaction, as it indicates
that the vaccination of susceptible individuals is proportional to their current
population density.

• Hospitalization Dynamics: The hospitalization rate γ(x, t) interacts with the
severe cases Is through the equation for ∂tIs. Specifically, γ(x, t) represents
the rate at which severe cases transition out of the infected compartment
into the recovered state, thereby impacting the dynamics of both the Is and
R populations. The term γ(x, t)Is(x, t) indicates that the effectiveness of
hospitalization in reducing the severity of the outbreak is influenced by the
current number of severe cases.
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6. Existence of global solution

In order to reformulate the model (5.1)-(5.3), let:

H =
(
L2(Ω)

)5
,

ℓ = (ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) = (S, V, I, Is, R),

and let us consider the following linear operator:

A : D(A) ⊂ H → H,

A =



d1∆ 0 0 0 0

0 d2∆ 0 0 0

0 0 d3∆ 0 0

0 0 0 d4∆ 0

0 0 0 0 d5∆


,

where

D(A) =

{
ℓ ∈

(
H2(Ω)

)5
,
∂ℓ1
∂η

=
∂ℓ2
∂η

=
∂ℓ3
∂η

=
∂ℓ4
∂η

=
∂ℓ5
∂η

= 0, a.e x ∈ ∂Ω

}
. (6.1)

The controlled system can be rewritten in the form:∂tℓ = Aℓ(t) + Ψ(t, ℓt) , t ∈ [0, T ],

ℓ0 = ψ.
(6.2)

Lemma 6.1. Let X be a Banach space, (T (t))t≥0 a strongly continuous semigroup
of bounded linear operators on X satisfying ∥T (t)∥ ≤ Meωt for all t ≥ 0 (M and
ω are fixed constants) and let ψ ∈ C([−ζ, 0];X) be a given function. If a function
Ψ : [0, T ]×C([−ζ, 0];X) is measurable in the first variable and satisfies the following
conditions:

i. A Lipschitz condition:

∥Ψ(t, φ)−Ψ(t, φ̃)∥ ≤ L ∥φ− φ̃∥ , t ∈ [0, T ], φ, φ̃ ∈ C([−ζ, 0];X).

ii. Ψ(., 0) ∈ L1([0, T ], X);

iii. There exists a constant K such that: ∥Ψ(t, ψ)∥ ≤ K for all t ∈ [0, T ].

then the initial value problem of abstract integral equation given by: ℓ(t) = T (t)ψ(0) +
∫ t

0
T (t− s)Ψ(s, ℓs)ds

ℓ0 = ψ
, t ∈ [0, T ] (6.3)

admits a unique solution ℓ : [−ζ, T ] → X.
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Proof. From conditions (i) and (ii), we can see that Ψ(t, φ) ∈ L1([0, T ], X) for all
φ ∈ C([−ζ, 0];X). Let us define:

ℓ0(t) =

{
ψ(t) , t ∈ [−ζ, 0],
T (t)ψ(0) , t ∈ [0, T ],

and for each positive integer n:

ℓn(t) =

{
ψ(t) , t ∈ [−ζ, 0],
T (t)ψ(0) +

∫ t

0
T (t− s)Ψ(s, ℓn−1

s )ds , t ∈ [0, T ].

By using condition (iii), we can show that there exists a constant K ′ such that
∥Ψ(s, ℓ0s)∥ ≤ K ′ for all s ∈ [0, T ]. Then for 0 ≤ t ≤ T ,

∥ℓ1(t)− ℓ0(t)∥ ≤ K ′eωT t

and, by recurrence,

∥ℓn(t)− ℓn−1(t)∥ ≤ K ′Ln−1enωT t
n

n!
.

Hence, the limit ℓ(t) = limn→∞ ℓn(t) converges uniformly on [−ζ, T ].
To verify that ℓ(t) satisfies (6.3), notice that:

∥ℓ(t)− T (t)ψ(0)−
∫ t

0

T (t− s)Ψ(s, ℓs)ds∥

≤ ∥ℓ(t)− ℓn+1(t)∥+ ∥
∫ t

0

T (t− s) [Ψ(s, ℓs)−Ψ(s, ℓns )] ds∥

≤ ∥ℓ(t)− ℓn+1(t)∥+ LeωT

∫ t

0

∥ℓs − ℓns ∥ds.

Moreover,

ℓ(t)− ℓn(t) =

∞∑
k=n+1

(
ℓk(t)− ℓk−1(t)

)
.

It follows that:

∥ℓ(t)− T (t)ψ(0)−
∫ t

0

T (t− s)Ψ(s, ℓs)ds∥ ≤
[
1 + LeωT t

]
K ′

∞∑
k=n+1

Lk−1ekωT t
k

k!
,

and consequently we obtain ℓ(t) = T (t)ψ(0)+
∫ t

0
T (t−s)Ψ(s, ℓs)ds for all t ∈ [0, T ].

We now prove uniqueness of the solution. Suppose that ϱ(t) satisfies (6.3). We
can find a constant K ′′ such that ∥ϱ(t)− ℓ1(t)∥ ≤ K ′′t for all t ∈ [0, T ]. Then:

∥ϱ(t)− ℓn(t)∥ ≤ K ′′Ln−1e(n−1)ωT t
n

n!
.

Hence ϱ(t) = limn→∞ ℓn(t) and we deduce that ϱ = ℓ.

Remark 6.1. ℓ is called a mild solution of (6.2) (see [12]).
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Given that our model describes the dynamics of populations subject to spatial
diffusion and temporal evolution, strong solutions are crucial for ensuring that the
state variables remain well-defined and behave realistically throughout the simula-
tion. This is particularly important in epidemiological models, where continuity and
differentiability can be linked to biological processes, such as the spread of infection
or the response to vaccination. The strong solutions satisfy the differential equations
pointwise and possess sufficient regularity (e.g., continuity and differentiability) re-
quired for the analysis of the system. This implies that the state variables not only
exist but also exhibit smooth behavior over time and space. To demonstrate that
(5.1)-(5.3) admits a strong solution, we need the following result (Proposition 1.1,
p.174, [8])

Lemma 6.2. Let X be a Banach space, A : D(A) ⊂ X → X be the infinitesimal
generator of a C0−semigroup and a function g : [0, T ] → X.

• If z0 ∈ X and g ∈ L1 ([0, T ], X), then the problem∂tϱ = Aϱ(t) + g(t)

ϱ(0) = ϱ0
, t ∈ [0, T ]

admits a unique mild solution ϱ.

• If X is a real Hilbert space, g ∈ L2 ([0, T ], X), A is self – adjoint and dissipa-
tive on X, and ϱ0 ∈ D(A), then the mild solution ϱ is a strong solution and
ϱ ∈W 1,2 (0, T ;X) ∩ L2 (0, T ;D(A)).

The existence of a strong solution ensures that the formulated model can produce
meaningful results. Without established existence, the mathematical model may
not accurately reflect the dynamics of the epidemic, rendering any conclusions or
insights derived from it questionable. Moreover, proving the existence of solutions
confirms that the model can adequately represent the underlying biological processes
governing the epidemic spread, thus validating the utility of the model in practical
applications. Furthermore, the uniqueness guarantees that the model’s behavior
is consistent and reproducible. In other words, for given initial conditions and
parameters, there will be a single trajectory of the system over time.

Theorem 6.1. If 0 ≤ ξ ≤ 1 and all the other constants in the system (5.1) are
positive and ψ is a given nonnegative bounded function on Ω × [−ζ, 0] such that
ψ ∈ C([−ζ, 0];H) and ψ(0) ∈ D(A) then, for every (v, γ) ∈ Uad, the problem
(12) − (14) admits a unique strong solution ℓ satisfying: ℓ ∈ W 1,2(0, T ;H) , ℓi ∈
L2(0, T ;H2(Ω))∩L∞(0, T ;H1(Ω))∩L∞(Ξ) and ℓi ≥ 0 on Ξ for i = 1, 2, 3, 4, 5. In
addition:

∃C > 0,∀t ∈ [0, T ], ∥∂tℓi∥L2(Ξ) + ∥ℓi∥L2(0,T ;H2(Ω)) + ∥ℓi∥H1(Ω) + ∥ℓi∥L∞(Ξ) ≤ C.

(6.4)

Proof. Since the function Ψ(t, φ) defined in (3.1) is not Lipschitz continuous in φ
uniformly in respect to t ∈ [0, T ], we can’t use directly Lemma 6.1 to prove that the
problem (4.9)-(5.2) admits a mild solution. Therefore, we need to use a truncation
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procedure to Ψ(t, φ). Let us define, for a function h(x, t) and a positive integer N :
D1

h = {(x, t) : −N ≤ h(x, t) ≤ N}
D2

h = {(x, t) : h(x, t) > N}
D3

h = {(x, t) : h(x, t) < −N}
and hN (x, t) =


h(x, t) , (x, t) ∈ D1

h

N , (x, t) ∈ D2
h

−N , (x, t) ∈ D3
h

The truncation form of Ψ(t, ℓt) is defined by:

ΨN (t, ℓNt ) = (ΨN
1 (t, ℓNt ), Ψ

N
2 (t, ℓNt ), Ψ

N
3 (t, ℓNt ), Ψ

N
4 (t, ℓNt ), Ψ

N
5 (t, ℓNt ))

is Lipschitz continuous in ℓNt uniformly in respect to t ∈ [0, T ]. With Lemma 6.1,
it follows that: ∂tℓ

N = AℓN (t) + ΨN (t, ℓNt )

ℓN0 = ψ
, t ∈ [0, T ] (6.5)

has a unique mild solution ℓN .

Define g(t) = ΨN (t, ℓNt ) for t ∈ [0, T ]. Clearly, ℓN equals the mild solution of :∂tϱ = Aϱ(t) + g(t)

ϱ(0) = ψ(0)
, t ∈ [0, T ].

Since ΨN (t, φ) ∈ L2 ([0, T ],H) and t → ℓNt is continuous on [0, T ], we can
show that g ∈ L2 ([0, T ],H). The operator A is self-adjoint and dissipative, then,
by the second part of Lemma 6.2, the mild solution ℓN is a strong solution and
ℓN ∈W 1,2 (0, T ;H)∩L2 (0, T ;D(A)). We need to verify that this strong solution is
nonnegative, bounded and verifies the results of the theorem. Then we will prove
that it is in fact a global solution for the problem (5.1)-(5.3).

- STEP 1 Positivity of the solutions (i.e., non-negativity of population den-
sities) is essential in epidemiological models, as negative populations would lack
biological meaning. Proving positivity ensures that all state variables—such as
susceptible, infected, and recovered individuals—remain within realistic biological
bounds throughout the dynamics of the model, reinforcing the applicability of the
model in real-world scenarios. We can see that (0, 0, 0) is a lower solution of system
(5.1)-(5.3). Then, we deduce that the solution ℓN is nonnegative.

- STEP 2 The verification of the solutions’ boundedness ensures that these solu-
tions do not diverge to infinity, which could indicate unrealistic biological scenarios
or mathematical instability. This property assures that the model remains within
practical and feasible limits, allowing for meaningful interpretations of the dynam-
ics and the effects of control measures, such as vaccination and hospitalization. To
prove that ℓN ∈ (L∞(Ξ))

5
, we denote:

MN = max
{∥∥ΨN

i (t, ℓNt )(x)
∥∥
L∞(Ξ)

, ∥ψi∥L∞([−ζ,0]×Ω) , i = 1, 2, 3, 4, 5
}
.

Let {Ti(t), t ≥ 0} be the C0 semigroup of contractions generated by the operator
Bi defined, for i = 1, 2, 3, 4, 5, as follows:

Bi : D(Bi) ⊂ L2(Ω) → L2(Ω),

Biϱ = di∆ϱ,
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D(Bi) =
{
ϱ ∈ H2(Ω), ∂ϱ∂η = 0, a.e in ∂Ω

}
.

The function Ψ̃N
i (x, t) = ℓNi −MN t−∥ψi(., 0)∥L∞(Ω) satisfies the Cauchy problem:∂tΨ̃

N
i (x, t) = di∆Ψ̃N

i +ΨN
i (t, ℓNt )−MN

Ψ̃N
i (x, 0) = ψi(x, 0)− ∥ψi(., 0)∥L∞(Ω)

, t ∈ [0, T ] (6.6)

and the function defined by Ψ̄N
i (x, t) = ℓNi +MN

i t + ∥ψi(., 0)∥L∞(Ω) satisfies the
Cauchy problem:∂tΨ̄

N
i (x, t) = di∆Ψ̄N

i +ΨN
i (t, ℓNt ) +MN

Ψ̄N
i (x, 0) = ψi(x, 0) + ∥ψi(., 0)∥L∞(Ω)

, t ∈ [0, T ], (6.7)

then

Ψ̃N
i (x, t) = Ti(t)

(
ψi(x, 0)− ∥ψi(., 0)∥L∞(Ω)

)
+

∫ t

0

Ti(t− s)(ΨN
i (s, ℓNs )(x)−MN )ds

and

Ψ̄N
i (x, t) = Ti(t)

(
ψi(x, 0) + ∥ψi(., 0)∥L∞(Ω)

)
+

∫ t

0

Ti(t− s)(ΨN
i (s, ℓNs )(x)+MN )ds.

Since we have
ψ(x, 0)− ∥ψi(., 0)∥L∞(Ω) ≤ 0, ΨN

i (t, ℓNt )(x)−MN ≤ 0,

ψi(x, 0) + ∥ψi(., 0)∥L∞(Ω) ≥ 0 and ΨN
i (t, ℓNt )(x) +MN ≥ 0, it follows that:

(∀(x, t) ∈ Ξ) , Ψ̃N
i (x, t) ≤ 0 and (∀(x, t) ∈ Ξ) , Ψ̄N

i (x, t) ≥ 0. Then:

∀(x, t) ∈ Ξ, ∥ℓNi (x, t)∥ ≤MN t+ ∥ψi(., 0)∥L∞(Ω) (6.8)

and we conclude that, SN , V N , IN , INs , R
N ∈ L∞(Ξ).

- STEP 3 We now show that S ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)). From
(6.5), we get :

∫ t

0

∫
Ω
(∂tS

N )
2
dsdx+ d21

∫ t

0

∫
Ω
∥∆SN∥2dsdx− 2d1

∫ t

0

∫
Ω
∂sS

N∆SNdsdx

=
∫ t

0

∫
Ω

(
Π − βSN (x,t)IN (x,t−ζ)

1+αIN (x,t−ζ)
+ λRN (x, t)− (v(x, t) + µ)SN (x, t)

)2
dsdx,

which, by Green’s formula, leads to:

d1
∫
Ω
∥∇SN∥2dx ≤

∫ t

0

∫
Ω

(
Π − βSNIN (x, t− ζ)

1 + αIN (x, t− ζ)
+ λRN − (v + µ)SN

)2

dsdx

+ d1

∫
Ω

∥∇SN (x, 0)∥2dx.

Given that SN (x, 0) ∈ H2(Ω) and SN , IN , RN ∈ L∞ ([−ζ, T ]× Ω), then SN ∈
L2(0, T ;H2(Ω))∩L∞(0, T ;H1(Ω)). Using the same reasoning, we get V N , IN , INs ,
RN ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)).
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- STEP 4 Let us show that the problem (5.1)-(5.3) admits a local solution. From
(25), we have:

∀(x, t) ∈ Ξ, ∥ℓNi (x, t)∥ ≤MN t+ ∥ψi(., 0)∥L∞(Ω).

By choosing N to be a positive integer such that:

N ≥ 2 max
{
∥ψi(., 0)∥L∞(Ω) , i = 1, 2, 3, 4, 5

}
(6.9)

and by choosing a constant T
′ ∈ [0, T ] such that 2T

′
MN ≤ N , it follows that:

∀(x, t) ∈ Ξ
′
= Ω× [0, T

′
], ∥ℓNi (x, t)∥ ≤ N, (6.10)

and therefore, the problem (5.1)-(5.3) admits a local solution ℓ such that ℓN (x, t) =
ℓ(x, t) for all (x, t) ∈ Ξ

′

- STEP 5 The local solution ℓ of (12) − (14) is in fact a global solution. It
suffices to prove that S, V, I, Is and R are uniformly bounded with respect to T

′
.

From (12)-(14) we have:
∂tS − d1∆S ≤M1, t ∈ [0, T

′
],

∂ηS = 0,

S(x, 0) = ψ1(x, 0) ≤ sup
x∈Ω

ψ1(x, 0),

(6.11)

where M1 = ∥Π + λR∥L∞([−ζ,T ′]×Ω). Using the comparison principle, we have

for all (x, t) ∈ Ξ
′
: S(x, t) ≤ sup

x∈Ω
ψ1(x, 0) + M1t ≤ sup

x∈Ω
ψ1(x, 0) + M1T . It fol-

lows that S is uniformly bounded with respect to T
′
. Similarly, we prove that

V, I, Is and R are uniformly bounded with respect to T
′
. Therefore ℓ is a global non-

negative strong solution of (5.1)-(5.3) and ℓ ∈W 1,2(0, T ;H), ℓi ∈ L2(0, T ;H2(Ω))∩
L∞(0, T ;H1(Ω)) ∩ L∞(Ξ), and the inequality (6.4) holds for i = 1, 2, 3, 4, 5.

7. Existence of optimal solution

Let us study the existence of optimal controls that optimize the objective functional
defined in (5.4).

Theorem 7.1. The problem (5.1)-(5.4) has an optimal solution (ℓ∗, v∗, γ∗) under
the same conditions as Theorem 6.3.

Proof. Let J∗ be the finite constant defined by:

J∗ = inf
(v,γ)∈Uad

{J(ℓ, v, γ)} . (7.1)

Let us consider a sequence (ℓn, vn, γn) where:

vn, φn ∈ Uad , ℓ
n ∈W 1,2(0, T ;H(Ω)) , J∗ ≤ J(ℓn, vn, φn) ≤ J∗ +

1

n
, (7.2)
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∂tℓ
n
1 = d1∆ℓ

n
1 +Π − βℓn1 (x,t)ℓ

n
3 (x,t−ζ)

1+αℓn3 (x,t−ζ) + λℓn5 (x, t)− (vn(x, t) + µ)ℓn1 (x, t),

∂tℓ
n
2 = d2∆ℓ

n
2 + vn(x, t)ℓn1 (x, t)− δ

βℓn2 (x,t)ℓ
n
3 (x,t−ζ)

1+αℓn3 (x,t−ζ) − µℓn2 (x, t),

∂tℓ
n
3 = d3∆ℓ

n
3 +

βℓn1 (x,t)ℓ
n
3 (x,t−ζ)

1+αℓn3 (x,t−ζ) + δ
βℓn2 (x,t)ℓ

n
3 (x,t−ζ)

1+αℓn3 (x,t−ζ) − (r + µ) ℓn3 (x, t),

∂tℓ
n
4 = d4∆ℓ

n
4 + r(1− ξ)ℓn3 (x, t)− (γn(x, t) + d+ µ) ℓn4 (x, t),

∂tℓ
n
5 = d5∆ℓ

n
5 + rξℓn3 (x, t) + γn(x, t)ℓn4 (x, t)− (λ+ µ) ℓn5 (x, t).

(7.3)

∂ηℓ
n
1 = ∂ηℓ

n
2 = ∂ηℓ

n
3 = ∂ηℓ

n
4 = ∂ηℓ

n
5 = 0, (x, t) ∈ ∂Ω× [0, T ]. (7.4)

ℓni (x, θ) = ψi(x, θ) ≥ 0, (7.5)

for all (x, θ) ∈ Ω× [−ζ, 0] and i = 1, 2, 3, 4, 5.
By using (6.4), (7.3) and the boundedness of ψ1 on Ω × [−ζ, 0], one can find a

constant K verifying:

∥
∫
Ω

(ℓn1 )
2
(x, t)dx−

∫
Ω

(ℓn1 )
2
(x, s)dx∥ ≤ K∥t− s∥, (7.6)

which implies the equicontinuity at t of {ℓn1 , n ≥ 1} and {ℓni , n ≥ 1}, for i = 2, 3, 4, 5,
similarly. Combining this with the relative compactness of {ℓni , n ≥ 1} in

C
(
[0, T ] ;L2(Ω)

)
we deduce the existence of ℓ∗ ∈

(
C
(
[0, T ] ;L2(Ω)

))5
and a subse-

quence of (ℓn)n≥1 such that:

ℓn → ℓ∗ uniformly in L2(Ω),

∆ℓn → ∆ℓ∗ weakly in L2(Ξ),

∂ℓn → ∂ℓ∗1 weakly in L
2(Ξ),

ℓn → ℓ∗ weakly in L2(0, T ;H2(Ω)),

ℓn → ℓ∗ weakly in L∞(0, T ;H1(Ω)).

Furthermore, ℓn1 (x, t)ℓ
n
3 (x, t− ζ)− ℓ∗1(x, t)ℓ

∗
3(x, t− ζ) = (ℓn1 (x, t)− ℓ∗1(x, t)) ℓ

n
3 (x, t−

ζ) + ℓ∗1(x, t) (ℓ
n
3 (x, t− ζ)− ℓ∗3(x, t− ζ)) .

The boundedness of ℓ∗1 in L∞(Ξ) and ℓn3 in L∞(Ω× [−ζ, T ]) combined with the
convergence ℓn1 → ℓ∗1 in L2(Ξ) and the convergence ℓn3 → ℓ∗3 in L2(Ω × [−ζ, T ]),
implies:

ℓn1 (x, t)ℓ
n
3 (x, t− ζ) → ℓ∗1(x, t)ℓ

∗
3(x, t− ζ) in L2(Ξ).

Similarly, we show that: ℓn2 (x, t)ℓ
n
3 (x, t− ζ) → ℓ∗2(x, t)ℓ

∗
3(x, t− ζ) in L2(Ξ).

On the other hand, L2(Ξ) is reflexive, then there exist two subsequences vn and
γn for which:

(vn, γn) → (v∗, γ∗) weakly in
(
L2(Ξ)

)2
,

then v∗, γ∗ ∈ Uad due to weak closedness of Uad. Moreover:

vnℓn1 → v∗ℓ∗1 in L
2(Ξ),

γnℓn4 → γ∗ℓ∗4 in L
2(Ξ).

By applying the Aubin compactness theorem [38] and by verifying that

J(ℓ∗, v∗, γ∗) ≤ inf
u∈Uad

J(ℓ, v, γ),

we conclude that (ℓ∗, v∗, γ∗) is an optimal solution.
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8. First-order necessary optimality conditions

Let us start with the following lemma:

Lemma 8.1. Suppose that all conditions of Theorem 6.3 are satisfied. For any
(v, γ) ∈ Uad, set (v

ε, γε) = (v∗, γ∗) + ε(v, γ) ∈ Uad with ε > 0. Then (5.1)-(5.3) has
a unique strong solution ℓε = (ℓε1, ℓ

ε
2, ℓ

ε
3, ℓ

ε
4, ℓ

ε
5) associated to (vε, γε). Moreover, ℓε

is uniformly bounded with respect to ε in Ξ.

Proof. From (5.1)-(5.3) we have:
∂ℓε1 − d1∆ℓ

ε
1 ≤M5 , t ∈ [0, T ],

∂ηℓ
ε
1 = 0,

ℓε1(x, 0) = ψ1(x, 0) ≤ sup
x∈Ω

ψ1(x, 0),

(8.1)

where M5 = ∥Π + λR∥L∞(Ω×[−ζ,T ]). Using the comparison principle, we have for

all (x, t) ∈ Ω× [0, T ]: ℓε1(x, t) ≤ sup
x∈Ω

ψ1(x, 0) +M5T . It follows that ℓ
ε
1 is uniformly

bounded with respect to ε. Similarly, we can show that ℓε2, ℓ
ε
3, ℓ

ε
4 and ℓε5 are

uniformly bounded with respect to ε.
Let ℓ be the solution defined in Theorem 6.3. Define the following mapping:

Υ : Uad →W 1,2(0, T ;H),

(v, γ) → ℓ.

To derive the first-order necessary conditions for the optimal controls, we prove the
Gateaux differentiability of Υ on Uad.

Let ε > 0, (v, γ) ∈ Uad and (vε, γε) = (v∗, γ∗)+ε(v, γ) ∈ Uad. Let ϱ
ε = 1

ε (ℓ
ε−ℓ∗)

where ℓε = Υ (vε, γε) and ℓ∗ = Υ (v∗, γ∗). Then we get:

∂tϱ
ε
1 = d1∆ϱ

ε
1 −

(
β

ℓε3(x,t−ζ)
1+αℓε3(x,t−ζ) + µ+ vε

)
ϱε1 + λϱε5

− βℓ∗1E
ε
3(x, t− ζ)ϱε3(x, t− ζ)− ℓ∗1u,

∂tϱ
ε
2 = d2∆ϱ

ε
2 + vεϱε1 −

(
δβ

ℓε3(x,t−ζ)
1+αℓε3(x,t−ζ) + µ

)
ϱε2

− δβℓ∗2E
ε
3(x, t− ζ)ϱε3(x, t− ζ) + ℓ∗1u,

∂tϱ
ε
3 = d3∆ϱ

ε
3 + β

ℓε3(x,t−ζ)
1+αℓε3(x,t−ζ)ϱ

ε
1 + δβ

ℓε3(x,t−ζ)
1+αℓε3(x,t−ζ)ϱ

ε
2−(r + µ)ϱε3 ; (x, t) ∈ Ξ

+ (βℓ∗1 + δβℓ∗2)E
ε
3(x, t− ζ)ϱε3(x, t− ζ),

∂tϱ
ε
4 = d4∆ϱ

ε
4 + r(1− ξ)ϱε3 − (d+ µ+ γε)ϱε4 − ℓ∗4γ,

∂tϱ
ε
5 = d5∆ϱ

ε
5 + rξϱε3 + γεϱε4 − (λ+ µ)ϱε5 + ℓ∗4γ,

(8.2)

where Eε
3(x, t− ζ) =

(
ℓε3(x,t−ζ)

1+αℓε3(x,t−ζ)
− ℓ∗3(x,t−ζ)

1+αℓ∗3(x,t−ζ)

)
/(ℓε3(x,t−ζ)−ℓ∗3(x,t−ζ)),

∂ηϱ
ε
1 = ∂ηϱ

ε
1 = ∂ηϱ

ε
1 = ∂ηϱ

ε
1 = ∂ηϱ

ε
1 = 0 on ∂Ω× [0, T ] , (8.3)

ϱε1 = ϱε2 = ϱε3 = ϱε4 = ϱε5 = 0 on Ω× [0, T ] . (8.4)

We first prove that the solution of (8.2) is bounded. We need the following notations:
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F ε
1 =



−βℓε3(x,t−ζ)
1+αℓε3(x,t−ζ) − µ− vε 0 0 0 λ

vε
−δβℓε3(x,t−ζ)
1+αℓε3(x,t−ζ) − µ 0 0 0

βℓε3(x,t−ζ)
1+αℓε3(x,t−ζ)

δβℓε3(x,t−ζ)
1+αℓε3(x,t−ζ) −r − µ 0 0

0 0 r(1− ξ) −d− µ− γε 0

0 0 rξ γε −λ− µ


,

F ε
2 =



0 0 −βℓ∗1Eε
3(x, t− ζ) 0 0

0 0 −δβℓ∗2Eε
3(x, t− ζ) 0 0

0 0 (βℓ∗1 + δβℓ∗2)E
ε
3(x, t− ζ) 0 0

0 0 0 0 0

0 0 0 0 0


,

F3 =



−ℓ∗1 0

ℓ∗1 0

0 0

0 −ℓ∗4
0 ℓ∗4


,

to rewrite system (8.2) under the following compact form:∂tϱ
ε = Aϱε + F ε

1 (t)ϱ
ε(t) + F ε

2 (t)ϱ
ε(t− ζ) + F3(t) (v(t), γ(t))

T
, t ∈ [0, T ] ,

ϱε = 0 on [−ζ, 0],
(8.5)

of which the unique solution, as seen before, is:

ϱε(t) =

∫ t

0

T (t− s)F ε
1 (s)ϱ

ε(s)ds+

∫ t

0

T (t− s)F ε
2 (s)ϱ

ε(s− ζ)ds (8.6)

+

∫ t

0

T (t− s)F3(s) (v(t), γ(t))
T
ds,

where {T (t), t ≥ 0} is the C0 semigroup generated by the operator A. Using
Lemma 8.1, one can show that there exist constants M6,M7,M8 ≥ 0 such that:

∥ϱε(t)∥L2(Ω) ≤M6

∫ t

0

∥ϱε(s)∥L2(Ω)ds+M7

∫ t

0

∥ϱε(s− ζ)∥L2(Ω)ds+M8

≤M6

∫ t

0

∥ϱε(s)∥L2(Ω)ds+M7

∫ t

0

∥ϱε(s)∥L2(Ω)ds+M8

≤M8 + 2max(M6,M7)

∫ t

0

∥ϱε(s)∥L2(Ω)ds
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and applying Gronwall’s inequality, we deduce the uniform boundedness of ϱε in
L2(Ξ). Furthermore, given that :

∥ℓεi − ℓ∗i ∥L2(Ξ) = ε∥ϱεi∥L2(Ξ), (8.7)

we can deduce that:
ℓε →

ε→0
ℓ∗ in L2(Ξ).

Let F1 and F2 be two matrices defined by:

F1 =



−βℓ∗3(x,t−ζ)
1+αℓ∗3(x,t−ζ) − µ− v∗ 0 0 0 λ

v∗ (
−δβℓ∗3(x,t−ζ)
1+αℓ∗3(x,t−ζ) − µ 0 0 0

βℓ∗3(x,t−ζ)
1+αℓ∗3(x,t−ζ)

δβℓ∗3(x,t−ζ)
1+αℓ∗3(x,t−ζ) −r − µ 0 0

0 0 r(1− ξ) −d− µ− γ∗ 0

0 0 rξ γ∗ −λ− µ


,

F2 =



0 0
−βℓ∗1

(1+αℓ∗3(x,t−ζ))
2 0 0

0 0
−δβℓ∗2

(1+αℓ∗3(x,t−ζ))
2 0 0

0 0
βℓ∗1+δβℓ∗2

(1+αℓ∗3(x,t−ζ))
2 0 0

0 0 0 0 0

0 0 0 0 0


,

The solution of:∂tϱ = Aϱ+ F1(t)ϱ(t) + F2(t)ϱ(t− ζ) + F3(t)(v(t), γ(t))
T , t ∈ [0, T ] ,

ϱ = 0 on [−ζ, 0],
(8.8)

verifies:

ϱ(t) =

∫ t

0

T (t− s)F1(s)ϱ(s)ds+

∫ t

0

T (t− s)F2(s)ϱ(s− ζ)ds (8.9)

+

∫ t

0

T (t− s)F3(s)v
T (s)ds.

From (8.6) and (8.9):

ϱε(t)− ϱ(t) =

∫ t

0

T (t− s)F ε
1 (s) (ϱ

ε(s)− ϱ(s)) ds

+

∫ t

0

T (t− s)F ε
2 (s) (ϱ

ε(s− ζ)− ϱ(s− ζ)) ds

+

∫ t

0

T (t− s) (F ε
1 (s)− F1(s)) ϱ(s)ds
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+

∫ t

0

T (t− s) (F ε
2 (s)− F2(s)) ϱ(s− ζ)ds

=

∫ t

0

T (t− s)F ε
1 (s) (ϱ

ε(s)− ϱ(s)) ds

+

∫ t−ζ

−ζ

T (t− s− ζ)F ε
2 (s+ ζ) (ϱε(s)− ϱ(s)) ds

+

∫ t

0

T (t− s) (F ε
1 (s)− F1(s)) ϱ(s)ds

+

∫ t

0

T (t− s) (F ε
2 (s)− F2(s)) ϱ(s− ζ)ds.

F ε
1 and F ε

2 are uniformly bounded with respect to ε in Ξ and tend to F1 and F2

when ε→ 0. By applying Gronwall’s inequality, we get:

ϱε →
ε→0

ϱ in L2(Ξ). (8.10)

Moreover,
ϱ = Υ

′
((v∗, γ∗))(v, γ). (8.11)

Theorem 8.1. The functional J defined in (5.4) is Gateaux differentiable in Uad.
Furthermore, if (ℓ∗, u∗, γ∗) is an optimal triplet, then the adjoint problem:∂tρ = −Aρ− F ∗

1 (t)ρ(t)− 1[0;T−ζ](t)F
∗
2 (t+ ζ)ρ(t+ ζ)−K

ρ(x, T ) = 0
, t ∈ [0, T ] (8.12)

associated to (5.1)-(5.4), where K =
(
κ1, 0, κ2, κ3, 0

)T
and, for any set X, 1X(.)

is the indicator function of the set X, has a unique solution ρ = (ρ1, ρ2, ρ3, ρ4, ρ5)
T ∈

W 1,2(0, T ;H) with ρi ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) for i = 1, 2, 3, 4, 5. In
addition: v

∗ = min
(
vmax,max

(
0, S

∗

α1
(ρ1 − ρ2)

))
,

γ∗ = min
(
γmax,max

(
0,

I∗
s

α2
(ρ4 − ρ5)

))
.

(8.13)

Proof. STEP 1 Let t′ = T − t and υi(t′, x) = ρi(T − t′, x) = ρi(x, t) for (x, t) ∈ Ξ.
Following a reasoning similar to the proof in [16], we deduce the first part.

STEP 2 Let (ℓ∗, v∗, γ∗) be an optimal triplet and let ℓε = (ℓε1, ℓ
ε
2, ℓ

ε
3, ℓ

ε
4, ℓ

ε
5) =

Υ (vε, γε) where (vε, γε) = (v∗, γ∗) + ε(v, γ) ∈ Uad. We get the following:

J ′(v∗, γ∗)(v, γ) = lim
ε→0

1

ε
(J(vε, γε)− J(v∗, γ∗))

= lim
ε→0

1

ε

(∫ T

0

∫
Ω

[κ1(ℓ
ε
1 − ℓ∗1) + κ2(ℓ

ε
3 − ℓ∗3) + κ3(ℓ

ε
4 − ℓ∗4)] dxdt

+
α1

2

∫ T

0

∫
Ω

[
(vε)2 − (v∗)2

]
dxdt+

α2

2

∫ T

0

∫
Ω

[
(γε)2 − (γ∗)2

]
dxdt

)

=

∫ T

0

∫
Ω

[κ1ϱ1 + κ2ϱ3 + κ3ϱ4] dxdt+

∫ T

0

∫
Ω

[α1vv
∗ + α2γγ

∗] dxdt
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=

∫ T

0

⟨K, ϱ⟩Hdt+
∫ T

0

⟨(α1v
∗, α2γ

∗)
T
, (v, γ)

T ⟩(L2(Ω))2dt

=

∫ T

0

⟨ρ, ∂ϱ
∂t

−Aϱ− F1(t)ϱ(t)− F2(t)ϱ(t− ζ)⟩Hdt

+

∫ T

0

⟨(α1v
∗, α2γ

∗)
T
, (v, γ)

T ⟩(L2(Ω))2dt

=

∫ T

0

⟨ρ, F3 (v, γ)
T ⟩Hdt+

∫ T

0

⟨(α1v
∗, α2γ

∗)
T
, (v, γ)

T ⟩(L2(Ω))2dt

=

∫ T

0

⟨F ∗
3 ρ, (v, γ)

T ⟩(L2(Ω))2dt+

∫ T

0

⟨(α1v
∗, α2γ

∗)
T
, (v, γ)

T ⟩(L2(Ω))2 .

We deduce the characterizations of v∗ and γ∗:

v∗ = min

(
vmax,max

(
0,
S∗

α1
(ρ1 − ρ2)

))
,

γ∗ = min

(
γmax,max

(
0,
I∗s
α2

(ρ4 − ρ5)

))
.

9. Simulation results

9.1. Parameter values and model simulation

To solve the COVID-19 epidemic model, we utilize the finite difference method
(FDM) and the forward-backward sweep approach [28], enabling numerical approx-
imation of the model’s partial differential equations. The FDM approximates deriva-
tives at discrete grid points, transforming the governing equations into a system of
algebraic equations that can be solved numerically. For spatial discretization, the
spatial domain is divided into a grid with uniform spacing (∆x) and (∆y), while the
temporal domain is discretized with a time step (∆t), employing the forward Euler
method for time integration. The forward-backward sweep method consists of three
main steps. In the forward sweep, we solve the state equations from the initial
time (t = 0) to the final time (t = T ), generating the trajectory of state variables
across time and space. Here, control variables—vaccination v and hospitalization γ
are applied according to the model dynamics to influence the spread of the infection.
The backward sweep then involves solving the adjoint equations in reverse from
(t = T ) back to (t = 0), using results from the forward pass to inform adjustments
in control variables. This iterative process leverages gradients obtained from the
adjoint equations to refine the control strategies, aiming to minimize the density of
susceptible, infected, and severe cases while meeting convergence criteria (such as
tolerance levels, maximum iterations, and cost function evaluations). For a practi-
cal illustration, we simulate COVID-19 propagation over a (60 km×50 km) region,
assuming initial infections occur at two specific locations: (Ω1 = cell(45, 30)) and
(Ω2 = cell(2, 2)). The controlled and uncontrolled epidemic scenarios are simulated
over 180 days, with intervention measures implemented from day 30 onward. Tables
2 and 4 provide the specific parameter values used for the simulations.

Table 3 shows the summary of infected individuals with no severe symptoms,
severe cases, and total deaths by the end of our simulations.
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Compartment Initial Value

Susceptibles 450 for x ∈ Ωi and 500 for x /∈ Ωi , i = 1, 2

Vaccinated 0 for x ∈ Ωi and 0 for x /∈ Ωi , i = 1, 2

Infected 40 for x ∈ Ωi and 0 for x /∈ Ωi , i = 1, 2

Severe cases 10 for x ∈ Ωi and 0 for x /∈ Ωi , i = 1, 2

Recovered 0 for x ∈ Ωi and 0 for x /∈ Ωi , i = 1, 2

Total 1500000

Table 2. Initial population distribution

Scenario Infected (I) Severe cases (Is) Deaths Cost

Without control 41433 164345 324452 0

Hospitalization 55697 29387 84246 632179493

Vaccination 31573 106584 171290 35048016

Both controls 36766 20065 43324 356899817

Table 3. Simulation results of infected individuals with no severe symptoms, severe cases, and total
deaths for the different scenarios by day 180

9.2. Interpretation of results

Without intervention, the virus spreads across all regions, leading to a rapid esca-
lation in the density of severe cases. By day 180, the cumulative death toll reaches
324,452.

To evaluate the comparative effectiveness of vaccination and hospitalization as
control strategies, we consider three distinct scenarios. In the first scenario, patients
with severe symptoms receive hospitalization, factoring in the limitations of health-
care resources and bed capacity. This approach results in a substantial decrease in
the density of severe cases, ultimately preventing approximately 240,206 deaths.

In the second scenario, vaccination is implemented as the sole intervention. Nu-
merical simulations indicate that while this strategy is more cost-effective, it is less
impactful in reducing severe cases and mortality, as it lacks targeted treatment for
individuals with severe symptoms.

Lastly, the combined application of both vaccination and hospitalization yields
the most favorable outcomes. This integrated approach not only proves to be more
cost-effective than relying on hospitalization alone but also significantly reduces
both the number of severe cases and fatalities, demonstrating the benefits of a
multifaceted control strategy.
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Parameter Value Reference

ζ 5 days [48]

α 0.15 day [49]

β 0.0115 [31]

1− δ 0.8 assumed

ξ 0.8 day−1 [42]

r 0.222 day−1 [30, 41]

Π 1500000
70×365 people.day−1.km−2 [13]

µ 1
70×365 day−1 [17]

d 0.014 day−1 [40]

λ 0.011 day−1 [37]

vmax 0.5 assumed

γmax 0.071 [40]

α1, α2 20, 1500 [6, 26]

κ1,κ2,κ3 1, 1.5, 1.5 assumed

d1,d2,d3,d5 0.5 km2.day−1 assumed

d4 0.1 km2.day−1 assumed

Table 4. Parameters used in the simulations



Optimal Control of a Delayed Spatiotemporal Epidemic Model 971

9.2.1. Without control strategy

Figure 1. Severely infected population Is dynamics through time and space when no strategy is used.

Figure 2. Temporal evolution of Is when no strategy is used.



972 A. Alabkari, A. Kourrad, K. Adnaoui & H. Laarabi

9.2.2. Hospitalization

Figure 3. Severely infected population Is dynamics through time and space when we rely only on
hospitalization.

Figure 4. Temporal evolution of Is when we rely only on hospitalization.
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Figure 5. Hospitalization rate γ through time and space when we rely only on hospitalization.

Figure 6. Temporal evolution of γ when we rely only on hospitalization.
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9.2.3. Vaccination

Figure 7. Severely infected population Is dynamics through time and space when we rely only on
vaccination.

Figure 8. Temporal evolution of Is when we rely only on vaccination.
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Figure 9. Vaccination rate v through time and space when we rely only on vaccination.

Figure 10. Temporal evolution of vaccination rate v when we rely only on vaccination.
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9.2.4. Both control strategies

Figure 11. Severely infected population Is dynamics through time and space when we use both strate-
gies simultaneously.

Figure 12. Temporal evolution of Is when we use both strategies simultaneously.
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Figure 13. Vaccination rate v through time and space when we use both strategies simultaneously.

Figure 14. Temporal evolution of v when we use both strategies simultaneously.
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Figure 15. Hospitalization rate γ through time and space when we use both strategies simultaneously.

Figure 16. Temporal evolution of γ when we use both strategies simultaneously.

9.3. Model response to parameter modifications

To further investigate the model’s responsiveness to changes in key parameters, we
examine the effects of varying the saturation rate α, highest feasible rate of vacci-
nation vmax and highest feasible rate of hospitalization γmax. By adjusting these
parameters to specific, plausible values, we aim to observe the resulting dynamics
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in infection spread, control effectiveness, and healthcare demand. This approach
allows us to test how variations in α, vmax and γmax influence model behavior in
both controlled and uncontrolled epidemic scenarios, providing insights into how
flexible control strategies may better adapt to real-world conditions.

9.3.1. Increased hospitalization and vaccination capacity

This subsection explores the effects of increasing the maximum hospitalization rate,
γmax, and the maximum vaccination rate, vmax, on infection control and severe
case outcomes. By simulating scenarios with enhanced capacity, we aim to assess
the potential for reducing severe cases and mortality under higher intervention ca-
pabilities. Key findings include:

- Enhanced Containment of Severe Cases: Increasing γmax allows for a greater
number of individuals with severe symptoms to receive timely care, resulting in a
substantial decrease in the density of severe cases. This, in turn, significantly re-
duces overall mortality, while avoiding any significant increase in costs, by improving
treatment accessibility during peak infection periods.

- Impact on Infection Dynamics: Higher vmax accelerates the vaccination rollout,
which quickly boosts immunity in the population. This faster immunization rate
effectively lowers transmission rates, thereby decreasing the infection spread more
rapidly compared to scenarios with lower vaccination rates.

- Synergistic Effects: The simultaneous enhancement of both gammamax and
vmax offers the best outcomes, as it combines immediate treatment for severe cases
with preventive immunization. This dual approach significantly reduces the overall
infection burden while maintaining cost-efficiency by limiting the progression to
severe cases and accelerating the decline of the susceptible population.

Figure 17. Temporal evolution of I, Is, v, and γ when we use both strategies simultaneously with
α = 0.15, vmax = 0.8, and γmax = 0.14
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Scenario Infected (I) Severe cases (Is) Deaths Cost

Without control 41433 164345 324452 0

Hospitalization 57525 16594 49387 718160376

Vaccination 31092 105371 170155 35377789

Both controls 36500 10680 26414 403734701

Table 5. Simulation results of infected individuals with no severe symptoms, severe cases, and total
deaths for the different scenarios by day 180 with α = 0.15, vmax = 0.8, and γmax = 0.14

9.3.2. Effects of elevated saturation rate

This subsection examines the impact of increasing the saturation rate α in the
Holling type-II functional response, which influences the interaction between the
susceptible and infected populations. The saturation rate α represents the rate at
which the functional response diminishes as the infected population increases. Vary-
ing this parameter allows us to understand how it affects the epidemic dynamics,
particularly the spread of the infection and the burden on the healthcare system.

Figure 18. Temporal evolution of I, Is, v, and γ when we use both strategies simultaneously with
α = 0.8, vmax = 0.8, and γmax = 0.14.

- Increased Infection Control Efficiency: A higher saturation rate α implies that
the transmission rate becomes less sensitive to increases in the infected population.
This results in a more efficient control of the epidemic and leads to a reduction in
the overall number of infections over time, making it easier to manage the epidemic
with available healthcare resources.

- Impact on Intervention Strategies: Increasing α can also alter the effectiveness
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of vaccination and hospitalization strategies. While higher saturation rate may
reduce the overall burden of the infection, the timing and scale of interventions
must be adjusted to account for possible extended duration of the epidemic.

Scenario Infected (I) Severe cases (Is) Deaths Cost

Without control 35794 120598 180246 0

Hospitalization 40746 11885 28434 411453332

Vaccination 12670 34434 44423 32729792

Both controls 13013 4612 7946 134223251

Table 6. Simulation results of infected individuals with no severe symptoms, severe cases, and total
deaths for the different scenarios by day 180 with α = 0.8, vmax = 0.8, and γmax = 0.

10. Conclusion

In this study, we developed a delayed spatiotemporal epidemic model with a Holling
type-II saturated incidence rate, applicable to epidemics such as SARS and COVID-
19. The model incorporates features like temporary immunity, vital dynamics,
vaccination, and hospitalization. We established the model’s mathematical and
biological well-posedness and demonstrated that the basic reproduction number R0

determines the local stability of the disease-free equilibrium: it is stable if R0 ≤ 1
and unstable if R0 > 1. For a latent period ζ, we derived the conditions for
asymptotic stability of an endemic equilibrium if ζ = 0, and we demonstrated
that this equilibrium is asymptotically stable independently of ζ when ζ > 0 and
some inequalities hold. We formulated an optimal control problem to minimize
epidemic spread and associated costs through vaccination and hospitalization rates
dependent on both time and spatial location. Existence and uniqueness of solutions
were demonstrated, along with first-order necessary conditions and optimal solution
characterizations.

Using COVID-19 as a case study, we derived numerical simulations under vari-
ous scenarios. Results demonstrated that integrating spatial and temporal factors
with the latent period allows targeted vaccination and hospitalization strategies
to minimize severe cases and fatalities cost-effectively. Unlike traditional temporal
models, it is also possible to control the rate of vaccination and hospitalization by
region or area that needs more or less attention to get the best possible results.

A comparison of control strategies revealed that combining vaccination and hos-
pitalization yields the most effective results, followed by vaccination alone. Addi-
tional preventive measures, such as social distancing and mask-wearing, can further
support epidemic control.

Key findings from this study underscore the advantage of spatially optimized
interventions. Targeting high-risk areas with vaccination and hospitalization not
only improves public health outcomes but also enhances resource allocation, reduc-
ing costs and inefficiencies. Spatially adaptive approaches prevent the overspending
seen in uniform temporal models, addressing high-risk regions more precisely.
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The implications extend to healthcare resource management, aiding policymak-
ers in predicting and managing hospital demand to avoid overwhelming facilities.
Cost-effectiveness emerges as a crucial advantage, offering an economically sustain-
able framework for epidemic response. Public awareness campaigns can leverage
these findings to emphasize vaccination’s role in reducing transmission and enhanc-
ing compliance.

To translate these findings into policy, we recommend establishing real-time
data systems for monitoring vaccination impacts and hospital utilization, foster-
ing collaboration with local health agencies for targeted campaigns, and regularly
reviewing strategies in response to evolving data.

For future research, we propose:

• Time-Varying Transmission Rates: Incorporate dynamic transmission rates
informed by real-time data, especially in response to variant emergence.

• Spatially Variable Maximal Rates: Enable region-specific maximal rates for
vaccination and hospitalization to adapt interventions by area.

• Behavioral Factors: Account for public compliance and psychological factors
influencing vaccination uptake and hospitalization adherence.

• Broader Healthcare Context: Expand the model to include healthcare resource
constraints, allowing holistic management of medical supplies, workforce, and
patient flow.

• Spatial Heterogeneity and Network Dynamics: Model urban-rural transmis-
sion patterns and social network effects to capture nuanced spatial spread.

• Long-Term Immunity Dynamics: Extend immunity modeling to include wan-
ing and booster effects for sustainable immunity.

• Empirical Validation and Real-World Collaboration: Validate model predic-
tions with empirical data and collaborate with health authorities to implement
pilot interventions.

Acknowledgements

The authors sincerely thank the reviewers for their valuable time, constructive feed-
back, and insightful suggestions, which significantly contributed to enhancing the
quality of this paper.

References

[1] A. Abidemi, Z. M. Zainuddin and N. A. B. Aziz, Impact of control interven-
tions on covid-19 population dynamics in malaysia: a mathematical study, The
European Physical Journal Plus, 2021, 136(2), 1-35.

[2] K. Adnaoui and A. El Alami Laaroussi, An optimal control for a two-
dimensional spatiotemporal seir epidemic model, International Journal of Dif-
ferential Equations, 2020, 2020.



Optimal Control of a Delayed Spatiotemporal Epidemic Model 983

[3] K. Adnaoui, I. Elberrai, A. E. A. Laaroussi and K. Hattaf, A spatiotemporal
sir epidemic model two dimensional with problem of optimal control, Boletim
da Sociedade Paranaense de Matemática, 2022, 40, 1-18.
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