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Fibonacci Wavelet Collocation Method for Solving
a Class of System of Nonlinear Pantograph

Differential Equations
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Abstract This paper introduces a unique strategy for solving numerically
a class of nonlinear Pantograph differential equations using the Fibonacci
wavelet collocation method (FWCM). First, we transform the nonlinear Pan-
tograph differential equations system into a nonlinear algebraic system using
this proposed approach. Next, the transformed nonlinear algebraic system is
solved by using the Newton-Raphson scheme. The main advantage of this
approach lies in its ability to reduce the computational complexity associated
with solving Pantograph equations, resulting in accurate and efficient solu-
tions. Comparative analyses with other established numerical methods reveal
its superior accuracy and convergence rate performance. Further, a few ex-
amples are provided to evaluate the effectiveness of the suggested approach
using absolute error functions. As far as our literature survey indicates, no
one attempted the nonlinear Pantograph differential equations by FWCM. It
compels us to study a system of Pantograph differential equations via FWCM.

Keywords Pantograph equations, collocation technique, Fibonacci wavelet,
operational matrix of integration
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1. Introduction

Differential equations have been vital for defining and analyzing problems in many
scientific disciplines for more than 300 years. The concepts of differential equations
were initially introduced in the late seventeenth century by Gottfried Wilhelm Leib-
niz, Isaac Newton, and the Bernoulli brothers, Johann and Jakob. These happened
naturally from these outstanding scientists’ attempts to apply the new concepts
of calculus to specific mechanical issues, such as the brachistochrone problem and
celestial body motion routes. From the earliest ways of finding exact solutions in
terms of elementary functions to the more recent methods of analytic and numerical
approximation, their significance has inspired generations of mathematicians and
other scientists to develop methods for investigating features of their solutions. Fur-
thermore, they have been essential to the growth of mathematics since discoveries
in analysis, topology, algebra, and geometry have frequently provided fresh insights
into differential equations and since queries concerning differential equations have
given rise to new fields of study.
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Systems of ordinary differential equations are often encountered in different sci-
ence fields, such as biology, physics, economics, and engineering. Due to their versa-
tility in modeling and describing dynamic processes, systems of ordinary differential
equations (SODEs) find extensive use in diverse domains. Ordinary differential sys-
tems are essential tools to solve problems in the real world. ODE system of second
order describes a broad range of natural phenomena. For instance, chemists can
forecast reaction rates as well as the concentrations of reactants and products over
time by using ODEs to simulate the kinetics of chemical processes, to comprehend
and predict the behavior of economic variables like inflation, GDP growth, and
investment. ODE systems are employed in financial modeling, and climate mod-
els use ordinary differential equations (ODEs) to forecast the earth’s temperature,
precipitation patterns, and other climatic variables throughout time.

The differential equations that describe the motion of a pantograph are crucial
for understanding and analyzing the behavior of the mechanical linkage. These
equations are significant for the following reasons: The differential equations make
it easier to comprehend how the pantograph’s orientation and position vary over
time in response to outside inputs and forces. Forecasting and examining the pan-
tograph’s motion while it is in operation is necessary. Pantographs are sometimes
employed with control systems to accomplish particular motion patterns or to follow
a predetermined path. The differential equations play a crucial role in developing
and applying control algorithms that regulate the pantograph’s movement. The
basics for developing mathematical models of pantograph systems are differential
equations. Engineers can test theories, investigate alternative scenarios, and assess
the pantograph’s performance under various circumstances by using these models
for simulation. Pantograph differential equations are significant because they are a
vital tool for evaluating, planning, and enhancing the motion of pantograph systems
in various applications.

Consider the following class of system of nonlinear Pantograph differential equa-
tions. [1]

Z ′
1 (ξ) = α1Z1(ξ) + f1(ξ,Zi(ξ),Zi(qjξ)),

Z ′
2 (ξ) = α2Z2(ξ) + f2(ξ,Zi(ξ),Zi(qjξ)), (1.1)

...

Z ′
n(ξ) = αnZn(ξ) + fn(ξ,Zi(ξ),Zi(qjξ)).

ui(0) = ui0 ,where i, j = 1, . . . , n, αi, ui0 ∈ R, fi are analytic functions, and 0 <
qj < 1. Zi(ξ) are dependent variables and ξ is an independent variable.

Multiple numerical approaches are created to approximate the solutions to those
equations because of the challenges in finding the analytical solutions. Widatalla S.
implemented the Laplace transform and Adomian decomposition method [1], Khuri
S., [2] proposed the Laplace Adomian decomposition method, Cakmak M. et al.
implemented the Fibonacci collocation method [3], He et al. proposed variational
iteration method [4], Operational matrix approach based on Bernoulli polynomials
was proposed by Rani D. et. al. [5], Odibat et al. developed Optimized decomposi-
tion method [6] and improved optimal homotopy analysis algorithm [7]. Davaeifar
S., proposed the first Boubaker polynomials (FBPs) for the multi pantograph type
equations [8].
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2. Wavelet theory

A relatively new area of mathematics is wavelet theory and wavelet analysis. Al-
fred Haar created the first and most basic wavelet in 1909. It was initially used
in the 1980s for signal processing, and in the last ten years, its enormous poten-
tial for image processing applications has been acknowledged. Fourier transforms
can be used to extract frequency information. Eventually, however, it loses its
association with any spatial data. Wavelet transforms can extract precise informa-
tion from one image, which can be injected into another using various techniques,
such as addition, substitution, or selection based on spatial context or frequency.
Additionally, the wavelet function employed in the transform might be created
with special qualities beneficial for the particular transform application. In par-
ticular, the literature frequently employs orthogonal wavelets to handle various
differential equations. Several wavelet-based numerical approaches have been mag-
nificently solved in the literature, including the following: Legendre wavelet collo-
cation method [9, 10], Taylor wavelet collocation method [11, 12], Hermite wavelet
collocation scheme [13,14], Chebyshev wavelet collocation method [15,16], Laguerre
wavelet collocation approach [17, 18], Bernoulli wavelet scheme [19, 20, 22], Ultras-
pherical wavelet method [23, 24], Cardinal B-spline wavelet method [25], Genocchi
wavelets [26] and Gegenbauer wavelet method [27].

Fibonacci wavelets are derived from Fibonacci polynomials, one of the essen-
tial members of Appell polynomials. The Fibonacci wavelet basis functions pos-
sess remarkable properties, including compact support, making them well-suited
for approximating solutions to differential equations. Fibonacci polynomials are
advantageous when approximating functions over classical orthogonal polynomials
such as Chebyshev and Laguerre polynomials because of fewer terms and smaller
coefficients of individual terms. An extensive discussion is included in the book [28]
regarding the properties, benefits, applications, and various other extensions of Fi-
bonacci polynomials. The suggested wavelet-based numerical method is easy to
implement, computationally attractive, efficient, and computationally appealing.
Because of its unique characteristics and benefits over other wavelets, Fibonacci
wavelets have drawn the interest of many researchers. As a consequence, the re-
searchers used this polynomial-based wavelet method to solve some of the equa-
tions, such as telegraph equations in a fractional sense with Dirichlet boundary
conditions [29], epidemiological model of computer virus [30], fractional optimum
control problems with bibliometric analysis [31], time fractional bioheat transfer
model [32], chemistry problems [33], two types of time-varying delay problems [34],
a category of nonlinear differential equation systems [35], Penne’s bioheat trans-
fer equation [36], fractional order Brusselator chemical model [37], higher order
linear Fredholm integral differential-difference equations [38], fractional partial dif-
ferential equations arising in the financial market [39], distributed-order fractional
optimal control problems [40]. Some of the articles utilized to improvise the paper
are [45–51].

2.1. Significance of the proposed method (FWCM)

1. Fibonacci wavelets are a special type of wavelets that are not based on orthog-
onal polynomials. Still, we can express the Fibonacci polynomials in terms
of some orthogonal polynomials, such as the Chebyshev polynomial of the



Wavelet Method for the Pantograph Differential Equations 1209

second kind.

2. The Fibonacci polynomials have fewer terms than Legendre polynomials. This
difference increases with an increase in the degree of polynomial. Therefore,
Fibonacci polynomials take less CPU time than Legendre polynomials.

3. Error components in the OMI representing Fibonacci polynomials are less
than those of other polynomials, i.e., the Fibonacci polynomials have smaller
coefficients of individual terms than corresponding ones in other polynomials.
Computational errors can be reduced using this property.

4. The coefficients of the Fibonacci polynomial are found very easily by using
computer programs like the Fibonacci[m,x] command implemented in Math-
ematica to obtain Fibonacci polynomials.

5. The Fibonacci wavelet method is suitable for solutions with sharp edge/ jump
discontinuities.

6. Fractional differential equations, delay differential equations, and stiff systems
can be solved using this method directly without using any control parameters.

7. By slightly modifying the method, the Fibonacci wavelet method can be used
to solve the higher-order system of ordinary differential equations.

8. This method can also be extended to PDEs and other mathematical models
with different physical conditions.

9. It obtains the solution of the differential equation in the universal domain by
taking the suitable transformation.

Section 3 describes the properties of Fibonacci wavelets, setting the stage for the
remainder of the article. In section 4, the operational matrix for Fibonacci wavelets
is shown. The solution method is presented in 5. In 6, numerical outcomes are
displayed. Section 7 concludes with some findings.

3. Preliminaries of Fibonacci wavelets

On the interval [0, 1], Fibonacci wavelets are defined as [29,34],

δn,m(ξ) =

{
2

k−1
2√
Sm

Pm(2k−1ξ − n̂), n̂
2k−1 ≤ ξ < n̂+1

2k−1 ,

0, Otherwise,

with

Sm =

∫ 1

0

(Pm(ξ))2dξ,

where Pm(ξ) is the Fibonacci polynomial of degree m = 0, 1, ...,M − 1, translation
parameter n = 1, 2, ..., 2k−1 and k represents the level of resolution k = 1, 2, ..., re-
spectively. The quantity 1√

Sm
is a normalization factor. The Fibonacci polynomials

are defined as follows in the form of the recurrence relation for every ξ ∈ R+,

Pm+2(ξ) = ξPm+1(ξ) + Pm(ξ), ∀m ≥ 0,

with initial conditions P0(ξ) = 1, P1(ξ) = ξ. Fibonacci wavelets are compactly
supported wavelets formed by Fibonacci polynomials over the interval [0, 1].
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Theorem 3.1. [20] Let L2[0,1] be the Hilbert space generated by the Fibonacci
wavelet basis. Let η(ξ) be the continuous bounded function in L2[0, 1]. Then the
Fibonacci wavelet expansion of η(ξ) converges with it.

Theorem 3.2. [21] Let S = {δi,j(ξ) | i, j ∈ Z} be the set of Fibonacci wavelet func-
tions on R. Then L2(R) is the Fibonacci space generated by S, and it is complete.

Proof. Let {δi,j(ξ)|i, j ∈ Z}, to be the basis of the normed linear space L2(R).
Consider {δki,j} be the Fibonacci cauchy sequence in L2(R). By the definition of

Cauchy sequence for a given, ϵ = 1
2 > 0, there exists a positive integer η1, such that

||δki,j − δli,j ||2 < 1
2 , ∀k, l ≥ η1;

for ϵ = 1
2 , choose δk1

i,j , such that ||δk1
i,j − δk2

i,j ||2 < 1
2 , ∀k1, k2 ≥ η1;

for ϵ = 1
22 , choose δk2

i,j , such that ||δk2
i,j − δk3

i,j ||2 < 1
22 ,∀k2, k3 ≥ η2;

...

for ϵ = 1
2n , choose δkn

i,j such that ||δkn
i,j − δ

kn+1

i,j ||2 < 1
2n , ∀kn, kn+1 ≥ ηn.

Therefore, {δkn
i,j } is a subsequence of {δki,j}. It is clear that,

∞∑
k=1

||δkn+1

i,j −δkn
i,j ||2 ≤

∞∑
n=1

1
2n = 1.

Consider, ϕn = |δk1
| + |δk2

− δk1
|+, ...,+|δkn+1

− δkn
|, for n = 1, 2, 3, ... Then

{ϕn} is an increasing sequence of non-negative measurable functions, such that
||ϕn||22=[||δk1

||2 +
∑
1
||δkn+1

− δkn
||2]2, (by Minkowski inequality)

||ϕn||22 ≤ (||δk1
||2 + 1)2 < ∞.

Therefore ϕn is a bounded and increasing sequence, then there exists ϕ such
that lim

n→∞
ϕn = ϕ. By monotone convergence theorem, we have∫

ϕ2dξ = lim
n→∞

∫
ϕ2
ndξ < ∞ =⇒ ϕ ∈ Lp(R).

This implies that the series δk1
(ξ) +

∞∑
1
|δkn+1

(ξ) − δkn
(ξ)| converges almost every-

where.
Therefore {δkn

} converges to δ(ξ), ∀ξ ∈ A, where A is a measurable set. Further,
let ϵ > 0 be given. Choose l so large such that ||δki,j − δli,j ||2 < ϵ, ∀k, l ≥ L.

This implies that ||δki,j − δlni,j ||2 < ϵ, ∀k, ln ≥ L.

Thus, we have [
∫
|δki,j − δlni,j |2dξ] < ϵ2 (by Fatou’s Lemma),∫

|δ − δki,j |2dξ =
∫

lim
k→∞

|δnk
i,j − δki,j |2dξ < ϵ2 < ∞.

Thus, δ− δki,j ∈ Lp(R) and δ = δ− δki,j + δki,j ∈ Lp(R) with lim
n→∞

||δ− δki,j ||2 = 0.

Thus δ is limit in L2(R) of sequence {δki,j}. Hence Lp(R) is complete.

Theorem 3.3. [21] Let us assume that f(ξ) = dnu(ξ)
dξn ∈ L2(R) is a continuous

function on [0,1] and its first derivative is bounded for all ξ ∈ [0, 1], n ≥ 2. Then,
the Fibonacci wavelet method will be convergent based on the approach proposed in
[42]. That is, |EM | vanishes as J goes to infinity. The convergence is of order

two [43] as follows ||EM ||2 = O
[(

1
2J+1

)2]
.
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3.1. Solution at collocation points

Let µ be a set of all collocation points which is measurable. Let {Ci} be the
sequence of collocation points and {fk

i } be the sequence of functional values at
{Ci} that satisfies the given system of differential equations. Here fk is a function
from Z+ to R defined by fk(i) = fk

i . Then,

fk(ξ) =

∞∑
i=1

fk(i),

where fk(ξ) is an exact solution of a given system of k-differential equations.

4. Operational matrix of integration (OMI)

The Fibonacci wavelet basis at k = 1 and M = 10 is investigated as follows [44]:

δ1,0(ξ) =1,

δ1,1(ξ) =
√
3ξ,

δ1,2(ξ) =
1

2

√
15

7
(1 + ξ2),

δ1,3(ξ) =

√
105

239
ξ (2 + ξ2),

δ1,4(ξ) =3

√
35

1943
(1 + 3ξ2 + ξ4),

δ1,5(ξ) =
3

4

√
385

2582
ξ (3 + 4ξ2 + ξ4),

δ1,6(ξ) =3

√
5005

1268209
(1 + 6ξ2 + 5ξ4 + ξ6),

δ1,7(ξ) =3

√
5005

2827883
ξ (4 + 10ξ2 + 15ξ4 + 7ξ6 + ξ8),

δ1,8(ξ) =
3

2

√
85085

28195421
(1 + 10ξ2 + 15ξ4 + 7ξ6 + ξ8),

δ1,9(ξ) =3

√
1616615

5016284989
ξ (5 + 20ξ2 + 21ξ4 + 8ξ6 + ξ8).

Let

δ10(x)

=[δ1,0(ξ), δ1,1(ξ), δ1,2(ξ), δ1,3(ξ), δ1,4(ξ), δ1,5(ξ), δ1,6(ξ), δ1,7(ξ), δ1,8(ξ), δ1,9(ξ)]
T .

As a linear combination of Fibonacci wavelet basis, integrate the first ten basis
mentioned above for the range of ξ limits from 0 to ξ. We acquire, as∫ ξ

0
δ1,0(ξ)dξ =

[
0

1
√
3

0 0 0 0 0 0 0 0

]
δ10(ξ),∫ ξ

0
δ1,1(ξ)dξ =

[
−
√
3

2
0

√
7

5
0 0 0 0 0 0 0

]
δ10(ξ),
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0
δ1,2(ξ)dξ =

[
0

√
5

6
√
7

0

√
239

42
0 0 0 0 0 0

]
δ10(ξ),

∫ ξ

0
δ1,3(ξ)dξ =

[
−

√
105

2
√
239

0
7

2
√
239

0

√
1943

4
√
717

0 0 0 0 0

]
δ10(ξ),

∫ ξ

0
δ1,4(ξ)dξ =

[
0 0 0

√
717

5
√
1943

0
4
√
2582

5
√
21373

0 0 0 0

]
δ10(ξ),

∫ ξ

0
δ1,5(ξ)dξ =

[
−

√
385

4
√
2582

0 0 0

√
21373

24
√
2582

0

√
1268209

24
√
33566

0 0 0

]
δ10(ξ),∫ ξ

0
δ1,6(ξ)dξ =

[
0 0 0 0 0

4
√
33566

7
√
1268209

0

√
2827883

7
√
1268209

0 0

]
δ10(ξ),∫ ξ

0
δ1,7(ξ)dξ =

[
−

3
√
5005

4
√
2827883

0 0 0 0 0

√
1268209

8
√
2827883

0

√
28195421

4
√
48074011

0

]
δ10(ξ),

∫ ξ

0
δ1,8(ξ)dξ =

[
0 0 0 0 0 0 0

√
48074011

18
√
28195421

0

√
5016284989

18
√
535712999

]
δ10(ξ),

∫ ξ

0

δ1,9(ξ)dξ =

[
− 3

√
323323

25081424945
0 0 0 0 0 0 0

√
535712999

5
√
5016284989

0

]
δ10(ξ) +

√
11941544471

10
√
5016284989

δ1,10(ξ).

Hence, ∫ ξ

0

δ(ξ)dξ = Φ10×10 δ10(ξ) + δ10(ξ), (4.1)

where

Φ10×10 =



0 1√
3

0 0 0 0 0 0 0 0

−
√
3

2
0

√
7
5

0 0 0 0 0 0 0

0
√
5

6
√
7

0
√
239
42

0 0 0 0 0 0

−
√
105

2
√
239

0 7

2
√
239

0
√
1943

4
√
717

0 0 0 0 0

0 0 0
√
717

5
√
1943

0 4
√
2582

5
√
21373

0 0 0 0

−
√
385

4
√
2582

0 0 0
√
21373

24
√
2582

0
√
1268209

24
√
33566

0 0 0

− 3
√
5005

4
√
2827883

0 0 0 0 0
√
1268209

8
√
2827883

0
√
28195421

4
√
48074011

0

0 0 0 0 0 0 0
√
48074011

18
√
28195421

0
√
5016284989

18
√
535712999

−3
√

323323
25081424945

0 0 0 0 0 0 0
√
535712999

5
√
5016284989

0



,
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δ10(ξ) =



0

0

0

0

0

0

0

0

0
√
11941544471

10
√
5016284989

δ1,10(ξ)



.

Again, integrating the above ten bases, we obtain,∫ ξ

0

∫ ξ

0
δ1,0(ξ)dξdξ =

[
1

2
0

√
7

15
0 0 0 0 0 0 0

]
δ10(ξ),

∫ ξ

0

∫ ξ

0
δ1,1(ξ)dξdξ =

[
0 −

1

3
0

√
239

6
√
35

0 0 0 0 0 0

]
δ10(ξ),

∫ ξ

0

∫ ξ

0
δ1,2(ξ)dξdξ =

[
−

√
5

2
√
21

0
1

4
0

√
1943

168
√
3

0 0 0 0 0

]
δ10(ξ),

∫ ξ

0

∫ ξ

0
δ1,3(ξ)dξdξ =

[
0 −

5
√
35

12
√
239

0
2

15
0

√
2582

5
√
7887

0 0 0 0

]
δ10(ξ),

∫ ξ

0

∫ ξ

0
δ1,4(ξ)dξdξ =

[
−

√
35

2
√
1943

0
7
√
3

10
√
1943

0
1

12
0

√
1268209

30
√
277849

0 0 0

]
δ10(ξ),

∫ ξ

0

∫ ξ

0
δ1,5(ξ)dξdξ =

[
0 −

√
385

4
√
7746

0

√
2629

40
√
7746

0
2

35
0

√
2827883

168
√
33566

0 0

]
δ10(ξ),

∫ ξ

0

∫ ξ

0
δ1,6(ξ)dξdξ =

[
−

√
5005

4
√
1268209

0 0 0

√
277849

42
√
1268209

0
1

24
0

√
28195421

28
√
21559553

0

]
δ10(ξ),

∫ ξ

0

∫ ξ

0
δ1,7(ξ)dξdξ =

[
0 −

√
15015

4
√
2827883

0 0 0

√
16783

7
√
5655766

0
2

63
0

√
5016284989

72
√
913406209

]
δ10(ξ),

∫ ξ

0

∫ ξ

0
δ1,8(ξ)dξdξ =

[
−

3
√
17017

8
√
140977105

0 0 0 0 0

√
21559553

144
√
28195421

0
1

40
0

]
δ10(ξ)
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+

√
11941544471

180
√
535712999

δ1,10(ξ),

∫ ξ

0

∫ ξ

0
δ1,9(ξ)dξdξ =

[
0 −

√
969969

25081424945
0 0 0 0 0

√
913406209

90
√
5016284989

0
2

99

]
δ10(ξ)

+
4
√
10276002038

55
√
115374554747

δ1,11(ξ).

Hence,

∫ ξ

0

∫ ξ

0

δ(ξ)dξdξ = Φ
′

10×10 δ(ξ) + δ
′
10(ξ). (4.2)

Φ′
10×10 =



− 1
2 0

√
7
15 0 0 0 0 0 0 0

0 − 1
3 0

√
239

6
√
35

0 0 0 0 0 0

−
√
5

2
√
21

0 1
4 0

√
1943

168
√
3

0 0 0 0 0

0 − 5
√
35

12
√
239

0 2
15 0

√
2582

5
√
7887

0 0 0 0

−
√
35

2
√
1943

0 7
√
3

10
√
1943

0 1
12 0

√
1268209

30
√
277849

0 0 0

0 −
√
385

4
√
7746

0
√
2629

40
√
7746

0 2
35 0

√
2827883

168
√
33566

0 0

−
√
5005

4
√
1268209

0 0 0
√
277849

42
√
1268209

0 1
24 0

√
28195421

28
√
215559553

0

0 −
√
15015

4
√
2827883

0 0 0
√
116783

7
√
5655766

0 2
63 0

√
5016284989

72
√
913406209

− 3
√
17017

8
√
140977105

0 0 0 0 0
√
21559553

144
√
28195421

0 1
0 0

0 −
√

969969
25081424945 0 0 0 0 0

√
913406209

90
√
5016284989

0 2
99



,

δ
′
10(ξ) =



0

0

0

0

0

0

0

0
√
11941544471

180
√
535712999

δ1,10(ξ)

4
√
10276002038

55
√
115374554747

δ1,11(ξ)



.

We may also create the operational matrix for our convenience at various sizes in
the same manner.
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5. Fibonacci wavelet method

Generalized form of (1.1) is

Z
′′

p (ξ) = αpZp(ξ) + fp(ξ,Z1(ξ), . . . ,Zp(ξ),Z
′

1 (ξ), . . . ,Z
′

p (ξ),Z1(qξ), . . . ,Zp(qpξ)),

(5.1)

where 1 ≤ p ≤ n with the initial conditions Zp(0) = βp, Z
′

p (0) = γp and qp
represents delay terms. Assume that

Z
′′

p (ξ) =

∞∑
r=1

∞∑
s=0

apr,s δr,s(ξ) =

∞∑
i=1

api δ(ξ), 1 ≤ p ≤ n.

Truncating the above equation we get,

Z
′′

p (ξ) =

2k−1∑
r=1

M−1∑
s=0

apr,s δr,s(ξ) =
2k−1M∑
i=1

api δ(ξ) = AT δ(ξ), 1 ≤ p ≤ n, (5.2)

where, δr,s = δ(ξ) =
[
δ1,0, . . . , δ1,M−1, δ2,1, . . . , δ2,M−1, . . . , δ2k−1,0, . . . , δ2k−1,M−1

]T
and apr,s = api =

[
ap1, a

p
2, . . . , a

p
2k−1M

]
. Integrating (5.2) with respect to ξ limit from

0 to ξ, we obtain,

Z
′

p (ξ) = Z
′

p (0) +AT [Φδ(ξ) + δ10(ξ)],

Z
′

p (ξ) = γp +AT [Φδ(ξ) + δ10(ξ)], (5.3)

where AT is the unknown coefficient matrix and Φ and δ10(ξ) are the operational
matrices obtained in section 3.

Integrate (5.3) with respect to ξ limit from 0 to ξ, we obtain

Zp(ξ) = Zp(0) + ξγp +AT [Φ
′
δ(ξ) + δ

′
10(ξ)],

Zp(ξ) = βp ++ξγp +AT [Φ
′
δ(ξ) + δ

′
10(ξ)]. (5.4)

Fit (5.4), (5.3) and (5.2) into (5.1) for each fixed value of p = 1, ..., n. Then collocate
the obtained equation using the following grid points:

ξi =
2i− 1

2kM
, i = 1, ..., 2k−1M.

Then we obtain the following system algebraic equations

F1(a
1
1, a

1
2, ..., a

1
2k−1M , a21, a

2
2, ..., a

2
2k−1M , ..., an1 , a

n
2 , ..., a

n
2k−1M ) = 0,

F2(a
1
1, a

1
2, ..., a

1
2k−1M , a21, a

2
2, ..., a

2
2k−1M , ..., an1 , a

n
2 , ..., a

n
2k−1M ) = 0,

...

Fn×2k−1M (a11, a
1
2, ..., a

1
2k−1M , a21, a

2
2, ..., a

2
2k−1M , ..., an1 , a

n
2 , ..., a

n
2k−1M ) = 0.

 (5.5)

To find the values of unknown Fibonacci wavelet coefficients aki , where i = 1, ...,
2k−1M and k = 1, ..., n, we considered the Newton-Raphson method as follows: If
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the initial guess of the root is aki and aki+1 is the point at which the slope intercepts,
then the Taylor series expansion of (5.5) can be written as

F1,i+1 =F1,i + (ak
1,i+1 − ak

1,i)
∂F1,i

∂ak
1

+ (ak
2,i+1 − ak

2,i)
∂F1,i

∂ak
2

+, ...,+(ak
2k−1M,i+1 − ak

2k−1M,i)

∂F1,i

∂ak
2k−1M

, (5.6)

where k = 1, 2, 3, ..., n. Applying the Taylor expansion similarly for F2, F3, F4, ...,
Fn×2k−1M , and generalizing for n× 2k−1M equations, we get,

∂Fk,i

∂ak1
ak1,i+1 +

∂Fk,i

∂ak2
ak2,i+1+, ...,+

∂Fk,i

∂ak2M
ak2M,i+1

=− Fk,i + ak1,i
∂Fk,i

∂ak1
+ ak2,i

∂Fk,i

∂ak2
+, ..., (5.7)

+ ak2k−1M,i

∂Fk,i

∂ak
2k−1M

,

where the first subscript k represents the equations in (5.5), and the second subscript
denotes the function value at the present value (i) or at the next value (i+1). (5.7)
can be represented in a matrix notation as:

[J ][aki+1] = −[F ] + [J ][aki ], (5.8)

where the partial derivatives evaluated at i are written as the Jacobian matrix
consisting of partial derivatives:

[J ] =



∂F1,i

∂ak
1

∂F1,i

∂ak
2

· · · ∂F1,i

∂ak

2k−1M

∂F2,i

∂ak
1

∂F2,i

∂ak
2

· · · ∂F2,i

∂ak

2k−1M

... · · ·
...

∂Fn,i

∂ak
1

∂Fn,i

∂ak
2

· · · ∂Fn,i

∂ak

2k−1M


.

The initial and final values are expressed in the vector form as:

[aki ]
T =

[
ak1,i ak2,i · · · akn,i

]
, [aki+1]

T =
[
ak1,i+1 ak2,i+1 · · · akn,i+1

]
, and

[F ]T=
[
F1,i F2,i · · · Fn,i

]
.

Multiplying the inverse of the Jacobian to (5.8)

[aki+1] = [aki ]− [J ]−1[F ]. (5.9)

From (5.9), we get the unknown Fibonacci wavelet coefficients aki s. Using aki s in
equation (5.4), we get the desired solution of the considered system (1.1).

6. Numerical illustration

Here, we employ the FWCM to solve a Pantograph-type equation. We find a suit-
able solution for the considered equations using the operational integration matrix
via the FWCM. Then, we transform the nonlinear differential equations into a set
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of algebraic equations. Later, with the Newton-Raphson approach, the set of non-
linear algebraic equations is resolved, and the Fibonacci wavelet coefficients and
wavelet-based numerical solutions of Pantograph equations are obtained by substi-
tuting these coefficient values.
Problem 1. Consider the second-order nonlinear system of Pantograph-type equa-
tions. [4]

Z ′′
1 (ξ) + Z ′

1 (ξ)− ξZ ′
2 (ξ) + Z1(ξ) + Z1(ξ)Z2(ξ) + Z1(ξ)Z2(

ξ
2
) = 3ξ3

2
− 3ξ2 − 7ξ

2
+ 11,

−ξZ ′′
1 (ξ) + Z ′

2 (ξ) + Z1(ξ) + Z 2
1 (ξ) + Z 2

2 (
ξ
5
) = ξ4 − 126ξ2

25
+ 14ξ

5
+ 3.


(6.1)

With initial conditions

Z1(0) = −3, Z2(0) = −3, Z ′
1 (0) = 0. (6.2)

The exact solutions are: Z1(ξ) = ξ2 − 3, Z2(ξ) = ξ − 2. The FWCM solutions
for problem 1 are shown in Figures 1 and 2, revealing that the proposed method
yields the exact solution. It can be seen from Figures 1 and 2 that the solutions are
stable and tend to the specified function (which can be a solution for the equation
physically). These figures show minimal changes in approximate solutions with and
without noises. So, our approximate method is numerically stable. The exact solu-
tion and numerical approximations produced by the implemented FWCM approach
are compared and tabulated in Table 1. Figures 1 and 2 depict all the graphical
representations of numerical simulations.

Table 1. Numerical comparison for Z1(ξ) and Z2(ξ) with the eaxct solution of Problem 1.

Z1(ξ) Z2(ξ)

ξ Exact Solution FWCM Solution ξ Exact Solution FWCM Solution

0 -3.00 -3.00 0 -2.0 -2.0

0.1 -2.99 -2.99 0.1 -1.9 -1.9

0.2 -2.96 -2.96 0.2 -1.8 -1.8

0.3 -2.91 -2.91 0.3 -1.7 -1.7

0.4 -2.84 -2.84 0.4 -1.6 -1.6

0.5 -2.75 -2.75 0.5 -1.5 -1.5

0.6 -2.64 -2.64 0.6 -1.4 -1.4

0.7 -2.51 -2.51 0.7 -1.3 -1.3

0.8 -2.36 -2.36 0.8 -1.2 -1.2

0.9 -2.19 -2.19 0.9 -1.1 -1.1

1.0 -2.00 -2.00 1.0 -1.0 -1.0
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Figure 2. Graphical comparision of the FWCM solution Z2(ξ) for Problem 1.
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Figure 1. Graphical comparision of the FWCM solution Z1(ξ) for Problem 1.
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Problem 2: Consider the following system of a Pantograph type equation [4]

−Z ′′
1 (ξ) + Z ′′

2 (ξ) + ξZ ′
1 (ξ) + Z1(

ξ
2 )Z2(

ξ
2 ) = g1(ξ),

ξZ ′′
2 (ξ) + Z ′′

1 (ξ) + Z 2
2 (ξ) + Z2(

ξ
2 )Z1(

ξ
10 ) = g2(ξ).

}
(6.3)

With initial conditions,

Z ′
1 (0) = 1, Z2(0) = 0, Z ′

1 (0) = 2 Z ′
2 (0) = −2. (6.4)

The exact solutions are

Z1(ξ) = e2ξ, Z2(ξ) = e−2ξ.

Here, g1(ξ) = −2e2ξξ + e
3ξ
5 + 4e−2ξ, and g2(ξ) = 4e−2ξ(ξ + e4ξ) + 2e

4ξ
5 + e−4ξ.

The numerical and exact solutions are compared with FCM (Fibonacci collocation
method) solutions, and the values are tabulated in Tables 2 and 3. The absolute
error between the analytical and approximative solutions is presented in the same
tables. Figures 3 and 4 provide the visual representation of the obtained solution by
FWCM compared with the FCM solution. The graphical representation of the ab-
solute error of our suggested approach is carried out in Figures 5 and 6. The present
method has more accurate results than the other method. A much smaller number
of collocation points is used in the present method. The maximum absolute error
in this method is much less than in the other method. The tables and figures show
that the suggested approach provides superior accuracy over the current numerical
methods. The tables and graphs show that the proposed approach converges more
rapidly with the exact solution than other methods, and the proposed method is a
suitable and powerful tool to solve the desired Pantograph equation.

Table 2. Numerical comparison for Z1(ξ) with different methods of Problem 2.

ξ Exact Solution FWCM Solution AE of FWCM AE of FCM

(k=1, M=8) (E1,8)

0 1.00000000000 1.00000000000 0 0

0.1 1.22140275816 1.22140270375 5.44× 10−8 -

0.2 1.49182469764 1.49182459299 1.04× 10−7 9.80× 10−8

0.3 1.82211880039 1.82211864961 1.50× 10−7 -

0.4 2.22554092849 2.22554073328 1.92× 10−7 2.10× 10−7

0.5 2.71828182846 2.71828159234 2.36× 10−7 -

0.6 3.32011692274 3.32011664646 2.76× 10−7 3.25× 10−7

0.7 4.05519996684 4.05519965258 3.14× 10−7 -

0.8 4.95303242445 4.95303207109 3.53× 10−7 4.14× 10−7

0.9 6.04964746441 6.04964707292 3.91× 10−7 -

1.0 7.38905609893 7.38905567043 4.24× 10−7 1.54× 10−5
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Table 3. Numerical comparison for Z2(ξ) with different methods of Problem 2.

ξ Exact Solution FWCM Solution AE of FWCM AE of FCM

(k=1, M=8) (E1,8)

0 1.00000000000 1.00000000000 0 0

0.1 0.81873075307 0.81873074490 8.17× 10−9 -

0.2 0.67032004603 0.67032003277 1.32× 10−8 2.75× 10−8

0.3 0.54881163609 0.54881162231 1.37× 10−8 -

0.4 0.44932896411 0.44932895468 9.43× 10−9 6.44× 10−8

0.5 0.36787944117 0.36787944136 1.91× 10−10 -

0.6 0.30119421191 0.30119422658 1.46× 10−8 1.12× 10−7

0.7 0.24659696394 0.24659699799 3.40× 10−8 -

0.8 0.20189651799 0.20189657572 5.77× 10−8 1.68× 10−7

0.9 0.16529888822 0.16529897414 8.59× 10−8 -

1.0 0.13533528323 0.13533540131 1.18× 10−7 2.60× 10−6
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Figure 3. Graphical comparision of the FWCM solution Z1(ξ) for Problem 2.
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Figure 4. Graphical comparision of the FWCM solution Z2(ξ) for Problem 2.
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Figure 5. AE Comparison of FWCM and FCM solution with exact solution for Problem 2.
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Figure 6. AE Comparison of FWCM and FCM solution with exact solution for Problem 2.

Problem 3: Consider the following system of a Pantograph type equation. [1]

−Z ′
1 (ξ) + Z1(ξ) + e−ξ cos( ξ2 )Z2(

ξ
2 ) + 2e

−3
4ξ cos( ξ2 ) sin(

ξ
2 )Z1(

ξ
4 ) = 0,

Z ′
2 (ξ)− exZ 2

1 (
ξ
2 ) + Z 2

2 (
ξ
2 ) = 0.

}
(6.5)

With initial conditions,

Z1(0) = 1, Z2(0) = 0, (6.6)

and the exact solutions are

Z1(ξ) = e−ξ cos(ξ), Z2(ξ) = sin(ξ).

The FWCM solutions for Problem 3 are shown in Tables 4-5 and Figures 7-8,
revealing that the proposed method solutions are reasonably close to the exact
solution compared to the current scheme, such as the Fibonacci collocation method
(FCM) and Adomian decomposition method (ADM). Numerical approximations
and absolute errors of the developed approach with the exact solution are tabulated
in Tables 4-7. It is evident from Figures 7-8 that the approximations obtained from
FWCM attain closer to the exact solution. The errors obtained using the proposed
method are better than those obtained using other existing techniques. FWCM
solutions are calculated at diverse values of M . Also, by increasing the values of
M , we get more accuracy in the solution, which can be seen in Tables 6-7. It shows
that increasing k and M can obtain a higher-order accuracy. Figures 9-10 depict all
the graphical representations of numerical simulations and absolute error analysis.
It can be seen that from Figures 1 and 2, the solutions are stable and tend to
the specified function (which can be a solution for the equation physically). These
figures show minimal changes in approximate solutions with and without noises.
So, our approximate method is numerically stable.
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Table 4. Numerical comparison for Z1(ξ) with different methods of Problem 3.

ξ Exact Solution FWCM Solution AE of FWCM AE of ADM AE of FCM

(k=1, M=8) (E1,3) (E1,3)

0 1.000000000000 1.000000000000 0 0 0

0.1 0.900316999845 0.900317002673 5.35× 10−6 - -

0.2 0.802410647343 0.802410649338 3.23× 10−6 1.90× 10−5 9.36× 10−4

0.3 0.707730678026 0.707730679944 1.84× 10−6 - -

0.4 0.617405647902 0.617405649481 1.99× 10−6 3.65× 10−4 1.01× 10−3

0.5 0.532280730216 0.532280731559 2.03× 10−6 - -

0.6 0.452953789145 0.452953790266 1.08× 10−6 2.11× 10−3 1.97× 10−4

0.7 0.379809389925 0.379809390762 1.42× 10−7 - -

0.8 0.313050504004 0.313050504826 9.65× 10−7 7.44× 10−2 8.46× 10−4

0.9 0.252727753291 0.252727753343 2.42× 10−6 - -

1.0 0.198766110346 0.198766113439 5.66× 10−6 1.96× 10−2 1.06× 10−2

Table 5. Numerical comparison for Z2(ξ) with different methods of Problem 3.

ξ Exact Solution FWCM Solution AE of FWCM AE of ADM AE of FCM

(k=1, M=8) (E1,3) (E1,3)

0 1.000000000000 1.000000000000 0 0 0

0.1 0.099833416646 0.099833416886 1.85× 10−6 - -

0.2 0.198669330795 0.198669331744 2.61× 10−6 1.67× 10−5 1.54× 10−5

0.3 0.295520206661 0.295520208145 3.47× 10−6 - -

0.4 0.389418342309 0.389418344255 4.41× 10−6 1.79× 10−4 3.04× 10−4

0.5 0.479425538604 0.479425540985 5.06× 10−6 - -

0.6 0.564642473395 0.564642476196 5.28× 10−6 3.28× 10−4 9.48× 10−4

0.7 0.644217687238 0.644217690425 5.38× 10−6 - -

0.8 0.717356090952 0.717356094392 5.83× 10−6 1.27× 10−3 1.40× 10−3

0.9 0.783326909627 0.783326913406 6.44× 10−6 - -

1.0 0.841470984808 0.841470988576 4.86× 10−6 1.01× 10−2 2.47× 10−4
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Table 6. Comparision of Z1(ξ) with different values of M for Problem 3.

ξ Exact Solution AE of FWCM

k=1,M=3 k=2,M=3 k=1,M=5 k=1,M=5

0 1.000000000000 0 0 0 0

0.1 0.900316999845 5.35× 10−6 3.93× 10−8 2.82× 10−9 4.31× 10−10

0.2 0.802410647343 3.23× 10−6 3.09× 10−8 1.99× 10−9 2.32× 10−10

0.3 0.707730678026 1.84× 10−6 2.55× 10−8 1.91× 10−9 7.21× 10−10

0.4 0.617405647902 1.99× 10−6 2.64× 10−8 1.57× 10−9 3.82× 10−10

0.5 0.532280730216 2.03× 10−6 1.34× 10−8 1.34× 10−9 8.25× 10−10

0.6 0.452953789145 1.08× 10−6 3.04× 10−7 1.12× 10−9 2.82× 10−10

0.7 0.379809389925 1.42× 10−7 8.36× 10−7 8.36× 10−10 5.21× 10−11

0.8 0.313050504004 9.65× 10−7 1.48× 10−6 8.21× 10−10 6.28× 10−11

0.9 0.252727753291 2.42× 10−6 2.11× 10−6 5.18× 10−11 9.21× 10−10

1.0 0.198766110346 5.66× 10−6 2.54× 10−6 3.09× 10−9 3.62× 10−10

Table 7. Comparision of Z2(ξ) with different values of M for Problem 3.

ξ Exact Solution AE of FWCM

k=1,M=3 k=2,M=3 k=1,M=5 k=1,M=5

0 1.000000000000 0 0 0 0

0.1 0.099833416646 1.85× 10−6 1.62× 10−8 2.39× 10−10 4.31× 10−10

0.2 0.198669330795 2.61× 10−6 2.61× 10−8 9.38× 10−10 2.32× 10−10

0.3 0.295520206661 3.47× 10−6 3.28× 10−8 2.39× 10−10 7.21× 10−10

0.4 0.389418342309 4.41× 10−6 3.95× 10−8 2.39× 10−10 3.82× 10−10

0.5 0.479425538604 5.06× 10−6 2.38× 10−9 2.39× 10−10 8.25× 10−10

0.6 0.564642473395 5.28× 10−6 8.54× 10−7 2.39× 10−10 2.82× 10−10

0.7 0.644217687238 5.38× 10−6 1.33× 10−5 2.39× 10−10 5.21× 10−11

0.8 0.717356090952 5.83× 10−6 1.59× 10−5 2.39× 10−10 6.28× 10−11

0.9 0.783326909627 6.44× 10−6 1.70× 10−5 2.39× 10−10 9.21× 10−10

1.0 0.841470984808 4.86× 10−6 1.74× 10−5 2.39× 10−10 3.62× 10−10
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Figure 7. Graphical comparision of the FWCM solution Z1(ξ) for Problem 3.
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1226 Manohara G. & Kumbinarasaiah S.

◆ ◆ ◆ ◆ ◆ ◆

◆◆

★

★ ★

★

★

★ ★

★

★

◆ AE of FWCM(k=1,M=3)

★ AE of ADM (E1,3)

★ AE of FCM(E1,3)

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.001

0.002

0.003

0.004

0.005

ξ

E
rr
o
r
A
n
al
ys
is
o
f


1
(ξ
)

Figure 9. AE Comparison of FWCM, ADM and FCM solution with exact solution for Problem 3.
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Figure 10. AE Comparison of FWCM, ADM and FCM solution with exact solution for Problem 3.

Problem 4: Consider the three-dimensional system of nonlinear pantograph delay
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differential equation: [1, 8]

Z ′
1 (ξ) = Z3(ξ) + 2Z2(0.5ξ) + u1(ξ),

Z ′
2 (ξ) = −2Z 2

3 (0.5ξ) + u2(ξ),

Z ′
3 (ξ) = −Z1(ξ) + Z2(ξ) + u3(ξ).

 (6.7)

With the initial conditions,

Z1(0) = −1, Z2(0) = 0, Z3(0) = 0. (6.8)

The exact solutions are Z1(ξ) = cos(ξ), Z2(ξ) = ξ cos(ξ), Z1(ξ) = sin(ξ). Here,
u1(ξ) = −ξ cos( ξ2 ), u2(ξ) = 1− ξ sin(ξ), and u3(ξ) = −ξ cos(ξ). Tables 8-10 provide
the comparison of numerical approximations and absolute errors of the FWCM with
the exact solution for Z1(ξ) and Z2(ξ). The absolute error between the exact and
approximative solutions at different resolutions (various values of M) is presented
in Tables 11-13. Figures 11-13 show a graphical illustration of the FWCM solution
with the exact solution. Also, the graphical representation of the Absolute error
(AE) of the proposed method with the FBP method is carried out in Figures 14-16.
The absolute error between the analytical and approximative solutions at different
resolutions (various M and k) is presented visually in Figures 17-19. Tables and
graphs confirm that our proposed approach can generate more precise results by
simply increasing the M and k values. The tables and figures show that the sug-
gested approach provides superior accuracy over the current numerical methods.

Table 8. Numerical comparison for Z1(ξ) with FWCM of Problem 4.

ξ Exact solution |e1,4(ξ)| |e1,6(ξ)| |e1,9(ξ)|

FWCM FBP FWCM FBP FWCM FBP

0 -1.0000000000 0 0 0 0 0 0

0.05 -0.9987502604 9.46× 10−7 - 1.45× 10−9 - 4.44× 10−13 -

0.10 -0.9950041653 1.69× 10−6 7.50× 10−5 2.37× 10−9 1.30× 10−7 8.94× 10−13 1.22× 10−11

0.15 -0.9887710779 2.45× 10−6 - 3.18× 10−9 - 1.31× 10−13 -

0.20 -0.9800665778 3.25× 10−6 3.02× 10−5 3.89× 10−9 7.26× 10−8 1.69× 10−13 9.91× 10−12

0.25 -0.9689124217 4.06× 10−6 - 4.52× 10−9 - 2.08× 10−13 -

0.30 -0.9553364891 4.77× 10−6 2.71× 10−5 5.14× 10−9 4.04× 10−8 2.49× 10−13 7.20× 10−12

0.35 -0.9393727128 5.30× 10−6 - 5.83× 10−9 - 2.90× 10−13 -

0.40 -0.9210609942 5.67× 10−6 5.41× 10−5 6.52× 10−9 1.04× 10−7 3.31× 10−13 6.56× 10−12

0.45 -0.9004471024 6.13× 10−6 - 7.14× 10−9 - 3.69× 10−13 -

0.50 -0.8775825619 7.23× 10−6 1.12× 10−3 8.11× 10−9 2.35× 10−6 4.21× 10−13 7.58× 10−10
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Table 9. Numerical comparison for Z2(ξ) with FWCM with Exact solution Problem 4.

ξ Exact solution |e1,4(ξ)| |e1,6(ξ)| |e1,9(ξ)|

FWCM FBP FWCM FBP FWCM FBP

0 1.0000000000 0 0 0 0 0 0

0.05 0.0499375130 7.85× 10−6 - 7.87× 10−9 - 4.07× 10−12 -

0.10 0.0995004165 6.92× 10−6 3.12× 10−5 5.64× 10−9 6.88× 10−8 3.30× 10−12 3.55× 10−12

0.15 0.1483156617 4.71× 10−6 - 5.50× 10−9 - 3.53× 10−12 -

0.20 0.1960133156 4.15× 10−6 4.91× 10−5 6.08× 10−9 1.19× 10−7 3.43× 10−12 1.04× 10−11

0.25 0.2422281054 5.16× 10−6 - 5.77× 10−9 - 3.44× 10−12 -

0.30 0.2866009467 6.15× 10−6 8.39× 10−5 5.45× 10−9 1.60× 10−7 3.44× 10−12 1.59× 10−11

0.35 0.3287804495 5.58× 10−6 - 6.00× 10−9 - 3.32× 10−12 -

0.40 0.3684243976 3.37× 10−6 1.16× 10−4 5.82× 10−9 2.16× 10−7 3.52× 10−12 2.06× 10−11

0.45 0.4052011961 2.39× 10−6 - 3.55× 10−9 - 2.73× 10−12 -

0.50 0.4387912809 9.88× 10−6 2.00× 10−4 1.11× 10−8 7.61× 10−7 6.68× 10−12 1.47× 10−11

Table 10. Numerical comparison for Z3(ξ) with FWCM with Exact solution Problem 4.

ξ Exact solution |e1,4(ξ)| |e1,6(ξ)| |e1,9(ξ)|

FWCM FBP FWCM FBP FWCM FBP

0 0.0000000000 0 0 0 0 0 0

0.05 0.0499791692 2.16× 10−6 - 1.65× 10−9 - 7.33× 10−13 -

0.10 0.0998334166 2.27× 10−6 3.70× 10−5 1.52× 10−9 9.54× 10−8 7.66× 10−13 1.43× 10−10

0.15 0.1494381325 1.96× 10−6 - 1.63× 10−9 - 9.23× 10−13 -

0.20 0.1986693308 1.92× 10−6 4.18× 10−5 1.84× 10−9 1.05× 10−7 1.01× 10−12 1.81× 10−10

0.25 0.2474039593 2.18× 10−6 - 1.89× 10−9 - 1.09× 10−12 -

0.30 0.2955202067 2.46× 10−6 3.54× 10−5 1.88× 10−9 9.70× 10−8 1.15× 10−12 1.68× 10−10

0.35 0.3428978075 2.41× 10−6 - 1.97× 10−9 - 1.17× 10−12 -

0.40 0.3894183423 1.98× 10−6 3.88× 10−5 1.95× 10−9 8.13× 10−8 1.21× 10−12 9.89× 10−11

0.45 0.4349655341 1.66× 10−6 - 1.59× 10−9 - 1.13× 10−12 -

0.50 0.4794255386 2.80× 10−6 2.08× 10−4 2.33× 10−9 7.03× 10−7 1.44× 10−12 1.37× 10−9
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Table 11. Numerical comparison for Z1(ξ) with FWCM with Exact solution Problem 4.

ξ AE of FWCM

k=1,M=4 k=2,M=4 k=1,M=6 k=1,M=6 k=1,M=8 k=2,M=8

0 0 0 0 0 0 0

0.05 3.16× 10−5 9.46× 10−7 1.10× 10−7 1.45× 10−9 2.30× 10−10 4.44× 10−13

0.10 5.78× 10−5 1.69× 10−6 2.00× 10−7 2.37× 10−9 4.27× 10−10 8.94× 10−13

0.15 8.10× 10−5 2.45× 10−6 2.89× 10−7 3.18× 10−9 6.38× 10−10 1.31× 10−13

0.20 1.03× 10−4 3.25× 10−6 3.84× 10−7 3.89× 10−9 8.56× 10−10 1.69× 10−12

0.25 1.25× 10−4 4.06× 10−6 4.81× 10−7 4.52× 10−9 1.06× 10−9 2.08× 10−12

0.30 1.48× 10−4 4.77× 10−6 5.78× 10−7 5.14× 10−9 1.26× 10−9 2.49× 10−12

0.35 1.71× 10−4 5.30× 10−6 6.68× 10−7 5.83× 10−9 1.44× 10−9 2.90× 10−12

0.40 1.91× 10−4 5.67× 10−6 7.52× 10−7 6.52× 10−9 1.62× 10−9 3.31× 10−12

0.45 2.19× 10−4 6.13× 10−6 8.28× 10−7 7.14× 10−9 1.80× 10−9 3.69× 10−12

0.50 2.42× 10−4 7.23× 10−6 8.99× 10−7 8.11× 10−9 1.98× 10−9 4.21× 10−12

Table 12. Numerical comparison for Z2(ξ) with FWCM with Exact solution Problem 4.

ξ AE of FWCM

k=1,M=4 k=2,M=4 k=1,M=6 k=1,M=6 k=1,M=8 k=2,M=8

0 0 0 0 0 0 0

0.05 1.66× 10−4 7.85× 10−6 8.30× 10−7 7.87× 10−9 2.03× 10−9 4.07× 10−12

0.10 2.27× 10−4 6.92× 10−6 9.11× 10−7 5.64× 10−9 1.88× 10−9 3.30× 10−12

0.15 2.28× 10−4 4.71× 10−6 7.72× 10−7 5.50× 10−9 1.58× 10−9 3.53× 10−12

0.20 1.99× 10−4 4.15× 10−6 6.48× 10−7 6.08× 10−9 1.52× 10−9 3.43× 10−12

0.25 1.63× 10−4 5.16× 10−6 6.05× 10−7 5.77× 10−9 1.57× 10−9 3.44× 10−12

0.30 1.33× 10−4 6.15× 10−6 6.22× 10−7 5.45× 10−9 1.60× 10−9 3.44× 10−12

0.35 1.15× 10−4 5.58× 10−6 6.57× 10−7 6.00× 10−9 1.58× 10−9 3.32× 10−12

0.40 1.12× 10−4 3.37× 10−6 6.74× 10−7 5.82× 10−9 1.53× 10−9 3.52× 10−12

0.45 1.20× 10−4 2.39× 10−6 6.58× 10−7 3.55× 10−9 1.50× 10−9 2.73× 10−12

0.50 1.34× 10−4 9.88× 10−6 6.20× 10−7 1.11× 10−8 1.49× 10−8 6.68× 10−12



1230 Manohara G. & Kumbinarasaiah S.

Table 13. Numerical comparison for Z3(ξ) with FWCM with Exact solution Problem 4.

ξ AE of FWCM

k=1,M=4 k=2,M=4 k=1,M=6 k=1,M=6 k=1,M=8 k=2,M=8

0 0 0 0 0 0 0

0.05 5.28× 10−5 2.16× 10−6 1.97× 10−7 1.65× 10−9 3.96× 10−10 7.33× 10−13

0.10 7.85× 10−5 2.27× 10−6 2.52× 10−7 1.52× 10−9 4.57× 10−10 7.76× 10−13

0.15 8.70× 10−5 1.96× 10−6 2.55× 10−7 1.63× 10−9 4.71× 10−10 9.23× 10−13

0.20 8.58× 10−5 1.92× 10−6 2.51× 10−7 1.84× 10−9 5.02× 10−10 1.01× 10−12

0.25 8.02× 10−5 2.18× 10−6 2.53× 10−7 1.89× 10−9 5.41× 10−10 1.09× 10−12

0.30 7.32× 10−5 2.46× 10−6 2.61× 10−7 1.88× 10−9 5.68× 10−10 1.15× 10−12

0.35 6.84× 10−5 2.41× 10−6 2.69× 10−7 1.97× 10−9 5.79× 10−10 1.17× 10−12

0.40 6.48× 10−5 1.98× 10−6 2.72× 10−7 1.95× 10−9 5.77× 10−10 1.21× 10−12

0.45 6.28× 10−5 1.66× 10−6 2.65× 10−7 1.59× 10−9 5.66× 10−10 1.13× 10−12

0.50 6.15× 10−5 2.80× 10−6 2.50× 10−7 2.33× 10−9 5.48× 10−10 1.44× 10−12
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Figure 11. Graphical comparision of the FWCM solution Z1(ξ) for Problem 4.
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Figure 12. Graphical comparision of the FWCM solution Z2(ξ) for Problem 4.
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Figure 13. Graphical comparision of the FWCM solution Z3(ξ) for Problem 4.
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Figure 14. Plot of Absoute error (A.E) of the solution Z1(ξ) for Problem 4.
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Figure 15. Plot of Absoute error (A.E) of the solution Z2(ξ) for Problem 4.
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Figure 16. Plot of Absoute error (A.E) of the solution Z3(ξ) for Problem 4.
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Figure 17. Comparision of Absoute error (A.E) of the solution Z1(ξ) at different values and M and k
for Problem 4.
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Figure 18. Comparision of Absoute error (A.E) of the solution Z2(ξ) at different values and M and k
for Problem 4.
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Figure 19. Comparision of Absoute error (A.E) of the solution Z3(ξ) at different values and M and k
for Problem 4.
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7. Conclusion

In the present study, we developed the operational integration matrix for the Fi-
bonacci wavelet and generated a novel technique called FWCM. This operational
matrix served as our tool for estimating the numerical solution of the Pantograph-
type differential equations under various physical conditions. Our numerical results
are compared with the Fibonacci collocation method (FCM), First Boubaker Poly-
nomials (FBP), Adomian decomposition method (ADM), and the exact solution
through tables and graphs. Here, we attempted the four nonlinear problems of first
and second order with different physical conditions. FWCM works well for all the
four problems. Numerical approximations of the solutions and absolute errors of
the method are tabulated in Tables 1-5 and 8-10. Graphical representations of the
solutions are visualized in Figures 1-4, 7-8, and 11-13. Also, FWCM solutions are
calculated at diverse values of M . By increasing the values of M , we get more
accuracy in the solution, which can be seen in Tables 6-7 and 11-13. It shows that
increasing M can obtain a higher-order accuracy. The tables and figures show that
the suggested approach provides superior accuracy over the current numerical meth-
ods. Our computed result shows that, compared to other methods, our proposed
approach is valuable and precise.
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