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The Fractal-Fractional Mathematical Model
Analysis of the Impact of HIV/AIDS on the
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Abstract The HIV/AIDS epidemic profoundly affects the working-class pop-
ulation, resulting in increased mortality and morbidity rates and causing sub-
stantial labour loss across various sectors. To assess the epidemic’s impact on
the specified class, a fractal-fractional-order mathematical model was formu-
lated based on Atangana-Baleanu-Caputo operator. This model encompasses
seven compartments, and the existence and uniqueness of its solutions were
verified based on the Banach fixed-point theorem, contraction mapping con-
cepts, and Hyers-Ulam stability criteria. The mathematical model was ana-
lyzed to understand the effects of HIV/AIDS on the working-class population.
Real data from Ethiopia were utilized to validate the model. Subsequently, the
model was extended to optimal control fractal-fractional models, incorporat-
ing different control strategies. Numerical simulations were performed using
MATLAB R2019a to support the analytical solutions. The study’s results
demonstrated that the fractal-fractional-order model provides a comprehen-
sive understanding of the complexities of HIV/AIDS infection. The findings
suggested that increasing the number of infected productive members of the
population can help to control the spread of the disease by reducing the in-
equality caused by HIV/AIDS. Furthermore, the numerical simulation of the
optimal control model indicated that decreasing non-productivity reduces the
number of infected individuals. Therefore, effective management of the infec-
tion holds the potential to eradicate the disease in the country.
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mal-control, fractional order, fractal-fractional
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1. Introduction

The human immunodeficiency virus (HIV) affects approximately 39.9 million in-
dividuals worldwide, and the sub-Saharan African region bears a disproportionate
share of this disease burden. Ethiopia, a sub-Saharan nation, grapples with this
HIV/AIDS crisis Kanki et al. [1]. Developing robust behavioral change and educa-
tional initiatives at the community level is pivotal for mitigating the prevalence of
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prejudice and stigma against people living with HIV/AIDS (PLWHA) Arefaynie et
al. [2]. The human immunodeficiency virus (HIV) undermines the immune system,
leading to acquired immunodeficiency syndrome (AIDS), which can be transmitted
through unprotected sexual intercourse, shared drug injection equipment, or from
mother to child during childbirth or breastfeeding. Preventive strategies encom-
pass consistent condom usage, routine testing and counseling, timely initiation and
follow-up of antiretroviral therapy (ART), pre-exposure prophylaxis (PrEP), and
measures to avert mother-to-child transmission [3, 4].

The HIV/AIDS crisis intersects with COVID-19 and exacerbates numerous prob-
lems for those living with and infected by the disease. People living with HIV/AIDS
demand a comprehensive global response to this pandemic. Troubling new data
from the UNAIDS global AIDS update of 2023 portend a grim outlook, as progress
has stagnated, resources have dwindled, and inequities have intensified. The global
population of individuals living with HIV increased from 38 million in 2020 to 38.4
million in 2021 during the COVID-19 pandemic and 39.9 million in 2023, with the
African region accounting for 67% of these cases. HIV-affected populations have
also grown in the Middle East and North Africa. Maintaining the current trajec-
tory will result in millions of additional HIV infections and AIDS-related deaths [5].
Therefore, further investigation and research on HIV/AIDS are imperative to re-
examine the nature of the pandemic and its effects on productive forces and other
community groups. If left uncontrolled, HIV/AIDS infection will continue to pose
a grave public health and economic challenge worldwide [6, 7]. Global efforts must
focus on raising awareness, eliminating stigma, and addressing the socioeconomic
factors that contribute to the endemic nature of this crisis. Ongoing research and
public health initiatives are essential in the fight against HIV/AIDS Shiferaw et
al. [3]. The lack of comprehensive data on behavioral trends in Ethiopia hinders
the accurate interpretation of HIV prevalence and incidence, obscuring a clear un-
derstanding of the current state of the HIV/AIDS epidemic in the country Adal [8].

Fractional calculus encompasses the study of non-integer order derivatives [9,
10]. It is employed to describe a typical diffusion process that can influence our
understanding of disease transmission in unconventional ways. This domain of
research is relatively well-developed in fields such as physics and engineering, and
its application to infectious disease modeling remains an emerging area of inquiry. It
is crucial to note that the utilization of mathematical models for infectious diseases
with a fractal-fractional order model is employed to capture the intricacy and self-
similarity of disease transmission models. The spatial distribution of infections, or
temporal patterns of epidemic waves, can exhibit fractal-like characteristics Abu
and Saadeh [11]. This approach is valuable for capturing the heterogeneity and
irregularity of real systems, providing a more comprehensive understanding of the
spatial and temporal dynamics of diseases. The Atangana-Baleanu operator of
fractional calculus in the sense of Caputo is a specialized operator of fractional
calculus introduced to extend the classical Caputo fractional operator Atangana
[12]. Fractional operators are mathematical tools that generalize the concept of
derivatives and integrals to non-integer orders, enabling a more precise description of
various phenomena, particularly those related to memory and distance dependence
[10, 13–16]. Atangana and Baleanu introduced this fractional operator in their
work on fractional calculus and integral transformations of generalized functions to
provide an alternative approach to fractional calculus that incorporates the Caputo
meaning and considers certain related restrictions. The Atangana-Baleanu operator
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of the fractional order is particularly useful in situations where the standard Caputo
fractional derivative is challenging, such as when singularities are present or when
dealing with functions of different derivative orders.

Recently, distinctive differentiation operators have been created by combining
the concepts of fractional order and fractal dimension. Novel operators were con-
structed utilizing three kernels: power law, exponential decay, and the extended
Mittag-Leffler function. The fractional order and fractal dimension are two parame-
ters related to the new operator fractal-fractional order differential equations [17,18].
The selection of the fractal-fractional operator depends on the special properties of
the model system and the mathematical properties desired in the analysis Atan-
gana [19]. The fractional-order differential equation operator has been applied
to epidemiology models by different researchers [20–23], and the fractal-fractional
order has been employed to model diseases such as Influenza, Tuberculosis, the
2019-nCoV pandemic, COVID-19, Hepatitis C virus, Malaria, Ebola, Alzheimer’s
disease, tumor growth and many other infectious diseases, as discussed by vari-
ous researchers [24–32]. Additionally, fractal- fractional order has been applied in
numerous other areas of physics, engineering, and information science [33–39].

Differential calculus is known to present difficulties when it comes to solving
nonlinear equations. Since the fractional model addresses the issue of nonlocal and
nonlinear, it is not easy to provide practical accurate solutions for these systems.
As a result, the investigation of the existence and uniqueness of solutions for the
fractional model is our main concern. We use the fixed-point theorem to achieve
this. The Ulam-Hyers approach provides a crucial viewpoint of the dependence on
initial values and useful in assessing the system’s stability [18,40]. However, because
it is challenging to obtain precise solutions for these models using current analyti-
cal methods, numerical solutions are required in order to assess the effectiveness of
such fractal-fractional operators in modeling solutions. We shall approximate the
Atangana-Baleanu fractional integral using the numerical approach newly developed
by Toufik et al [41] and the fractal-fractional model using the methods of Atangana
and Qureshi [42]. This computing method integrates the concepts of fractional cal-
culus with the two-step Lagrange polynomial interpolation method. This technique
has proven remarkably accurate and effective. It is renowned for being very easy
to use and for accelerating the convergence to the exact solution, especially when
dealing with large discretization steps. Various mathematical epidemiology studies
adopted the numerical methods [43,44].

A mathematical analysis of an industrial HIV/AIDS or mass workplace model
that incorporates a carefree attitude toward the sex of the labor force was per-
formed by integral order model. Depending on this related model the researcher
modify and incorporated pre-AIDS stages of the disease by removing free sex at-
titude Seidu and Makinde [45]. In this study, we aimed to investigate the impact
of HIV/AIDS on the working-class population using fractal-fractional order mathe-
matical modeling techniques. Our goal was to gain a comprehensive understanding
of the complexity of HIV/AIDS within the working-class population. Furthermore,
we analyze the Atangana-Baleanu-Caputo fractional-order and fractal-dimensional
perspectives within mathematical modeling frameworks. Fractal-fractional-based
models provide a balance between accuracy and computational tractability in cap-
turing dynamic systems with uncertainty. Some hospital-recorded data and state
variables in our study may not align with specific parameters; thus, we estimated
parameters from existing data. Therefore, users of this study need to take into ac-
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count this limitation. The manuscript is structured as follows: The fractal-fractional
calculus, mathematical modeling formulations, as well as the construction and anal-
ysis of mathematical models, are covered in Section 2. The results of the numerical
simulation and parameter estimates are presented in Section 3. Section 4 discusses
the model’s extension to the optimal control and numerical simulation. Section 5
provides a brief conclusion.

2. Model formulation and analysis

We formulated a fractional-order model using the Atangana-Baleanu-Caputo (ABC)
operator and extended it to a fractal-fractional model for HIV/AIDS in Ethiopia’s
working-class population.

2.1. Definition and preliminary concepts

To formulate the fractional-order Atangana-Baleanu operators used for the model
in Equation (2.1), we must replace the ordinary derivatives with the corresponding
fractional derivatives. The fractional order Atangana-Baleanu derivative in the
Caputo sense is defined as follows Atangana [12].

Definition 2.1. Let f(t) ∈ W 1
2 (0, l). Then, for ω ∈ [0, 1], the Atangana- Baleanu

fractional derivative in the Caputo sense of function f(t) is given by

ABC
a Dω

t f(t) =
ABC(ω)

1− ω

∫ t

a

d

dτ
f(τ)Eω

[
−ω
1− ω

(t− τ)ω
]
dτ,

where the special function ABC(0) = ABC(1) = 1 and Eω is the Mittag-Leffler
function.

Definition 2.2. The Atangana-Baleanu fractional integral of the function f(t) is
defined as follows:

ABC
a Iωt [f(t)] =

1− ω

ABC(ω)
f(t) +

ω

ABC(ω)Γ(ω)

∫ t

a

f(τ)(t− τ)ω−1dτ.

where Γ is the gamma function, and Eα is the Mittag-Leffler function as Atan-
gana [12].

Definition 2.3. Let f(t) be differentiable in the open interval (a, b); if f is frac-
tionally differentiable on (a, b) with order ω, then the fractal-fractional derivative
of dimension ϱ in the Atangana-Baleanu fractional derivative in the Caputo sense
is given as

ABCDω,ϱ(f(t)) =
ABC(ω)

1− ω

d

dτϱ

∫ t

0

f(τ)Eω[−
ω

1− ω
(t− τω)ω]dτ.

Definition 2.4. Following Atangana [19], consider a continuous function f(t) in
(a, b) with fractional order 0 < ω ≤ 1 and fractal dimension 0 < ϱ ≤ 1, which can
be defined in the ABC sense as:

ABCIω0 t(f(t)) =
1− ω

ABC(ω)
tϱ−1f(t) +

ωϱ

ABC(ω)Γ(ω)

∫ t

0

sϱ−1(t− τ)ω−1f(τ)dτ,



Fractal-Fractional Order HIV/AIDS Model 1001

where ABC(0) = ABC(1) = 1 is called the normalization constant [12,46].

Definition 2.5. As Gómez and Atangana [18] let us define the solution for the
given problem as 0 < ω ≤ 1 and 0 < ϱ ≤ 1

ABCDωf(t) = ϱtϱ−1F(t, f(t)), t ∈ [0, T ] ,

f(t) = f0, 0 < ω ≤ 1, 0 < ϱ ≤ 1,

provided by

f(t) = f0+
1− ω

ABC(ω)
ϱtϱ−1F(t, f(t))+

ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(t−τ)ω−1F(τ, f(τ))dτ.

2.2. Fractional-order model formulation and analysis

In this section, an Atangana-Baleanu-Caputo-based fractional order model of
HIV/AIDS based on a working-class population in Ethiopia is developed. The model
has seven compartments, each of them represents a distinct class of people within
the working-class population. The components are as follows: (S∗

p) susceptible pro-
ductive people who are HIV-negative and capable of doing their jobs well; (S∗

n)
susceptible nonproductive people, who do not have HIV and nonproductive; (I∗p )
Productive infected persons with HIV, who can work well while not having AIDS
symptoms; (I∗n) HIV positive nonproductive people, who have the virus but do not
exhibit signs of AIDS, which raises their risk of infection and lowers their produc-
tion; (A∗

pp) people who were productive pre-AIDS epidemic but who currently have
HIV and certain AIDS symptoms and can work; (A∗

pn) pre-AIDS nonproductive
people, those with HIV infection who have shown certain signs of the disease and
nonproductive; and (A∗) Full-blown AIDS patients, those with HIV infection who
have severe symptoms of the disease and are unable to work. As soon as the person
in compartment I∗p , I

∗
n realizes that they have HIV, they begin therapy. Next, they

proceed to (A∗
pp) and (A∗

pn), based on the stage of the cluster of differentiation cell
count level( CD4).

The force of infection Λ = β∗ I
∗
p + I∗n +A∗

pp +A∗
pn

N
; and all other parameters in-

cluded in the model to represent various rates of infection, recruitment, progression,
mortality, and modification parameters are described in Table 1. The model is de-
scribed by a system of seven nonlinear fractional-order Atangana-Baleanu-Caputo
operator differential equations, which represent the changes in the sizes of each
compartment over time. The system is given by the following flow diagram Figure
1.

The governing dynamical system in the ABC fractional operator is given in
Equation (2.1).
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Table 1. Parameter Descriptions and Values

Parameter Description Values Sources

Q∗ Rate of recruitment 0.5 Scaled

π∗ Fraction of new recruits in the S∗
p class 0.5 Estimated

1− π∗ Fraction of new recruits in the S∗
n class 0.5 Calculated

σ∗
1 Rate at which nonproductive susceptibles become Productive 0.020 Fitted

σ∗
2 Rate at which nonproductive pre-AIDS become productive 0.020 Fitted

θ∗ Rate at which nonproductive infected become productive 0.0012 Fitted

β∗ Contact rate between susceptibles and infectives 0.0201 Fitted

τ∗ > 1 Modification parameter due to nonproductive behavior of sus-
ceptibles

1.3 Estimated

δ∗1 Rate of progression of I∗p class into pre-AIDS 0.0036 Fitted

δ∗2 Rate of progression of I∗n class into pre-AIDS non-productive 0.0014 Fitted

k Natural death rate 0.0148 Calculated

ψ∗ AIDS-induced death rate 0.1 Estimated

k∗1 Rate of progression of the A∗
pp class into A∗ 0.007 Fitted

k∗2 Rate of progression of the A∗
pn class into A∗ 0.0012 Fitted

ABC
0 Dω

t S
∗
p = π∗Q∗ + σ∗

1S
∗
n − (Λ + κ)S∗

p ,

ABC
0 Dω

t S
∗
n = (1− π∗)Q∗ − (τ∗Λ + σ∗

1 + κ)S∗
n,

ABC
0 Dω

t I
∗
p = ΛS∗

p + θ∗I∗n − (δ∗1 + κ)I∗p ,

ABC
0 Dω

t I
∗
n = τ∗ΛS∗

n − (θ∗ + δ∗2 + κ)I∗n,
ABC
0 Dω

t A
∗
pp = δ∗1I

∗
p + σ∗

2A
∗
pn − (k∗1 + κ)A∗

pp,

ABC
0 Dω

t A
∗
pn = δ∗2I

∗
n − (σ∗

2 + k∗2 + κ)A∗
pn,

ABC
0 Dω

t A
∗ = k∗1A

∗
pp + k∗2A

∗
pn − (κ+ ψ∗)A∗.

(2.1)

with the initial conditions S∗
p(0) > 0, S∗

n(0) > 0, I∗p (0) > 0, I∗n(0) > 0, A∗
pp(0) >

0, A∗
pn(0) > 0, A∗(0) > 0, where all the initial values are positive. The system

is a commensurate fractional-order system because all the systems have the same
fractional order (ω).

2.3. Fractal-fractional representation with the ABC-operator
model

The fractional-order model based on the ABC of Equation (2.1) is extended to a
Atangana-Baleanu-Caputo fractal-fractional denoted as (ABF) model with Caputo
with time dimension of ϱ and fractional-order ω; for more, see [19,46] and references
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Figure 1. Schematic diagram of the model

therein.
ABFDω,ϱ

0,t S
∗
p = π∗Q∗ + σ∗

1S
∗
n − (Λ + κ)S∗

p ,

ABFDω,ϱ
0,t S

∗
n = (1− π∗)Q∗ − (τ∗Λ + σ∗

1 + κ)S∗
n,

ABFDω,ϱ
0,t I

∗
p = ΛS∗

p + θ∗I∗n − (δ∗1 + κ)I∗p ,

ABFDω,ϱ
0,t I

∗
n = τ∗ΛS∗

n − (θ∗ + δ∗2 + κ)I∗n,

ABFDω,ϱ
0,t A

∗
pp = δ∗1I

∗
p + σ∗

2A
∗
pn − (κ+ k∗1)A

∗
pp,

ABFDω,ϱ
0,t A

∗
pn = δ∗2I

∗
n − (σ∗

2 + k∗2 + κ)A∗
pn,

ABFDω,ϱ
0,t A

∗ = k∗1A
∗
pp + k∗2A

∗
pn − (κ+ ψ∗)A∗.

(2.2)

with the initial conditions S∗
p(0) > 0, S∗

n(0) > 0, I∗p (0) > 0, I∗n(0) > 0, A∗
pp(0) >

0, A∗
pn(0) > 0, A∗(0) > 0, where all the initial values are positive.

2.4. Qualitative analysis of the model

In this section, we establish some results about existence and uniqueness, feasible
region, positivity, equilibrium points, basic reproduction number and its sensitivity,
and Ulam-Hyers stability analysis [47–51].

2.4.1. Existence and uniqueness of the model

To show the existence and uniqueness of the dynamic system in Equation (2.2), the
Banach space can be defined as,

f = F = K([0, T ]× R7,R),

where F = K[0, T ] and corresponding norm defined by

∥f∥ = max
t∈[0,T ]

[|S∗
p |+ |S∗

n|+ |I∗p |+ |I∗n|+ |A∗
pp|+ |A∗

pn|+ |A∗|].
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To demonstrate the next point in our results, we define the fixed-point theorem.

Theorem 2.1. A subset of Z is Ω which is convex and considers that the two
operators P1 and P2 with

a. P1(m) + P2(m) ∈ Ω, ∀m ∈ Ω,

b. P1 is a contraction,

c. P2 is continuous and compact.

The operator equation P1m+ P2m = m has one or more solutions [52,53].

Now, let us rewrite Equation (2.2) as Atangana-Baleanu fractal-fractional (ABF).

ABFDω
0,tS

∗
p = ϱtϱ−1f1(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tS

∗
n = ϱtϱ−1f2(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tI

∗
p = ϱtϱ−1f3(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tI

∗
n = ϱtϱ−1f4(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tA

∗
pp = ϱtϱ−1f5(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tA

∗
pn = ϱtϱ−1f6(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tA

∗ = ϱtϱ−1f7(S
∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗).

(2.3)

On behalf of Equation (2.3) and for t ∈ f , we can write

ABFDωf(t) = ϱtϱ−1F(t, f(t)), t ∈ [0, T ] , f(t) = f0, 0 < ω ≤ 1, 0 < ϱ ≤ 1, (2.4)

with solution Gómez and Atangana [18],

f(t) = f0+
1− ω

ABC(ω)
ϱtϱ−1F(t, f(t))+

ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(t−τ)ω−1F(τ, f(τ))dτ,

(2.5)
where

f(t) = (S∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗)T ,

f0 = (S∗
p0, S

∗
n0, I

∗
p0, I

∗
n0, A

∗
pp0, A

∗
pn0, A

∗
0)

T ,

F(t, f(t)) = fi(S
∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗, t))T , i = 1, 2, 3, ..., 7.

(2.6)

Let N = Q1 +Q2,

Q1(f) = f0 +
1− ω

ABC(ω)
ϱtϱ−1[F(t, f(t))],

Q2(f) =
ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(t− τ)ω−1F(τ, f(τ))dτ.

We now demonstrate the fixed-point theory-based qualitative analysis of the
system [10,12,14,54,55].

H1: There will be a constant L1, L2, such that |F(t, f(t))| ≤ L1|f |+ L2.
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H2: There exists a constant LF > 0 such that for every f ,f̄ ∈ f as |F(t, f) −
F(t, f̄)| ≤ LF [|f | − f̄ ].

Theorem 2.2. The dynamic system is defined in Equation (2.4) if H1 and H2
hold; then, the model in Equation (2.2) has the same number of solutions if

(1− ω)

ABC(ω)
tϱ−1LF < 1.

Proof. We prove the theorem based on the above two hypotheses in the following
steps
Step I: assume that f̄ ∈ Ω and that Ω = f ∈ f : ∥f∥ ≤ χ, χ > 0 is a convex closed
set. Therefore, for operator Q1, which is defined in Theorem (2.1), we have,

∥Q1(f)−Q1(f̄)∥ =
(1− ω)

ABC(ω)
tϱ−1 max

t∈[0,τ ]
|F(t, f(t))−F(t, f̄(t))|

≤ (1− ω)

ABC(ω)
tϱ−1LF∥f − f̄∥.

(2.7)

Hence, the operator Q1 is closed and contractive.
Step II: We demonstrate that Q2 is compact in comparison form. In addition, we
demonstrate that Q2 is bounded and continuous. As F is continuous, the operator
Q2 is defined in the entire domain for all f in Ω, as follows:

∥Q2∥ = max
[0,t]

ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(t− τ)ω−1F(τ, f(τ))dτ

≤ ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(1− τ)n−1|F(τ, f(τ))|dτ

≤ ϱ[L1|f |] + L2J
ω+ϱ−1

ABC(ω)Γ(ω)
[D(ω, ϱ)].

(2.8)

Hence, as seen in Equation (2.8),the operator Q2 is bounded for equicontinuity,
and let t1 > t2 ∈ [0, T ]. We have

|Q2(f(t2))−Q2(f(t1))| = | ω

ABC(ωϱ)Γ(ω)
|
∫ t2

0

(t2 − τ)ω−1τϱ−1F(τ, f(τ))dτ

≤ ϱ[L1|f |] + L2J
ω+ϱ−1

ABC(ω)Γ(ω)
[D(ω, ϱ)][tω2 − tω1 ].

(2.9)

As time goes t2 → t1, the right-hand side of the Equation (2.9) approaches zero.
Therefore, the operator Q2 continuous such that |Q2(f(t2)) − Q2(f(t1))| → 0, as
t2 → t1.

Hence, we show that the operator Q2 is bounded and continuous; thus, Q2 is
bounded and uniformly continuous. According to the Arzela-Ascoli theorem, subset
f ∈ Ω of Q2 is compact if and only if it is closed, bounded, and equicontinuous. Q2

is relatively compact and completely continuous. From Equation (2.8) and Equation
(2.9), we conclude that the model (2.2) has at least one solution.
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2.4.2. Uniqueness of solutions

Theorem 2.3. With hypothesis (H2) and Equation (2.5), there is a unique solution,
so that the dynamical system Equation (2.2) also has a unique solution if[

(1− ω)tϱ−1L1

ABC(ω)
+
ϱ[LFT

ω+ϱ−1]D(ω, ϱ)

ABC(ω)Γ(ω)

]
< 1.

Proof. Suppose as the operator N : f → f by

N f(t) = f0(t) + [F(t, f(t))−F0(t)]
(1− ω)tϱ−1

ABC(ω)
+

ωϱ

ABC(ω)Γ(ω)

∫ t

0

(t− x)ω−1tϱ−1|F(x, f(x))|dx, t ∈ [0, τ ].

(2.10)

Let f, f̄ ∈ f . Then,

∥N f −N f̄∥ ≤ (1− ω)tϱ−1

ABC(ω)
max
t∈[0,τ ]

|F(t, f(t))−F(t, f̄(t))|+

ωϱ

ABC(ω)Γ(ω)
max
t∈[0,τ ]

|
∫ t

0

(t− τ)ω−1tϱ−1F(τ, f(τ))dτ−∫ t

0

(t− τ)tω−1F(τ, f̄(τ))dτ |

≤ θ∥f − f̄∥,

(2.11)

and θ =

[
(1− ω)tϱ−1L1

ABC(ω)
+
ϱ[LFT

ω+ϱ−1]D(ω, ϱ)

ABC(ω)Γ(ω)

]
.

From step II and the operator N is a contraction. Thus, by the Banach fixed-
point theorem, the system (2.5) has a unique solution. Thus, the dynamical system
in Equation (2.2) has a unique solution.

2.4.3. Feasible region

Theorem 2.4. The set Φ = {(S∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗) ∈ R7
+ : N ≤ Q∗

κ
}, is

non-negative. Additionally each solution lies in R7
+.

Proof. Since all parameters in the model (2.2) are non-negative and the second
equation is fully parameter and the values 0 < π∗ < 1. Hence, change in the S∗

n is
non-negative, based on this values all other variables are non-negative.

ABFDω,ϱ
0,t S

∗
p |S∗

p=0 = π∗Q∗ + σ∗
1S

∗
n ≥ 0,

ABFDω,ϱ
0,t S

∗
n|S∗

n=0 = (1− π∗)Q∗ ≥ 0,

ABFDω,ϱ
0,t I

∗
p |I∗

p=0 = ΛS∗
p + θ∗I∗n ≥ 0,

ABFDω,ϱ
0,t I

∗
n|I∗

n=0 = τ∗ΛS∗
n ≥ 0,

ABFDω,ϱ
0,t A

∗
pp|A∗

pp=0 = δ∗1I
∗
p + σ∗

2A
∗
pn ≥ 0,

ABFDω,ϱ
0,t A

∗
pn|A∗

pn=0 = δ∗2I
∗
n ≥ 0,

ABFDω,ϱ
0,t A

∗|A∗=0 = k∗1A
∗
pp + k∗2A

∗
pn ≥ 0.

(2.12)
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From the dynamical system Equation (2.2) and total population N(t), we have

ABFDω,ϱ
0,t N(t)

=ABFDω,ϱ
0,t S

∗
p +ABF Dω,ϱ

0,t S
∗
n +ABF Dω,ϱ

0,t I
∗
p +ABF Dω,ϱ

0,t I
∗
n +ABF Dω,ϱ

0,t A
∗
pp

+ABF Dω,ϱ
0,t A

∗
pn +ABF Dω,ϱ

0,t A
∗

=Q∗ − κS∗
p − κS∗

n − κI∗p − κI∗n − κA∗
pp − κA∗

pn − (κ+ ψ)A∗

=Q∗ − κN − ψA∗ ≤ Q∗ − κN,

(2.13)

ABFDω,ϱ
0,t N(t) ≤ Q∗ − κN. (2.14)

We can write the fractal-fractional Equations (2.14),

ABCDω
0,tN(t) ≤ ϱtϱ−1(Q∗ − κN(t)), (2.15)

By applying the Laplace transform to the linear fractal-fractional Equation (2.15),
we obtain:

L{ABCDω
t f(t) + κϱtϱ−1N(t)} ≤ L{ϱtϱ−1Q∗},

where k1 =
−(1− ω)κ

β(ω)
,

L{ABCDω
t f(t)−

β(ω)

1− ω
k1ϱt

ϱ−1N(t)} ≤ L{ρtϱ−1Q∗},

β(ω)

1− ω

sω f̂(s)− sω−1f(0)

sω +
ω

1− ω

− k1
ϱΓ(ϱ)

sϱ
f̂(s)

 =
Q∗ρΓ(ϱ)

sϱ
,

β(ω)

1− ω

sω f̂(s)− sω−1f(0)− k1ϱΓ(ϱ)s
−ϱ(sω +

ω

1− ω
)f̂(s)

sω +
ω

1− ω

 =
Q∗ϱΓ(ϱ)

sϱ

(
sα +

ω

1− ω

)
,

(
sω f̂(s)− sω−1f(0)− k1ρΓ(ϱ)s

−ϱ(sω +
ω

1− ω
)f̂(s)

)
=

1− ω

β(ω)

Q∗ϱΓ(ϱ)

sϱ

(
sω +

ω

1− ω

)
,(

sω f̂(s)− k1ϱΓ(ϱ)s
−ϱ(sω +

ω

1− ω
)f̂(s)

)
=

1− ω

β(ω)

Q∗ϱΓ(ϱ)

sϱ

(
sω +

ω

1− ω

)
+ sω−1f(0),

f̂(s)

(
sω − k1ϱΓ(ϱ)s

−ϱ(sω +
ω

1− ω
)

)
=

1− ω

β(ω)

Q∗ρΓ(ϱ)

sϱ

(
sω +

ω

1− ω

)
+ sω−1f(0),

f̂(s)

(
(1− k1ϱΓ(ϱ)s

−ϱ)sω − k1ϱΓ(ϱ)s
−ϱ ω

1− ω

)
=

1− ω

β(ω)

Q∗ϱΓ(ϱ)

sϱ

(
sω +

ω

1− ω

)
+ sω−1f(0),

where K = k1ρΓ(ϱ)s
−ϱ,

f̂(s)

(
(1−K)sω −K

ω

1− ω

)
=

1− ω

β(ω)
Q∗ K

k1

(
sω +

ω

1− ω

)
+ sω−1f(0),

f̂(s)

(
(1− Kω

(1− ω)(1−K)
s−ω

)
=

1− ω

β(ω)(1−K)
Q∗ K

k1

(
1 +

ω

1− ω
s−ω

)
+

1

(1−K)s
f(0),

f̂(s)=

[
(1− Kω

(1− ω)(1−K)
s−ω

]−1 [
1− ω

β(ω)(1−K)
Q∗ K

k1

(
1+

ω

1− ω
s−ω

)
+

1

(1−K)s
f(0)

]
,
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where K = k1ρΓ(ϱ)s
−ϱ, which the Laplace inverse of K is k1ϱt

ϱ−1. Following the work
[56,57] and applying the inverse Laplace transform, the solution is given by,

N(t) =
Q∗

κ
− Q∗

κ(1−K)

d

dtρ

∫ t

0

Eα,ρ

(
Kα

(1−K)(1− α)
(t− x)αdx

)
+

1

1−K
Eα,ρ

(
Kα

(1−K)(1− α)
tα
)
N(0),

N(t) =
Q∗

κ
− Q∗

κ(1− k1ϱtϱ−1)

d

dtρ

∫ t

0

Eα,ρ

(
k1ϱt

ϱ−1α

(1− k1ϱtϱ−1)(1− α)
(t− x)αdx

)
+

1

1− k1ϱtϱ−1
Eα,ρ

(
k1ϱt

ϱ−1α

(1− k1ϱtϱ−1)(1− α)
tα
)
N(0),

(2.16)

where Eα,ρ(Z) =
∑α

n=1

Z−n

Γ(ρ− αn)
+ O(|z|−1−α), |z| → ∞,

απ

2
< |arg(z)| ≤ π, it is not

difficult to observe that N(t) → Q∗

κ
as t → ∞. This leads us to the conclusion that the

model is both epidemiologically feasible and well-posed in Φ.

2.4.4. Equilibrium point of the model and reproduction number

Finding the exact solutions to the system in Equation (2.1) is analytically in-
tractable but we can still gain qualitative knowledge of their dynamics through
the stability of their equilibrium points. First, we discuss a special solution to this
system. The system has two equilibrium points: disease-free equilibrium (DFE)
and endemic equilibrium (EE) points.

DFE =
(
s0p, s

0
n, i

0
p, i

0
n, a

0
pp, a

0
pn, a

0
)
=

(
Q∗(π∗κ+ σ∗

1)

χ2
,
(1− π∗)Q∗

χ2
, 0, 0, 0, 0, 0

)
,

(2.17)
where χ2 = σ∗

1+κ, χ3 = δ∗1+κ, χ4 = θ∗+δ∗2+κ, χ5 = κ+k∗1 , χ6 = σ∗
2+k

∗
2+κ, χ7 =

κ + ψ∗, and the endemic equilibrium point if all state variables are different from
zero, and we obtain,

S̄∗
p =

Q∗π(τλ∗ + χ2) + σ1Q
∗(1− π)

(λ∗ + κ)(τ∗λ∗ + χ2)
,

S̄∗
n =

(1− π)Q∗

τ∗λ∗ + χ2
, Ī∗p =

Λ[π∗Q∗(τ∗Λ + κ) + σ∗
1Q

∗]

χ3(Λ + κ)(τ∗Λ + χ2)
+
θ∗τ∗Q∗Λ(1− π∗)

χ3χ4(τ∗Λ + χ2)
,

Īn
∗
=
τ∗Λ(1− π∗)Q∗

(τ∗Λ∗ + χ2)χ4
, Ā∗

pn =
δ∗2τ

∗ΛQ∗(1− π∗)

(τ∗Λ + χ2)χ4χ6
,

Āpp =
δ∗1Λ[π

∗Q∗(τ∗Λ + κ) + σ∗
1Q

∗]

χ3χ5(Λ + κ)(τ∗Λ + χ2)
+
δ∗1θ

∗τ∗Λ(1− π∗)Q∗

(τ∗Λ∗ + χ2)χ3χ4χ5
, Ā∗ =

k∗1a
∗
pp + k∗2a

∗
pn

χ7
,

where the force of infection at the equilibrium point is

Λ∗ =
Λ∗[π∗Q∗(τ∗Λ∗ + κ) + σ∗

1Q
∗]

χ3(Λ∗ + κ)(τ∗Λ∗ + χ2)
+
θ∗τ∗Q∗Λ∗(1− π∗)

χ3χ4(τ∗Λ∗ + χ2)

+
τ∗Λ∗(1− π∗)Q∗

(τ∗Λ∗ + χ2)χ4
+
δ∗2τ

∗Λ∗Q∗(1− π∗)

(τ∗Λ∗ + χ2)χ4χ6

+
δ∗1Λ

∗[π∗Q∗(τ∗Λ∗ + κ) + σ∗
1Q

∗]

χ3χ5(Λ∗ + κ)(τ∗Λ∗ + χ2)

+
δ∗1θ

∗τ∗Λ∗(1− π∗)Q∗

(τ∗Λ∗ + χ2)χ3χ4χ5
≥ 0.
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After algebraic simplification and rearrangement, we obtain Λ∗ = 0 and the
following:

[π∗Q∗(τ∗Λ∗ + κ) + σ∗
1Q

∗]

χ3(Λ∗ + κ)(τ∗Λ∗ + χ2)
+
θ∗τ∗Q∗(1− π∗)

χ3χ4(τ∗Λ∗ + χ2)
+
τ∗(1− π∗)Q∗

(τ∗Λ∗ + χ2)χ4
+
δ∗2τ

∗Q∗(1− π∗)

(τ∗Λ∗ + χ2)χ4χ6
+

δ∗1 [π
∗Q∗(τ∗Λ∗ + κ) + σ∗

1Q
∗]

χ3χ5(Λ∗ + κ)(τ∗Λ∗ + χ2)
+

δ∗1θ
∗τ∗(1− π∗)Q∗

(τ∗Λ∗ + χ2)χ3χ4χ5
≥ 0,

a1 = χ4χ6π
∗κτ∗(χ5 + δ∗1) + χ5κτ

∗(1− π∗)(χ6θ
∗ + χ6χ3 + χ3δ

∗
2),

a0 = χ4χ6κ(κπ
∗ + σ∗

1)(χ5π
∗ + δ∗1) + χ5κ

2τ∗(1− π∗)(χ6θ
∗ + χ6χ3 + χ3δ

∗
2),

a1Λ
∗ + a0 ≥ 0. (2.18)

Therefore, an endemic equilibrium point exists at a value greater than or equal to
zero in this linear equation. Using the next-generation matrix methods Driessche
and Watmough [51], we calculated the reproduction number as follows:

R0 =
β(δ1χ4χ6 + χ4χ5χ6)S

0
p + (δ1χ6τ

∗θ + δ2χ3χ5τ
∗ + χ3χ5χ6τ

∗ + χ5χ6τθ)S
0
n

χ3χ4χ5χ6

(2.19)
and if R0 < 1, the disease can be eliminated, and if R0 > 1, the disease persists in
the population.

2.4.5. Stability of disease free equilibrium

Theorem 2.5. If R0 is less than 1, the model has a disease-free equilibrium point
E0 that is asymptotically stable as long as the proportions of each susceptible group
to the total population at any time t do not exceed their corresponding proportions
at DFE. In other words, DFE is asymptotically stable if the following conditions
hold.

S∗
p ≤ Q∗(π∗κ+ σ∗

1)

χ1
, S∗

n ≤ (1− π∗)Q∗

χ2
. (2.20)

Proof. Let the set X = (S∗
p , S

∗
n) and Y = (I∗p , I

∗
n, A

∗
pp, A

∗
pn, A

∗) the working-class
mathematical model of HIV/AIDS infection (2.2) can be rewritten as;

dX

dt
= F (X,Y ),

dY

dt
= G(X,Y ),

(2.21)

where

F =

{
π∗Q∗ + σ∗

1S
∗
n − (Λ + κ)S∗

p ,

(1− π∗)Q∗ − (τ∗Λ + σ∗
1 + κ)S∗

n,

and,G =



ΛS∗
p + θ∗I∗n − (δ∗1 + κ)I∗p ,

τ∗ΛS∗
n − (θ∗ + δ∗2 + κ)I∗n,

δ∗1I
∗
p + σ∗

2A
∗
pn − (κ+ k∗1)A

∗
pp,

δ∗2I
∗
n − (σ∗

2 + k∗2 + κ)A∗
pn,

k∗1A
∗
pp + k∗2A

∗
pn − (κ+ ψ∗)A∗.

(2.22)
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Then, disease-free equilibrium points are stable if the following two conditions by
Castillo-Chavez [58] are hold.

C1: For
dX

dt
|Z=0, X

∗ is asymptotically stable,

C2: G(X,Y ) = LY − Ĝ(X,Y ), Ĝ(X,Y ) ≥ 0 for (X,Y ) ∈ R7
+,

where L = DY=0G(X
∗, 0) is the jacobian of G(X,Y ) with respect to Y evaluated

at disease free equilibrium. The reduced system at disease free equilibrium point,

dX

dt
|Y=0 =

{
π∗Q∗ + σ∗

1S
∗
n − κS∗

p ,

(1− π∗)Q∗ − (σ∗
1 + κ)S∗

n.

The disease-free equilibrium point is equal to X∗ is globally asymptotically stable
point of the reduced system, here all solutions of the reduced system is equal with
the disease free equilibrium point as time goes to infinity

Moreover G(X,Y ) = LY − Ĝ(X,Y ),where L = DY=0G(X
∗, 0)

L =



β∗S∗0
p

N
− χ3

β∗S∗0
p

N
+ θ∗

β∗S∗0
p

N

β∗S∗0
p

N
0

τ∗β∗S∗0
n

N

τ∗β∗S∗0
n

N
− χ4

τ∗β∗S∗0
n

N

τ∗β∗S∗0
n

N
0

δ∗1 0 −χ5 0 0

0 δ∗2 0 −χ6 0

0 0 k∗1 k∗2 −χ7


,

LY =



βS∗0
p

N
− χ3

βS∗0
p

N
+ θ

βS∗0
p

N

βS∗0
p

N
0

τβS∗0
n

N

τβS∗0
n

N
− χ4

τβS∗0
n

N

τβS∗0
n

N
0

δ∗1 0 −χ5 0 0

0 δ∗2 0 −χ6 0

0 0 k1 k2 −χ7





I∗p

I∗n

A∗
pp

A∗
pn

A∗


,

LY =



(
βS∗0

p

N
− χ3)I

∗
p + (

βS∗0
p

N
+ θ)I∗n +

βS∗0
p

N
A∗

pp +
βS∗0

p

N
A∗

pn

τ∗βS∗0
n

N
I∗p + (

τ∗βS∗0
n

N
− χ4)I

∗
n + βτS∗

nA
∗
pp + βτS∗

nA
∗
pn

δ1I
∗
p − χ5A

∗
pp

δ2I
∗
n − χ6A

∗
pn

k1A
∗
ppk2A

∗
pn − χ7A

∗


,

Ĝ(X,Y ) = LY −G(X,Y ) = Λ



(S∗0
p − S∗

p)

τ∗(S∗0
n − S∗

n)

0

0

0


≥ 0,



Fractal-Fractional Order HIV/AIDS Model 1011

where Λ = β∗(
I∗p + I∗n +A∗

pp +Apn

N
).

Now, we have S∗0
p −S∗

p ≥ 0 and S∗0
n −S∗

n ≥ 0, which implies that that condition
C2 satisfied if and only if S∗

p ≤ S∗0
p and S∗

n ≤ S∗0
n

S∗
p ≤ Q∗(π∗κ+ σ∗

1)

χ1
, S∗

n ≤ (1− π∗)Q∗

χ2
,

this completes the proof.

2.4.6. Sensitivity analysis

Sensitivity analysis of reproduction numbers gives the information which param-
eters are most important to control the transmission and spread of the disease.
From the reproduction number stated in Equation (2.19) its sensitivity index to the
parameters ρ if ρ is a parameter in the R0 is given by Sρ = ∂R0

∂ρ
ρ
R0

. The result is
given in the Table 2. The reproduction number increases if the sensitivity index
is positive, and decreases if negative. When a sign is positive, it indicates that
the reproduction number rises as the parameter rises, and when it is negative, the
converse is true. As we can see from Figure 2, β∗, θ∗, k∗1 , k

∗
2 , τ

∗, δ∗1 , δ
∗
2 have positive

effects on reproduction number, but σ∗
1 , σ

∗
2 , π

∗ have negative effects as illustrated
in Figure 2.

Parameter Sensitivity indices Parameters Sensitivity indices

θ∗ -0.042 k∗2 0

σ∗
1 -0.0423 τ∗ 0.2696

π∗ 0.1321 δ∗1 0.3527

k∗1 0.6108 δ∗2 0.1604

k∗2 0.1494 σ∗
2 -0.0623

Table 2. Sensitivity indices of the parameters
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Figure 2. Sensitivity index of parameters

2.4.7. Ulam-Hyers stability

In this section, we determine the stability of the proposed mathematical model of the
fractal-fractional-order Equation (2.2). To do this, let us take a small perturbation
Ξ(t) ∈ C[0, T ] and only satisfy Ξ(0) = 0 as follows:

Ξ(t) ≤ ϵ for ϵ > 0;

ABCDω,ϱ
t f(t) = F(t, f(t)) + Ξ(t).

The solution of the perturbed dynamical system can be

ABCDω,ϱ
t f(t) = F(t, f(t)) + Ξ(t), f(0) = f0, (2.23)

and satisfies the following equation [47,48,59].

f(t)−
(
f0(t) + [F(t, f(t))− Ξ0(t)]

(1− ω)tϱ−1

ABC(ω)

+
ωϱ

ABC(ω)Γ(ω)

∫ t

0

(t− x)ω−1xϱ−1F(x, f(x)) dx

)
≤Γ(ω)tϱ−1 + ϱTω+ϱ−1

ABC(ω)Γ(ω)
D(ω, ϱ)ϵ = ωωϱϵ.

(2.24)

Theorem 2.6. Under Hypothesis H2, solutions to Equation (2.5) are Ulam-Hyers

stable if

[
(1− ω)tϱ−1L1

ABC(ω)
+
ϱ[LFT

ω+ϱ−1]D(ω, ϱ)

ABC(ω)Γ(ω)

]
< 1.
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Proof. Assume that a unique solution is f ∈ f and that f̄ ∈ f is any solution of
Equation (2.5)); then,

|f(t)− f̄(t)| =|f(t)−
(
f0(t) + [F(t, f(t))− f0(t)]

1− ω

ABC(ω)
tϱ−1

)
−
(

ωϱ

ABC(ω)Γ(ω)
×
∫ t

0

xϱ−1(t− x)ω−1F(x, f̄(x))dx

)
|

≤|f(t)−
(
f0(t) + [F(t, f(t))− f0(t)]

1− ω

ABC(ω)
tϱ−1

)
−
(

ωϱ

ABC(ω)Γ(ω)
×
∫ t

0

xϱ−1(t− x)ω−1F(x, f(x))dx

)
|

− |
(
f0(t) + [F(t, f̄(t))− f0(t)]

1− ω

ABC(ω)
tϱ−1

)
|

− |
(

ωϱ

ABC(ω)Γ(ω)
×
∫ t

0

xϱ−1(t− x)ω−1F(x, f̄(x))dx

)
|

≤ωωϱ +
(1− ω)LF

ABC(ω)
tϱ−1∥f − f̄∥+ ϱTω+ϱ−1LF

ABC(ω)Γ(ω)
D(ω, ϱ)∥f − f̄∥

≤ωωϱ + θ∥f − f̄∥.
(2.25)

From Equation (2.25) we can express as

∥f − f̄∥ ≤ ωωϱ

1− θ
∥f − f̄∥. (2.26)

From Equation (2.26), we conclude that the solution of Equation (2.5) is Ulam-
Hyres stable and generalized Ulam-Hyers stable by using Ff (ϵ) = ωωϱϵ, Ff (0) = 0,
which shows that the proposed fractal-fractional model is Ulam-Hyers stable and
generalized Ulam-Hyers stability.

3. Numerical solutions

3.1. Parameter estimation

We calibrate the model using WHO and UNAIDS data from Ethiopia (2001–2023).
The least-square method was used to estimate the values of the parameters. As
we show in Figure 3, the values of the estimated parameters are stated in Table
1. We use MATLAB 2019b to fit the model by using least square methods with
minimum error 0.0011. Absolute errors per iteration for infected productive and
non-productive populations are shown in Figures (4)-(5) (box plots).
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Figure 3. Real data fitted to the nondimensional model to estimate the parameters in Table 1
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Figure 5. Error iteration of In

3.2. Numerical scheme for simulations of the fractional-order
model

Numerical techniques are acknowledged as effective mathematical tools for solving
nonlinear fractional-order differential equations with local and nonlocal operators.
A novel numerical approach for the nonlinear fractional derivatives of ABC, derived
in [41, 60],is used to solve the constructed fractional-order model. We adopted this
method because it was suitable for our models, and from the constructed fractional-
order Equation (2.1), we can write the kernel function of fractional models as Atan-
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gana [12].
ABC
0 Dω

t S
∗
p(t) =M1(t, S

∗
p),

ABC
0 Dω

t S
∗
n(t) =M2(t, S

∗
n),

ABC
0 Dω

t I
∗
p (t) =M3(t, I

∗
p ),

ABC
0 Dω

t I
∗
n(t) =M4(t, I

∗
n),

ABC
0 Dω

t A
∗
pp(t) =M5(t, A

∗
pp),

ABC
0 Dω

t A
∗
pn(t) =M6(t, A

∗
pn),

ABC
0 Dω

t A
∗(t) =M7(t, A

∗).

(3.1)

The following equation is obtained from Equation (3.1) by means of the fractional-
order ABC-integral operator:

S∗
p(t)− S∗

p(0)

=
1− ω

ABC(ω)
M1(t, S

∗
p) +

ω

ABC(ω)Γ(ω)

∫ t

0

(t− S∗
p)

ω−1M1(τ, S
∗
p)dτ,

S∗
n(t)− S∗

n(0)

=
1− ω

ABC(ω)
M2(t, S

∗
n) +

ω

ABC(ω)Γ(ω)

∫ t

0

(t− S∗
n)

ω−1M2(τ, S
∗
n)dτ,

I∗p (t)− I∗p (0)

=
1− ω

ABC(ω)
M3(t, I

∗
p ) +

ω

ABC(ω)Γ(ω)

∫ t

0

(t− I∗p )
ω−1M3(τ, I

∗
p )dτ,

I∗n(t)− I∗n(0)

=
1− ω

ABC(ω)
M4(t, I

∗
n) +

ω

ABC(ω)Γ(ω)

∫ t

0

(t− I∗n)
ω−1M4(τ, I

∗
n)dτ,

A∗
pp(t)−A∗

pp(0)

=
1− ω

ABC(ω)
M5(t, A

∗
pp) +

ω

ABC(ω)Γ(ω)

∫ t

0

(t−A∗
pp)

ω−1M5(τ,A
∗
pp)dτ,

A∗
pn(t)−A∗

pn(0)

=
1− ω

ABC(ω)
M6(t, A

∗
pn) +

ω

ABC(ω)Γ(ω)

∫ t

0

(t−A∗
pn)

ω−1M6(τ,A
∗
pn)dτ,

A∗(t)−A∗(0)

=
1− ω

ABC(ω)
M7(t, A

∗) +
ω

ABC(ω)Γ(ω)

∫ t

0

(t−A∗)ω−1M7(τ,A
∗)dτ.

(3.2)

The suggested interval [0, t] can be divided into subintervals using point tn+1, where
n = 0, 1, · · · . We can write Equation (3.2) as:

S∗
p(tn+1)−S∗

p(0) =
1− ω

ABC(ω)
M1(t, S

∗
p)+

ω

ABC(ω)Γ(ω)

∫ t

0

(t−S∗
p)

ω−1M1(τ, S
∗
p)dτ,

(3.3)
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Similarly, we can write for all Equation (3.2) in the same manner. Using the La-
grange interpolation technique, we obtain:

S∗
p(tn+1) =S

∗
p(0) +

1− ω

ABC(ω)
M1(tk∗ , S∗

p)

+
ω

ABC(ω)

n∑
k∗=0

[
hωM1(tk∗ , S∗

p)

Γ(ω + 2)
a1 −

hκM1(tk∗−1, S
∗
p)

Γ(κ+ 2)
a2

]
,

S∗
n(tn+1) =S

∗
n(0) +

1− ω

ABC(ω)
M2(tk∗ , S∗

n)

+
ω

ABC(ω)

n∑
k∗=0

[
hωM2(tk∗ , S∗

n)

Γ(ω + 2)
a1 −

hκM2(tk∗−1, S
∗
n)

Γ(κ+ 2)
a2

]
,

I∗p (tn+1) =I
∗
p (0) +

1− ω

ABC(ω)
M2(tk∗ , I∗p )

+
ω

ABC(ω)

n∑
k∗=0

[
hωM3(tk∗ , I∗p )

Γ(ω + 2)
a1 −

hκM3(tk∗−1, I
∗
p )

Γ(κ+ 2)
a2

]
,

I∗n(tn+1)| =I∗n(0) +
1− ω

ABC(ω)
M4(tk∗ , I∗n)

+
ω

ABC(ω)

n∑
k∗=0

[
hωM4(tk∗ , I∗n)

Γ(ω + 2)
a1 −

hκM4(tk∗−1, I
∗
n)

Γ(κ+ 2)
a2

]
,

A∗
pp(tn+1) =A

∗
pp(0) +

1− ω

ABC(ω)
M5(tk∗ , A∗

pp)

+
ω

ABC(ω)

n∑
k∗=0

[
hωM5(tk∗ , A∗

pp)

Γ(ω + 2)
a1 −

hκM5(tk∗−1, A
∗
pp)

Γ(κ+ 2)
a2

]
,

A∗
pn(tn+1) =A

∗
pn(0) +

1− ω

ABC(ω)
M6(tk∗ , A∗

pn)

+
ω

ABC(ω)

n∑
k∗=0

[
hωM6(tk∗ , A∗

pn)

Γ(ω + 2)
a1 −

hκM6(tk∗−1, A
∗
pn)

Γ(κ+ 2)
a2

]
,

A∗(tn+1) =A
∗(0) +

1− ω

ABC(ω)
M7(tk∗ , A∗)

+
ω

ABC(ω)

n∑
k∗=0

[
hωM7(tk∗ , A∗)

Γ(ω + 2)
a2 −

hκM7(tk∗−1, A
∗)

Γ(κ+ 2)
a2

]
,

(3.4)

where

a1 = (n+ 1− k∗)κ(n− k∗ + 2 + κ)− (n− k∗)κ(n− k∗ + 2 + 2κ),

a2 = (n+ 1− k∗)κ − (n− k∗)κ(n+ 1− k∗ + κ).
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Figure 6. Solutions of the fractional model for different values of fractional order ω

The solutions of the fractional-order model varies depending on the value of
ω. If ω = 1, the model restores the integral-order model property. As shown in
Figure 6, as the derivative order decreases, the susceptible productive population
graph becomes sigmoid and the reality of the model increases. However, susceptible
nonproductive populations decreased rapidly, which is relatively unrealistic; infected
productive and infected nonproductive populations followed the same pattern. This
indicates that the fractional-order derivative model with the Atangana-Baleanu-
Caputo operator is better representation of HIV/AIDS infections in the working-
class.
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Figure 7. Solution of the fractional model for different values of fractional order ω

The solution of the fractional-order model varies depending on the value of ω; if
ω = 1, the model rehabilitates the integral-order model. As shown in Figure 7, as the
derivative order decreases, the pre-AIDS productive population decreases, and the
pre-AIDS nonproductive population increases rapidly, which is relatively unrealistic.
The AIDS class population immediately approaches zero, but the fractional-order
model approaches slowly, as we compare it with real data. Hence, the fractional
order is a better representation of the real problem of the HIV/AIDS model. This
indicates that the fractional-order model is suitable for representing the HIV/AIDS
dynamic system.

3.3. Numerical scheme for Atangana-Baleanu-Caputo fractal-
fractional model derivative

In this section, we consider the Atangana-Baleanu-Caputo fractal-fractional deriva-
tive denoted as (ABF). The model in Equation (2.2), can be expressed as follows:

ABFDω
0,tS

∗
p = ϱtϱ−1f1(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tS

∗
n = ϱtϱ−1f2(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tI

∗
p = ϱtϱ−1f3(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tI

∗
n = ϱtϱ−1f4(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tA

∗
pp = ϱtϱ−1f5(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tA

∗
pn = ϱtϱ−1f6(S

∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

ABFDω
0,tA

∗ = ϱtϱ−1f7(S
∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗),

(3.5)
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by applying the Atangana-Baleanu integral formula, we have,

S∗
p(t)

=S∗
p(0) +

ϱtϱ−1(1− ω)

ABC(ω)
f1(t,Φ) +

ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(t− τ)ω−1f1(τ,Φ)dτ,

S∗
n(t)

=S∗
n(0) +

ϱtϱ−1(1− ω)

ABC(ω)
f2(t,Φ) +

ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(t− τ)ω−1f2(τ,Φ)dτ,

I∗p (t)

=I∗p (0) +
ϱtϱ−1(1− ω)

ABC(ω)
f3(t,Φ) +

ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(t− τ)ω−1f3(τ,Φ)dτ,

I∗n(t)

=I∗n(0) +
ϱtϱ−1(1− ω)

ABC(ω)
f4(t,Φ) +

ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(t− τ)ω−1f4(τ,Φ)dτ,

A∗
pp(t)

=A∗
pp(0) +

ϱtϱ−1(1− ω)

ABC(ω)
f5(t,Φ) +

ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(t− τ)ω−1f5(τ,Φ)dτ,

A∗
pn(t)

=A∗
pn(0) +

ϱtϱ−1(1− ω)

ABC(ω)
f6(t,Φ) +

ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(t− τ)ω−1f6(τ,Φ)dτ,

A∗(t)

=A∗(0) +
ϱtϱ−1(1− ω)

ABC(ω)
f7(t,Φ) +

ωϱ

ABC(ω)Γ(ω)

∫ t

0

τϱ−1(t− τ)ω−1f7(τ,Φ)dτ.

(3.6)
If Φ = (S∗

p , S
∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn, A

∗), now, by extending this to tn+1 and replacing
Φn = (S∗n

p , S∗n
n , I∗np , I∗nn , A∗n

pp , A
∗n
pn, A

∗n) we have
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S∗n+1
p =S∗0

p +
ϱtϱ−1

n (1− ω)

ABC(ω)
f1(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

∫ tn+1

0

τϱ−1(tn+1 − τ)ω−1f1(τ,Φ
n)dτ,

S∗n+1
n =S∗0

n +
ϱtϱ−1

n (1− ω)

ABC(ω)
f2(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

∫ tn+1

0

rϱ−1(tn+1 − τ)ω−1f2(τ,Φ
n)dτ,

I∗n+1
p =I∗0p +

ϱtϱ−1
n (1− ω)

ABC(ω)
f3(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

∫ tn+1

0

rϱ−1(tn+1 − τ)ω−1f3(τ,Φ
n)dτ,

I∗n+1
n =I∗0n +

ϱtϱ−1
n (1− ω)

ABC(ω)
f4(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

∫ tn+1

0

τϱ−1(t− τ)ω−1f4(τ,Φ
n)dτ,

A∗n+1
pp =A∗0

pp +
ϱtϱ−1

n (1− ω)

ABC(ω)
f5(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

∫ tn+1

0

τϱ−1(tn+1 − τ)ω−1f5(τ,Φ)dτ,

A∗n+1
pn =A∗0

pn +
ϱtϱ−1

n (1− ω)

ABC(ω)
f6(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

∫ tn+1

0

τϱ−1(tn+1 − τ)ω−1f6(τ,Φ
n)dτ,

A∗n+1 =A∗0 +
ϱtϱ−1

n (1− ω)

ABC(ω)
f7(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

∫ tn+1

0

τϱ−1(tn+1 − τ)ω−1f7(τ,Φ
n)dτ.

(3.7)
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By using integral approximations, the above system can be expressed as follows:

S∗n+1
p =S∗0

p +
ϱtϱ−1

n (1− ω)

ABC(ω)
f1(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

n∑
j=0

∫ tj+1

tj

τϱ−1(tn+1 − τ)ω−1f1(τ,Φ
n)dτ,

S∗n+1
n =S∗0

n +
ϱtϱ−1

n (1− ω)

ABC(ω)
f2(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

n∑
j=0

∫ tj+1

tj

τϱ−1(tn+1 − τ)ω−1f2(τ,Φ
n)dτ,

I∗n+1
p =I∗0p +

ϱtϱ−1
n (1− ω)

ABC(ω)
f3(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

n∑
j=0

∫ tj+1

tj

rϱ−1(tn+1 − τ)ω−1f3(τ,Φ
n)dτ,

I∗n+1
n =I∗0n +

ϱtϱ−1
n (1− ω)

ABC(ω)
f4(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

n∑
j=0

∫ tj+1

tj

τϱ−1(tn+1 − τ)ω−1f4(τ,Φ
n)dτ,

A∗n+1
pp =A∗0

pp +
ϱtϱ−1

n (1− ω)

ABC(ω)
f5(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

n∑
j=0

∫ tj+1

tj

τϱ−1(tn+1 − τ)ω−1f5(τ,Φ
n)dτ,

A∗n+1
pn =A∗0

pn +
ϱtϱ−1

n (1− ω)

ABC(ω)
f6(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

n∑
j=0

∫ tj+1

tj

τϱ−1(tn+1 − τ)ω−1f6(τ,Φ
n)dτ,

A∗n+1 =A∗0 +
ϱtϱ−1

n (1− ω)

ABC(ω)
f7(tn,Φ

n)

+
ωϱ

ABC(ω)Γ(ω)

n∑
j=0

∫ tj+1

tj

τϱ−1(tn+1 − τ)ω−1f7(τ,Φ
n)dτ.

(3.8)

By approximating τϱ−1fi(Φ, τ) in (tj , tj+1) and using the Lagrange interpolation
technique, we have
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S∗n+1
p = S∗0

p +
ϱtϱ−1

n (1− ω)

ABC(ω)
f1(tn,Φ)+

ϱ(∆t)ω

ABC(ω)Γ(ω + 2)

n∑
j=0

[f1(Φ
j , tj) ∗ c1− f1(Φ

j−1, tj−1) ∗ c2],

S∗n+1
n = S∗0

n +
ϱtϱ−1

n (1− ω)

ABC(ω)
f2(tn,Φ)+

τ∗(∆t)ω

ABC(ω)Γ(ω + 2)

n∑
j=0

[f2(Φ
j , tj) ∗ c1− f2(Φ

j−1, tj−1) ∗ c2],

I∗n+1
p = I∗0p +

ϱtϱ−1
n (1− ω)

ABC(ω)
f3(tn,Φ)+

ϱ(∆t)ω

ABC(ω)Γ(ω + 2)

n∑
j=0

[f3(Φ
j , tj) ∗ c1− f3(Φ

j−1, tj−1) ∗ c2],

I∗n+1
n = I∗0n +

ϱtϱ−1
n (1− ω)

ABC(ω)
f4(tn,Φ)+

ϱ(∆t)ω

ABC(ω)Γ(ω + 2)

n∑
j=0

[f4(Φ
j , tj) ∗ c1− f4(Φ

j−1, tj−1) ∗ c2],

(3.9)

A∗n+1
pp = A0

pp +
ϱtϱ−1

n (1− ω)

ABC(ω)
f5(tn,Φ)+

τ∗(∆t)ω

ABC(ω)Γ(ω + 2)

n∑
j=0

[f5(Φ
j , tj) ∗ c1− f5(Φ

j−1, tj−1) ∗ c2],

A∗n+1
pn = A∗0

pn +
ϱtϱ−1

n (1− ω)

ABC(ω)
f6(tn,Φ)+

ϱ(∆t)ω

ABC(ω)Γ(ω + 2)

n∑
j=0

[f6(Φ
j , tj) ∗ c1− f6(Φ

j−1, tj−1) ∗ c2],

A∗n+1 = A∗0 +
ϱtϱ−1

n (1− ω)

ABC(ω)
f7(tn,Φ)+

ϱ(∆t)ω

ABC(ω)Γ(ω + 2)

n∑
j=0

[f7(Φ
j , tj) ∗ c1− f7(Φ

j−1, tj−1) ∗ c2],

c1 = tϱ−1
j ((n+ 1− j)ω(n− j + 2 + ω)− (n− j)ω(n− j + 2 + 2ω)),

c2 = tϱ−1
j−1((n− j + 1)ω+1 − (n− j)ω(n− j + 1 + ω)).
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Figure 8. Fractal-fractional solution of the model for different values of ϱ and ω

The solution of the fractal-fractional-order model depends on the fractal dimen-
sion ϱ and the fractional order ω. As shown in Figure 8, as the fractal-fractional-
order derivative decreased, the susceptible population decreased. Hence, the fractal-
fractional-order is a better representation of the real problem of HIV/AIDS infec-
tion.
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Figure 9. Fractal-fractional solution of the model for different values of ϱ and ω

In Figure 9, the graph of pre-AIDS productive and non-productive individuals
increases rapidly for ω = 0.85, and ϱ = 0.85, which is relatively unrealistic. The
AIDS class population immediately approaches zero for ω = 0.85 and ϱ = 0.85,
and as we decrease the fractional order value, the AIDS class population slowly
approaches zero.

3.3.1. Effect of the contact rate for fractal-fractional model version

A small change in the contact rate (β∗) changes the number of infected individu-
als. These values are directly proportional to the class of the infected population.
Therefore, reducing the contact rate will decrease the number of people infected
with HIV/AIDS.
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Figure 10. Effect contact rate if the fractal dimension(ϱ = 0.6) and fractional order (ω = 0.8)

The value of β∗ = 0.0201 is the fitted value in Table 1, and we test for β∗ below
and above this value. According to Figure 10, a decreasing contact rate decreases
the infected population and increases the susceptible population class. Similarly,
the pre-AIDS productive and nonproductive classes.
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3.3.2. Effect of the productivity rate
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Figure 11. The effect of changing the rate of reducing the nonproductive population

Red line( σ∗
1 = 0.02, θ∗ = 0.0012, σ∗

2 = 0.02) ,blue line(σ∗
1 = 0.01, θ∗ = 0.01, σ∗

2 =
0.015), green line (σ∗

1 = 0.028, θ∗ = 0.003, σ∗
2 = 0.025 ) and (ϱ = 0.6, ω = 0.8). As

shown in Figure 11, increasing the rate of the active population in economic activity
is used to increase the number of productive classes of the population regardless
of their infection; they continue their normal lifestyle and reduce inequality due to
HIV/AIDS infection.

4. Optimal control model

4.1. Extending the fractal-fractional order of the HIV/AIDS
model to optimal control

Here, we extend Equation (2.2) to the optimal control model of fractal-fractional
order of the HIV/AIDS model based on working-class populations. We consider the
influence of the control variable ui(t), i = 1, 2, 3, which varies from 0 to 1. A lack of
control ui(t) = 0 indicates no control intervention while achieving complete control
ui(t) = 1 is infeasible for certain constraints. The use of intervention measures is
demonstrated by intermediate ui(t) values that fall within the interval of (0, 1). By
incorporating the control variable into this model, we aim to reduce the proportion
of individuals infected with HIV, non-productive, and fully diagnosed with AIDS.
By incorporating the control variable, the model was updated from Equation (2.2)
to Equation (4.1).
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ABFDω,ϱ
0,t S

∗
p = π∗Q∗ + σ∗

1(u3 + 1)S∗
n − (Λc + κ)S∗

p ,

ABFDω,ϱ
0,t S

∗
n = (1− π∗)Q∗ − (τ∗Λc + σ∗

1(u3 + 1) + κ)S∗
n,

ABFDω,ϱ
0,t I

∗
p = ΛcS

∗
p + θ∗(u3 + 1)I∗n − (δ∗1(1− u2) + κ)I∗p ,

ABFDω,ϱ
0,t I

∗
n = τ∗ΛcS

∗
n − (θ∗(u3 + 1) + δ∗2(1− u2) + κ)I∗n,

ABFDω,ϱ
0,t A

∗
pp = δ∗1(1− u2)I

∗
p + σ∗

2(u3 + 1)A∗
pn − (k∗1(1− u2) + κ)A∗

pp,

ABFDω,ϱ
0,t A

∗
pn = δ∗2(1− u2)I

∗
n − (σ∗

2(u3 + 1) + (k∗2(1− u2) + κ)A∗
pn,

ABFDω,ϱ
0,t A

∗ = (k∗1A
∗
pp + k∗2A

∗
pn)(1− u2)− (κ+ ψ∗)A∗.

(4.1)

Within the force of infection, Λc =
β∗(I∗p + I∗n +A∗

pp +A∗
pn)

N
∗ (1 − u1) = (1 −

u1)Λ the initial condition S∗
p(0) > 0, S∗

n(0) > 0, I∗p (0) > 0, I∗n(0) > 0, A∗
pp(0) >

0, A∗
pn(0) > 0, A∗(0) > 0; all initial values are positive.
The major objective is to minimize the number of HIV-positive individuals in

the selected population class. The cost incurred by interventions, where ui(t), i =
1, 2, 3, are the control variables. To choose the best control unit, we define u1(t) as
preventive control, u2(t) as ART treatment, and u3(t) as a special effort to reduce
nonproductivity. We define the objective function (J) with this goal.

J(u1, u2, u3) = min
u1,u2,u3

∫ tf

0

(b1S
∗
n+b2I

∗
p+b3I

∗
n+b4A

∗
pp+b5A

∗
pn+c1u

2
1+c2u

2
2+c3u

2
3)dt,

(4.2)
where c1, c2, and c3 are positive and represent the cost coefficients of the control
measures ui, the non-negative weights associated with the state variables bi, and the
final intervention time tf . The optimal control problem involves identifying control
functions u∗ that minimize the objective function, considering the state system and
constraints on the control variables, such as:

J(u∗) = minJ(u)|u = (u1, u2, u3) ∈ A. (4.3)

A = {(u1, u2, u3)|ui(t) is Lebsgue messurable with 0 ≤ ui(t) ≤ 1, t ∈ [0, tf ], i =
1, 2, 3} is the closed set, and A is the admissible control set, where, ui,Max are pos-
itive constants that represent the maximum values of the control measures [61,62].
The optimum control problem can be resolved by applying Pontryagin’s principle,
which asserts that adjoint variables λi(t) exist and satisfy the optimality conditions
of the Hamiltonian function Pontryagin [63].

H =
dJ(u∗)

dt
+ λ1

dS∗
p

dt
+ λ2

dS∗
n

dt
+ λ3

dI∗p
dt

+ λ
dI∗n
dt

+ λ5
dA∗

pp

dt
+ λ6

dA∗
pn

dt
+ λ7

dA∗

dt
,

The system minimizes the related costate variables with state variables
S∗
p , S

∗
n, I

∗
p , I

∗
n, A

∗
pp, A

∗
pn and A∗ at each time t, thereby satisfying the differential

equation system Mondal and Khajanchi [64].
dλ1
dt

=
−∂H
∂S∗

p

,
dλ2
dt

=
−∂H
∂S∗

n

,
dλ3
dt

=
−∂H
∂I∗p

,
dλ4
dt

=
−∂H
∂I∗n

,
dλ5
dt

=
−∂H
∂A∗

pp

,

dλ6
dt

=
−∂H
∂A∗

pn

,
dλ7
dt

=
−∂H
∂A∗ and Λc =

β∗(I∗p + I∗n +A∗
pp +A∗

pn)

N
∗ (1 − u1), assume
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N scaled to 1. Then,

dλ1
dt

=(λ1 − λ3)(I
∗
p + I∗n +A∗

pp +A∗
pn)(1− u1) + λ1κ,

dλ2
dt

=(λ2 − λ4)τ
∗(Ip + I∗n +A∗

pp +A∗
pn) ∗ (1− u1)− λ1σ

∗
1(u3 + 1)− λ2κ− b1,

dλ3
dt

=(λ2 − λ4)(1− u1)τ
∗β∗S∗

n + (λ1 − λ3)(1− u1)β
∗S∗

p − (λ3 + λ5)δ
∗
1(1− u1)

− λ3κ− b2,

dλ4
dt

=(λ1 − λ3)(1− u1)β
∗S∗

p + (λ2 − λ4)(1− u1)τ
∗β∗S∗

n + (λ4 − λ3)θ
∗(u3 + 1)+

(λ4 − λ6)δ
∗
2(1− u2) + λ4κ− b3,

dλ5

dt
=(λ1 − λ3)(1− u1)β

∗S∗
p + (λ2 − λ4)τ

∗(1− u1)β
∗S∗

n + (λ5 − λ7)k
∗
1(1− u2)

+ λ5κ− b4,

dλ6

dt
=(λ1 − λ3)β

∗(1− u1)β
∗S∗

p + (λ2 − λ4)β
∗τ∗(1− u1)Sn + (λ6 − λ5)σ

∗
2(u3 + 1),

+(λ6 − λ7)k
∗
2(1− u2) + λ6κ− b5,

dλ7

dt
=λ7(κ+ ψ∗),

(4.4)
with transversality conditions:

λi(T ) = 0, i = 1, . . . , 7.

Now drive the optimal control functions

∂H

∂u1
= 2c1u1 + (λ1 − λ3)ΛS

∗
p + (λ2 − λ4)τ

∗ΛS∗
n = 0,

∂H

∂u2
= 2c2u2 + (λ4 − λ6)δ

∗
2I

∗
n + (λ6 − λ7)k2A

∗
pn + (λ5 − λ7)k1A

∗
pp − λ5δ

∗
1I

∗
P = 0,

∂H

∂u3
= 2c3u3 + (λ2 − λ1)σ

∗
1S

∗
n + (λ4 − λ3)θ

∗I∗n + (λ6 − λ5)σ
∗
2Apn = 0.

(4.5)
From this system, we solve for the optimal control function u1, u2, and u3,

u1 =
(λ3 − λ1)ΛS

∗
p + (λ4 − λ2)τ

∗ΛS∗
n

2c1
,

u2 =
(λ6 − λ4)δ

∗
2I

∗
n + (λ7 − λ6)k

∗
2A

∗
pn + (λ7 − λ5)k

∗
1A

∗
pp + λ5δ

∗
1I

∗
p

2c2
,

u3 =
(λ2 − λ3)σ

∗
1S

∗
n + (λ4 − λ3)θ

∗I∗n + (λ6 − λ5)σ
∗
2A

∗
pn

2c3
,

u∗(t) = min [max (0, u1, u2, u3) , 1] .

(4.6)
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Figure 12. Optimal Control Function

4.2. Simulation of fractal-fractional optimal control solutions

The numerical simulation shows that using all strategies at the same time gives
better results in combating the spread of HIV/AIDS and reducing the nonproductive
population both in susceptible and infected populations. Based on this result, we
discuss only the option to use all strategies at the same time.
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Figure 13. The effect of optimal control on each compartment

As shown in Figure 13, optimal control is applied to increase the productive
population and decrease the nonproductive population after infection.
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without control

When we applied the control variable to the model, as shown in Figure 14,
the total infected population decreased with the control and increased without the
control, but the total infected population in both the productive and nonproduc-
tive infected populations decreased. This means that when we apply the control
intervention, the total susceptible population increases and the infected popula-
tion increases. In addition, after they are infected, the productive class population
remains in the productive class for a long time.

5. Conclusion

In this study, the researchers formulated a fractal-fractional order mathematical
model to analyze the effect of HIV/AIDS on the working-class population in Ethiopia.
The researchers used the Atangana-Baleanu fractional operator following the Ca-
puto operator as the basis for the model. The fractal-fractional model was further
extended to an optimal control model to apply control strategies and study the
impact of HIV/AIDS on the working-class. Banach’s fixed-point theorem and Con-
traction principle are used by the researchers to demonstrate the existence and
uniqueness of a solution to the model. It is also shown that the model is stable
based on Hyers-Ulam stability analysis. The researchers calculated the disease-free
and endemic equilibrium points and used the next-generation matrix to determine
the reproduction number. The reproduction number values are found to be less
than one for the disease-free equilibrium points, which are asymptotically stable.

Fractional-order mathematical model to analyze the effect of HIV/AIDS on
the working-class is solved by using numerical methods. The simulations were
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performed using MATLAB R2020a. The cases of integral, fractional, and fractal-
fractional-order models were solved, and the fractal-fractional-order model was more
realistic and represented the real system accurately. The model was fitted to Model
(2.1) using 23 years of data. The solution of the fractional order for different or-
ders of derivatives was simulated to show the difference between the integral and
fractional-order models, as shown in Figures 6 and 7. This model has the property
of an integral model if the order of the derivative ω = 1. In Figures 8 and 9, we
simulate a fractal-fractional model for different values of fractional order and frac-
tal dimension. From this, we understand that the fractal-fractional order model is
better than the integral and fractional-order models in representing the dynamics
of HIV/AIDS infection in the working-class. The fractal-fractional version of the
model is discussed using the contact rate β∗, reducing the value of β∗ decreases the
number of people infected by HIV/AIDS, as shown in Figure 10. Therefore, reduc-
ing the contact rate between infected and susceptible populations is important for
mitigating the spread and transmission of HIV. Again, simulations were performed
on the parameters used to reduce the rate of nonproductivity, as shown in Fig-
ure 11. Reducing the number of people in the nonproductivity class increases the
number of people in the productive class, which is important because it reduces the
identified barriers to ending HIV/AIDS, such as discrimination and inequality. This
condition can be supported by appropriate ART treatment and awareness creation
using various methods.

In addition, the researcher has extended the model to an optimal control problem
and numerical simulations, as shown in Figures 13 and 14. Different control mea-
sures are applied to increase the productive population class and decrease the non-
productive population class after infection. Concerning the solutions related to the
deterministic HIV/AIDS model, fractional and fractal-fractional-order HIV/AIDS
epidemic models have shown that the fractal-fractional model is more realistic than
the deterministic and fractional models. For further study, an extension of this
work depends on piecewise mathematical modeling.
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