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Abstract In this research article, we present several generalizations of Qi’s
inequality on time scales. We establish dynamic versions of Callebaut’s in-
equality and Cauchy-Schwarz’s inequality on time scales. To establish our
results, we apply the diamond-alpha integral and the time scale ∆ or ∇-
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1. Introduction

The calculus of time scales was initiated by Stefan Hilger [13]. A time scale is
an arbitrary nonempty closed subset of the real numbers. This hybrid theory is
also widely applied on dynamic inequalities, see [2, 15–20, 23, 24]. The basic ideas
concerning the calculus of time scales are given in [7, 8].

The following Qi’s inequality is proved in [12].

Let r ≥ 1 and Φ be a nonnegative continuous function on [ξ, ω] such that 0 <
Φ(λ) ≤ r(ω − ξ)−1. Then we have the following inequality(∫ ω

ξ

Φ(λ)dλ

)r

≤ rr

er
exp

(∫ ω

ξ

Φ(λ)dλ

)
≤ r2r

(ω − ξ)1+r

∫ ω

ξ

Φ−r(λ)dλ. (1.1)

The following Callebaut’s inequality is given in [11].

Let xk > 0, yk > 0 and wk ≥ 0 for any k ∈ {1, 2, . . . , n} with
n∑

k=1

wk = 1. If

there exist the constants m, M > 0 such that 0 < m ≤ xk

yk
≤ M < ∞ for any

k ∈ {1, 2, . . . , n}, then

n∑
k=1

wkx
2(1−v)
k y2vk

n∑
k=1

wkx
2v
k y

2(1−v)
k

≤
n∑

k=1

wkx
2
k

n∑
k=1

wky
2
k
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≤Kδ

((
M

m

)2
)

n∑
k=1

wkx
2(1−v)
k y2vk

n∑
k=1

wkx
2v
k y

2(1−v)
k , (1.2)

for any v ∈ [0, 1] and δ = max{1− v, v}.
The following Qi’s inequality is proved in [12].
Let 0 < p < q ≤ 1, r > 0 and Υ,Φ be measurable nonnegative functions on

[ξ, ω] such that
∫ ω

ξ
Υ(γ)Φq(γ)dγ < ∞. Then we have the following inequality

[(∫ ω

ξ

Υ(γ)Φp(γ)dγ

) 1
p

]r
≤ rr

er

(∫ ω

ξ

Υ(γ)dγ

) r
p−

r
q

exp

(∫ ω

ξ

Υ(γ)Φq(γ)dγ

) 1
q

.

(1.3)

We shall unify and extend (1.1) and (1.2) in the calculus of time scales by
applying the diamond-alpha integral. We shall also unify and extend (1.3) in the
fractional calculus of time scales.

2. Preliminaries

Now we present a short introduction to the diamond-α derivative as given in [1,21].
Let T be a time scale and Φ(λ) be differentiable on T in the ∆ and ∇ senses.

For λ ∈ T, the diamond-α dynamic derivative Φ⋄α(λ) is defined by

Φ⋄α(λ) = αΦ∆(λ) + (1− α)Φ∇(λ), 0 ≤ α ≤ 1.

Thus Φ is diamond-α differentiable if and only if Φ is ∆ and ∇ differentiable.
The following definition is given in [21].
Let ξ, κ ∈ T and Φ : T → R. Then the diamond-α integral from ξ to κ of Φ is

defined by∫ κ

ξ

Φ(λ) ⋄α λ = α

∫ κ

ξ

Φ(λ)∆λ+ (1− α)

∫ κ

ξ

Φ(λ)∇λ, 0 ≤ α ≤ 1, (2.1)

provided that there exist delta and nabla integrals of Φ on T.
The following inequality is given in [6, 22].
Let r > 0 and z > 0. Then the following inequality is valid:

zr ≤ rr

er
ez. (2.2)

The following well-known Young’s inequality holds:
For Ω, χ > 0 and v ∈ [0, 1], we have

Ω1−vχv ≤ (1− v)Ω + vχ. (2.3)

Kantorovich’s ratio is defined by

K(h) :=
(h+ 1)2

4h
,

where h > 0.
The following inequality is given in [14].
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For any Ω, χ ∈ [m,M ] ⊂ (0,∞) and v ∈ [0, 1], we have

(1− v)Ω + vχ ≤ Kδ

(
M

m

)
Ω1−vχv, (2.4)

where δ = max{1− v, v}.
The following definition concerning the time scale ∆-Riemann–Liouville type

fractional integral is given in [3, 5].
For α ≥ 1, the time scale ∆-Riemann–Liouville type fractional integral for a

function Φ ∈ Crd is defined by

Iα
ξ Φ(κ) =

∫ κ

ξ

hα−1(κ, σ(γ))Φ(γ)∆γ, (2.5)

which is an integral on [ξ, κ)T, see [9] and hα : T×T → R, α ≥ 0 are the coordinate
wise rd-continuous functions, such that h0(κ, ζ) = 1,

hα+1(κ, ζ) =

∫ κ

ζ

hα(γ, ζ)∆γ, ∀ζ, κ ∈ T. (2.6)

Notice that

I1
ξΦ(κ) =

∫ κ

ξ

Φ(γ)∆γ,

which is absolutely continuous in κ ∈ [ξ, ω]T, see [9].
The following definition concerning the time scale ∇-Riemann–Liouville type

fractional integral is given in [4, 5].
For α ≥ 1, the time scale ∇-Riemann–Liouville type fractional integral for a

function Φ ∈ Cld is defined by

J α
ξ Φ(κ) =

∫ κ

ξ

ĥα−1(κ, ρ(γ))Φ(γ)∇γ, (2.7)

which is an integral on (ξ, κ]T, see [9] and ĥα : T×T → R, α ≥ 0 are the coordinate

wise ld-continuous functions, such that ĥ0(κ, ζ) = 1,

ĥα+1(κ, ζ) =

∫ κ

ζ

ĥα(γ, ζ)∇γ, ∀ζ, κ ∈ T. (2.8)

Notice that

J 1
ξ Φ(κ) =

∫ κ

ξ

Φ(γ)∇γ,

which is absolutely continuous in κ ∈ [ξ, ω]T, see [9].

Theorem 2.1 ( [1]). Let ξ, ω ∈ T and η1, η2 ∈ R. Suppose Ψ ∈ Crd([ξ, ω]T, (η1, η2))
and Υ ∈ Crd([ξ, ω]T,R) with

∫ ω

ξ
|Υ(λ)|∆λ > 0. If 𭟋 ∈ C((η1, η2),R) is convex, then

𭟋

(∫ ω

ξ
|Υ(λ)|Ψ(λ)∆λ∫ ω

ξ
|Υ(λ)|∆λ

)
≤
∫ ω

ξ
|Υ(λ)|𭟋 (Ψ(λ))∆λ∫ ω

ξ
|Υ(λ)|∆λ

. (2.9)

If 𭟋 is strictly convex, then the inequality ≤ can be replaced by <.

In this paper, it is assumed that all considerable integrals exist and are finite.
Let T be a time scale, ξ, ω ∈ T with ξ < ω and an interval [ξ, ω]T means the
intersection of the real interval with the given time scale.
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3. Integral inequalities

First, we give an extension of Feng Qi’s inequality by using the diamond-alpha
integral.

Theorem 3.1. Let r ≥ 1 and Υ,Φ ∈ C ([ξ, ω]T,R− {0}) be ⋄α-integrable functions
such that 0 < |Υ(λ)Φ(λ)| ≤ r(ω − ξ)−1 on the set [ξ, ω]T. Then(∫ ω

ξ

|Υ(λ)Φ(λ)| ⋄α λ

)r

≤ rr

er
exp

(∫ ω

ξ

|Υ(λ)Φ(λ)| ⋄α λ

)
≤ r2r

(ω − ξ)1+r

∫ ω

ξ

|Υ(λ)Φ(λ)|−r ⋄α λ. (3.1)

Proof. From the given condition, we have∫ ω

ξ
|Υ(λ)Φ(λ)| ⋄α λ ≤ r and r−r(ω − ξ)r ≤ |Υ(λ)Φ(λ)|−r.

Applying (2.2) to z =
∫ ω

ξ
|Υ(λ)Φ(λ)| ⋄α λ, we have

er

rr

(∫ ω

ξ

|Υ(λ)Φ(λ)| ⋄α λ

)r

≤ exp

(∫ ω

ξ

|Υ(λ)Φ(λ)| ⋄α λ

)
≤ err−r(ω − ξ)−1−rrr(ω − ξ)1+r

≤ errr

(ω − ξ)1+r

∫ ω

ξ

|Υ(λ)Φ(λ)|−r ⋄α λ.

The proof of Theorem 3.1 is completed.

Remark 3.1. Let T = R, Υ ≡ 1 and Φ > 0. Then inequality (3.1) reduces to
inequality (1.1).

Remark 3.2. Let α = 1, T = Z, ξ = 1, ω = n + 1, Υ ≡ 1 and Φ(k) = xk > 0,
k = 1, 2, . . . , n. Then inequality (3.1) reduces to(

n∑
k=1

xk

)r

≤ rr

er
exp

(
n∑

k=1

xk

)
≤ r2r

(ω − ξ)1+r

n∑
k=1

x−r
k . (3.2)

Throughout this section, we will assume that neither Φ ≡ 0 nor Ψ ≡ 0. Now, we
present Callebaut’s inequality [10] and reverse Callebaut’s inequality on time scales
by applying the diamond-alpha integral.

Theorem 3.2. Let Υ,Φ,Ψ ∈ C ([ξ, ω]T,R) be ⋄α-integrable functions. Assume

further that 0 < m ≤ |Φ(λ)|
|Ψ(λ)| ≤ M < ∞ on the set [ξ, ω]T. Let v ∈ [0, 1]. Then∫ ω

ξ

|Υ(λ)||Φ(λ)|2(1−v)|Ψ(λ)|2v ⋄α λ

∫ ω

ξ

|Υ(λ)||Φ(λ)|2v|Ψ(λ)|2(1−v) ⋄α λ

≤
∫ ω

ξ

|Υ(λ)||Φ(λ)|2 ⋄α λ

∫ ω

ξ

|Υ(λ)||Ψ(λ)|2 ⋄α λ

≤Kδ

((
M

m

)2
)∫ ω

ξ

|Υ(λ)||Φ(λ)|2(1−v)|Ψ(λ)|2v ⋄α λ
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×
∫ ω

ξ

|Υ(λ)||Φ(λ)|2v|Ψ(λ)|2(1−v) ⋄α λ, (3.3)

where δ = max{1− v, v}.

Proof. For λ, γ ∈ [ξ, ω]T, it is clear that

m2 ≤ |Φ(λ)|2

|Ψ(λ)|2
,
|Φ(γ)|2

|Ψ(γ)|2
≤ M2. (3.4)

Let Ω(λ) = |Φ(λ)|2
|Ψ(λ)|2 and χ(γ) = |Φ(γ)|2

|Ψ(γ)|2 , λ, γ ∈ [ξ, ω]T. Using (2.3) and (2.4), we have

(
|Φ(λ)|2

|Ψ(λ)|2

)1−v ( |Φ(γ)|2

|Ψ(γ)|2

)v

≤ (1− v)
|Φ(λ)|2

|Ψ(λ)|2
+ v

|Φ(γ)|2

|Ψ(γ)|2

≤ Kδ

((
M

m

)2
)(

|Φ(λ)|2

|Ψ(λ)|2

)1−v ( |Φ(γ)|2

|Ψ(γ)|2

)v

. (3.5)

Multiplying by |Ψ(λ)|2|Ψ(γ)|2, λ, γ ∈ [ξ, ω]T, (3.5) takes the form

|Φ(λ)|2(1−v)|Ψ(λ)|2v|Φ(γ)|2v|Ψ(γ)|2(1−v)

≤(1− v)|Φ(λ)|2|Ψ(γ)|2 + v|Ψ(λ)|2|Φ(γ)|2

≤Kδ

((
M

m

)2
)
|Φ(λ)|2(1−v)|Ψ(λ)|2v|Φ(γ)|2v|Ψ(γ)|2(1−v). (3.6)

Multiplying by |Υ(λ)| and integrating (3.6) with respect to λ from ξ to ω, we obtain(∫ ω

ξ

|Υ(λ)||Φ(λ)|2(1−v)|Ψ(λ)|2v ⋄α λ

)
|Φ(γ)|2v|Ψ(γ)|2(1−v)

≤(1− v)

(∫ ω

ξ

|Υ(λ)||Φ(λ)|2 ⋄α λ

)
|Ψ(γ)|2

+ v

(∫ ω

ξ

|Υ(λ)||Ψ(λ)|2 ⋄α λ

)
|Φ(γ)|2

≤Kδ

((
M

m

)2
)(∫ ω

ξ

|Υ(λ)||Φ(λ)|2(1−v)|Ψ(λ)|2v ⋄α λ

)
|Φ(γ)|2v|Ψ(γ)|2(1−v).

(3.7)

Again, multiplying by |Υ(γ)| and integrating (3.7) with respect to γ from ξ to ω,
we obtain the desired inequality (3.3).

Remark 3.3. Let α = 1, T = Z, ξ = 1, ω = n+ 1, Φ(k) = xk > 0, Ψ(k) = yk > 0

and Υ(k) = wk ≥ 0 for any k ∈ {1, 2, . . . , n} with
n∑

k=1

wk = 1. Then inequality (3.3)

reduces to (1.2).

Remark 3.4. We have the following results:

(i) If we replace v by 1
2 (1− v) with v ∈ [0, 1] in (3.3), then we get∫ ω

ξ

|Υ(λ)||Φ(λ)|1+v|Ψ(λ)|1−v ⋄α λ

∫ ω

ξ

|Υ(λ)||Φ(λ)|1−v|Ψ(λ)|1+v ⋄α λ
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≤
∫ ω

ξ

|Υ(λ)||Φ(λ)|2 ⋄α λ

∫ ω

ξ

|Υ(λ)||Ψ(λ)|2 ⋄α λ

≤K
1+v
2

((
M

m

)2
)∫ ω

ξ

|Υ(λ)||Φ(λ)|1+v|Ψ(λ)|1−v ⋄α λ

×
∫ ω

ξ

|Υ(λ)||Φ(λ)|1−v|Ψ(λ)|1+v ⋄α λ. (3.8)

(ii) Also, if we take v = 1
2u with u ∈ [0, 2] in (3.3), then we get∫ ω

ξ

|Υ(λ)||Φ(λ)|2−u|Ψ(λ)|u ⋄α λ

∫ ω

ξ

|Υ(λ)||Φ(λ)|u|Ψ(λ)|2−u ⋄α λ

≤
∫ ω

ξ

|Υ(λ)||Φ(λ)|2 ⋄α λ

∫ ω

ξ

|Υ(λ)||Ψ(λ)|2 ⋄α λ

≤Kς

((
M

m

)2
)∫ ω

ξ

|Υ(λ)||Φ(λ)|2−u|Ψ(λ)|u ⋄α λ

×
∫ ω

ξ

|Υ(λ)||Φ(λ)|u|Ψ(λ)|2−u ⋄α λ, (3.9)

where ς = max
{

1
2u, 1−

1
2u
}
.

4. Fractional inequalities

In this section, we give an extension of Qi’s inequality by using the time scale
∆-Riemann–Liouville type fractional integral.

Theorem 4.1. Let 0 < p < q ≤ 1, r > 0 and Υ,Φ ∈ Crd ([ξ, ω]T,R) be ∆-
integrable functions such that Iα

ξ (|Υ(κ)||Φ(κ)|q) < ∞, ∀κ ∈ [ξ, ω]T. Then for α ≥ 1
and hα−1(., .) > 0, we have the following inequality(

Iα
ξ (|Υ(κ)||Φ(κ)|p)

) r
p ≤ rr

er
(
Iα
ξ (|Υ(κ)|)

) r
p−

r
q exp

(
Iα
ξ (|Υ(κ)||Φ(κ)|q)

) 1
q . (4.1)

Proof. Applying the inequality (2.2) for z =
(∫ κ

ξ
|Υ(γ)||Φ(γ)|q∆γ

) 1
q

, we have[(∫ κ

ξ

|Υ(γ)||Φ(γ)|q∆γ

) 1
q

]r
≤ rr

er
exp

(∫ κ

ξ

|Υ(γ)||Φ(γ)|q∆γ

) 1
q

. (4.2)

Choosing 𭟋(γ) = γ
q
p in Theorem 2.1, which for 0 < p < q ≤ 1 is obviously a convex

function on [0,∞), we have(∫ κ

ξ

|Υ(γ)||Φ(γ)|p∆γ

) r
p

≤
(∫ κ

ξ

|Υ(γ)|∆γ

) r
p−

r
q
(∫ κ

ξ

|Υ(γ)||Φ(γ)|q∆γ

) r
q

≤ rr

er

(∫ κ

ξ

|Υ(γ)|∆γ

) r
p−

r
q

exp

(∫ κ

ξ

|Υ(γ)||Φ(γ)|q∆γ

) 1
q

.



1148 F. Chaudhry & M. J. S. Sahir

Replacing |Υ(γ)| by hα−1(κ, σ(γ))|Υ(γ)| in the last inequalities, we get the desired
inequality. The proof of Theorem 4.1 is completed.

Next, we give an extension of Qi’s inequality by using the time scale∇-Riemann–
Liouville type fractional integral.

Theorem 4.2. Let 0 < p < q ≤ 1, r > 0 and Υ,Φ ∈ Cld ([ξ, ω]T,R) be ∇-integrable
functions such that J α

ξ (|Υ(κ)||Φ(κ)|q) < ∞, ∀κ ∈ [ξ, ω]T. Then for α ≥ 1 and

ĥα−1(., .) > 0, we have the following inequality(
J α
ξ (|Υ(κ)||Φ(κ)|p)

) r
p ≤ rr

er
(
J α
ξ (|Υ(κ)|)

) r
p−

r
q exp(J α

ξ (|Υ(κ)||Φ(κ)|q))
1
q . (4.3)

Proof. Similar to the proof of Theorem 4.1.

Remark 4.1. Let α = 1, T = R, κ = ω and Υ,Φ ≥ 0. Then inequality (4.1)
reduces to inequality (1.3).

Next, we give another extension of Qi’s inequality by using the time scale ∆-
Riemann–Liouville type fractional integral.

Theorem 4.3. Let 1
r + 1

s = 1 for r, s > 1 and Υ,Φ,Ψ ∈ Crd ([ξ, ω]T,R− {0}) be

∆-integrable functions such that 0 < m ≤ |Φ(γ)|r
|Ψ(γ)|s ≤ M < ∞ on the set [ξ, κ]T,

∀κ ∈ [ξ, ω]T. Let α ≥ 1 and hα−1(., .) > 0. Then we have the following inequality

(
Iα
ξ (|Υ(κ)||Φ(κ)|r)

) 1
r
(
Iα
ξ (|Υ(κ)||Ψ(κ)|s)

) 1
s ≤

(
M

m

) 1
rs

Iα
ξ (|Υ(κ)||Φ(κ)Ψ(κ)|),

(4.4)
and hence deduce that

(
Iα
ξ (|Φ(κ)|r)

) (
Iα
ξ

(
|Ψ(κ)|

r
r−1
))r−1 ≤

(
M

m

)1− 1
r (

Iα
ξ (|Φ(κ)Ψ(κ)|)

)r
≤
(
M

m

)1− 1
r rr

er
exp(Iα

ξ (|Φ(κ)Ψ(κ)|)). (4.5)

Proof. Using the given condition, for γ ∈ [ξ, κ]T, ∀κ ∈ [ξ, ω]T, we have

|Ψ(γ)| ≥ M− 1
s |Φ(γ)| rs .

Multiplying both sides by hα−1(κ, σ(γ))|Υ(γ)| and integrating over γ from ξ to κ,
we have (∫ κ

ξ

hα−1(κ, σ(γ))|Υ(γ)||Φ(γ)|r∆γ

) 1
r

≤M
1
rs

(∫ κ

ξ

hα−1(κ, σ(γ))|Υ(γ)||Φ(γ)Ψ(γ)|∆γ

) 1
r

. (4.6)

On the other hand, we have

|Φ(γ)| ≥ m
1
r |Ψ(γ)| sr .

Multiplying both sides by hα−1(κ, σ(γ))|Υ(γ)| and integrating over γ from ξ to κ,
we have (∫ κ

ξ

hα−1(κ, σ(γ))|Υ(γ)||Ψ(γ)|s∆γ

) 1
s
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≤m− 1
rs

(∫ κ

ξ

hα−1(κ, σ(γ))|Υ(γ)||Φ(γ)Ψ(γ)|∆γ

) 1
s

. (4.7)

Combining (4.6) and (4.7), we get (4.4).
When Υ ≡ 1, then (4.4) takes the form

(
Iα
ξ (|Φ(κ)|r)

) 1
r
(
Iα
ξ (|Ψ(κ)|s)

) 1
s ≤

(
M

m

) 1
rs

Iα
ξ (|Φ(κ)Ψ(κ)|). (4.8)

Applying (2.2) to z = Iα
ξ (|Φ(κ)Ψ(κ)|), ∀κ ∈ [ξ, ω]T, we get (4.5) from (4.8). This

completes the proof of Theorem 4.3.
Next, we give another extension of Qi’s inequality by using the time scale ∇-

Riemann–Liouville type fractional integral.

Theorem 4.4. Let 1
r + 1

s = 1 for r, s > 1 and Υ,Φ,Ψ ∈ Cld ([ξ, ω]T,R− {0}) be

∇-integrable functions such that 0 < m ≤ |Φ(γ)|r
|Ψ(γ)|s ≤ M < ∞ on the set [ξ, κ]T,

∀κ ∈ [ξ, ω]T. Let α ≥ 1 and ĥα−1(., .) > 0. Then we have the following inequality

(
J α
ξ (|Υ(κ)||Φ(κ)|r)

) 1
r
(
J α
ξ (|Υ(κ)||Ψ(κ)|s)

) 1
s ≤

(
M

m

) 1
rs

J α
ξ (|Υ(κ)||Φ(κ)Ψ(κ)|),

(4.9)

and hence deduce that

(
J α
ξ (|Φ(κ)|r)

) (
J α
ξ

(
|Ψ(κ)|

r
r−1
))r−1 ≤

(
M

m

)1− 1
r (

J α
ξ (|Φ(κ)Ψ(κ)|)

)r
≤
(
M

m

)1− 1
r rr

er
exp(J α

ξ (|Φ(κ)Ψ(κ)|)). (4.10)

Proof. Similar to the proof of Theorem 4.3.
Now, we give an extension of Cauchy–Schwarz’s inequality by using the time

scale ∆-Riemann–Liouville type fractional integral.

Theorem 4.5. Let Υ,Φ,Ψ ∈ Crd ([ξ, ω]T,R) be ∆-integrable functions. We assume
that m,n,M,N ∈ (0,+∞) such that (N |Ψ(γ)| −m|Φ(γ)|)(M |Φ(γ)| − n|Ψ(γ)|) ≥ 0
on the set [ξ, κ]T, ∀κ ∈ [ξ, ω]T. Let α ≥ 1 and hα−1(., .) > 0. Then we have the
following inequality

Iα
ξ (|Υ(κ)||Φ(κ)|)Iα

ξ (|Υ(κ)||Ψ(κ)|)
Iα
ξ (|Υ(κ)|)Iα

ξ (|Υ(κ)||Φ(κ)Ψ(κ)|)
≤ 1

2

(√
MN

mn
+

√
mn

MN

)
. (4.11)

Proof. From the given condition, for γ ∈ [ξ, κ]T, ∀κ ∈ [ξ, ω]T, we have

(MN +mn)|Φ(γ)Ψ(γ)| ≥ Mm|Φ(γ)|2 +Nn|Ψ(γ)|2. (4.12)

Multiplying both sides of inequality (4.12) by |Υ(γ)| and integrating over γ from ξ
to κ, we obtain

(MN +mn)

∫ κ

ξ

|Υ(γ)||Φ(γ)Ψ(γ)|∆γ
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≥Mm

∫ κ

ξ

|Υ(γ)||Φ(γ)|2∆γ +Nn

∫ κ

ξ

|Υ(γ)||Ψ(γ)|2∆γ. (4.13)

From Jensen’s inequality (2.9), we have(∫ κ

ξ

|Υ(γ)||Φ(γ)|∆γ

)2

≤
(∫ κ

ξ

|Υ(γ)|∆γ

)(∫ κ

ξ

|Υ(γ)||Φ(γ)|2∆γ

)
, (4.14)

and(∫ κ

ξ

|Υ(γ)||Ψ(γ)|∆γ

)2

≤
(∫ κ

ξ

|Υ(γ)|∆γ

)(∫ κ

ξ

|Υ(γ)||Ψ(γ)|2∆γ

)
. (4.15)

By using inequalities (4.14) and (4.15) and applying the AM-GM inequality, the
inequality (4.13) takes the form

(MN +mn)

(∫ κ

ξ

|Υ(γ)|∆γ

)(∫ κ

ξ

|Υ(γ)||Φ(γ)Ψ(γ)|∆γ

)
≥Mm

(∫ κ

ξ

|Υ(γ)||Φ(γ)|∆γ

)2

+Nn

(∫ κ

ξ

|Υ(γ)||Ψ(γ)|∆γ

)2

≥2
√
MNmn

(∫ κ

ξ

|Υ(γ)||Φ(γ)|∆γ

)(∫ κ

ξ

|Υ(γ)||Ψ(γ)|∆γ

)
. (4.16)

Replacing |Υ(γ)| by hα−1(κ, σ(γ))|Υ(γ)| in (4.16), we obtain the desired claim.
Next, we give an extension of Cauchy–Schwarz’s inequality by using the time

scale ∇-Riemann–Liouville type fractional integral.

Theorem 4.6. Let Υ,Φ,Ψ ∈ Cld ([ξ, ω]T,R) be ∇-integrable functions. We assume
that m,n,M,N ∈ (0,+∞) such that (N |Ψ(γ)| −m|Φ(γ)|)(M |Φ(γ)| − n|Ψ(γ)|) ≥ 0

on the set [ξ, κ]T, ∀κ ∈ [ξ, ω]T. Let α ≥ 1 and ĥα−1(., .) > 0. Then we have the
following inequality

J α
ξ (|Υ(κ)||Φ(κ)|)J α

ξ (|Υ(κ)||Ψ(κ)|)
J α
ξ (|Υ(κ)|)J α

ξ (|Υ(κ)||Φ(κ)Ψ(κ)|)
≤ 1

2

(√
MN

mn
+

√
mn

MN

)
. (4.17)

Proof. Similar to the proof of Theorem 4.5.
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