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Entire Solutions for Certain Class of Non-Linear 
General Difference Equations
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Abstract In this paper, we investigate the entire solutions for a certain
class of non-linear difference equations of the form: fn + q(z)eQ(z)L1(z, f) =
α1(z)e

β1(z)+α2(z)e
β2(z), where L1(z, f) is the generalized linear difference op-

erator, α1(z) and α2(z) are non-zero small functions of f , q(z) and Q(z)(non-
constant), β1(z) and β2(z) are non-zero polynomials. Our results improve
upon and generalize some previously established findings.

Keywords Non-linear difference equations, meromorphic function, entire so-
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1. Background information

Assuming the reader’s familiarity with conventional notations and core outcomes
of Nevanlinna’s theory on meromorphic functions (see [9]), in this paper, we consis-
tently refer to meromorphic functions as those meromorphic in the entire complex
plane C. For a meromorphic function f and a ∈ C = C ∪ {∞}, any z such that
f(z) = a is termed an a-point of f . In 1926, the Finnish mathematician Rolf Nevan-
linna made a noteworthy breakthrough in complex analysis by investigating mero-
morphic functions over the complex plane. He demonstrated that a non-constant
function can be uniquely determined by five distinct pre-images, including infinity,
without considering multiplicities. This finding is particularly interesting because
it has no counterpart in the real function theory. Later, Nevanlinna went on to
prove that when multiplicities are taken into account, four points are adequate for
determining the uniqueness of a pair of meromorphic functions. In such cases, ei-
ther the functions coincide, or one is a bilinear transformation of the other. These
seminal discoveries marked the beginning of research into the uniqueness of pairs
of meromorphic functions, especially when one function is related to the other.
Two meromorphic functions f(z) and g(z) share a CM(Counting multiplicity) or
IM(Ignoring multiplicity) if f − a and g − a have the same set of zeros counting
multiplicities or ignoring multiplicities, respectively. Further recall that the order
of f is defined by

ρ(f) = lim
r→∞

sup
log T (r, f)

log r
.
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Establishing the existence of solutions for complex differential equations represents
a significant and challenging problem. Nevanlinna theory has found extensive appli-
cation in analyzing the properties of such equations. In recent times, an increasing
number of researchers have employed Nevanlinna theory to study the solutions of
complex differential equations. Moreover, certain topics related to complex differ-
ence equations or complex nonlinear differential-difference equations have also been
explored using the difference analogs of Nevanlinna theory (see [16], [10], [17]). No-
tably, in 1964, Hayman [9] examined the behavior of nonlinear differential equations
of the following form:

fn + Pd(z, f) = g(z), (1.1)

where Pd(z, f) is a differential polynomials in f of degree d with meromorphic
coefficients of growth S(r, f) and n ≥ 2 is an integer.

In 2004, C.C. Yang and P. Li [20] demonstrated that the differential equation
4f3+3f

′′
= − sin 3z possesses precisely three non-constant entire solutions, namely

f1(z) = sin(z), f2(z) =
√
3
2 cos(z) − 1

2 sin(z), and f3(z) = −
√
3
2 cos(z) − 1

2 sin(z).
Since sin(3z) can be expressed as a linear combination of e3iz and e−3iz, this result
has stimulated the interest of numerous scholars to investigate the more general
differential equation

fn + Pd(z, f) = p1e
α1z + p2e

α2z,

where Pd(z, f) is a polynomial in f and its derivatives with meromorphic coefficients.
Subsequently, it was demonstrated in [19] that the equation:

f2 + q(z)f(z + 1) = p(z),

where p(z) and q(z) are polynomials, does not admit any transcendental entire
solutions of finite order. As a result of the interest generated by the initial findings,
numerous investigations have been undertaken by examining various forms of the
function g(z) in the non-linear differential equation (1.1). For a more comprehensive
overview and additional details regarding non-linear differential equations, one may
consult [1, 11,15,23,24].

Several authors have been intrested in investigating the solution of the following
type of equation

fn + Pd(z, f) = α1(z)e
β1(z) + α2(z)e

β2(z), (1.2)

where Pd(z, f) is a differential polynomials in f of degree d and α1(z), α2(z), β1(z)
and β2(z) are polynomials. Several works pertinent to the topics discussed can
be found in [3, 4, 7, 12, 22]. For instance, Liu et al. [14], in their study referenced
therein, investigated the existence of meromorphic solutions for the equation (1.2)
and derived the following result.

Theorem 1.1. [14] Let n ≥ 3 be an integer and d ≤ n − 2 be the degree of
differential polynomial Pd(z, f). Consider the polynomials β1(z), β2(z) of degree

k(≥ 1) and α1(z), α2(z) be two small non-zero meromorphic functions of ez
k

. If
β
(k)
1

β
(k)
2

/∈
{

n
n−1 ,

n−1
n , −1, 1

}
, and any one of the following occurs

(i) Pd(z, f) ̸≡ 0,

(ii) Pd(z, f) ≡ 0,
β
(k)
1

β
(k)
2

/∈
{
n
d ,

d
n

}
,
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then (1.2) does not have the meromorphic transcendental solution f with N(r, f) =
S(r, f).

Subsequently, in 2013, L.W. Liao et al. [13], in the referenced work, investigated
differential equations of the form

fnf ′ + Pd(z, f) = q(z)eQ(z), (1.3)

and derived results by considering q(z) as a non-zero rational function and Q(z) as
a non-constant polynomial.

Theorem 1.2. [13] Let f be a meromorphic solution of (1.3) with finite number

of poles. Then Pd ≡ 0, f(z) = s(z)e
Q(z)
n+1 , for d ≤ n − 1 and the rational function

s(z) satisifies sn[(n+ 1)s′ +Q′s] = (n+ 1)q.

In 2017, M.F. Chen et al. [5], investigated the existence of finite-order entire
solutions for the following non-linear difference equations

fn + q(z)∆cf(z) = α1(z)e
β1(z) + α2(z)e

β2(z), n ≥ 2

and
fn + q(z)eQ(z)f(z + c) = α1(z)e

λz + α2(z)e
−λz, n ≥ 3,

where q, Q are non-zero polynomials, and c, λ, αi, βi (i = 1, 2) are non-zero
constants.

Over the past two decades, researchers have primarily focused their studies on
three distinct aspects concerning the solutions of shift, delay-differential, or differ-
ential equations:

1. existence and non-existence conditions,

2. order of growth,

3. different types of forms of solutions.

2. Preliminaries

The first lemma is the difference analogues of Logarithmic derivative Lemma [9]
which plays an important role in the study of complex difference equations.

Lemma 2.1. [6] Let f(z) be a non constant meromorphic function with finite
order σ and c1, c2 be two complex numbers such that c1 ̸= c2 then for each ϵ > 0

m

(
r,
f(z + c1)

f(z + c2)

)
= O

(
rσ−1+ϵ

)
.

Lemma 2.2. [8, Clunie’s Lemma] Let f(z) be a non constant finite order mero-
morphic solution of fn(z)P (z, f) = Q(z, f) where P (z, f) and Q(z, f) are dif-
ference polynomials in f with small meromorphic function as coefficient, and let
c ∈ C, δ < 1. If the total degree of Q(z, f) is a polynomial in f and its shifts are at
most n, then

m(r, P (z, f)) = o

(
T (r+ | c |, f)

rδ

)
+ o(T (r, f))

for all r outside of a possible exceptional set with finite logarithmic measure.
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Lemma 2.3. [21] If fk(z), 1 ≤ k ≤ m, and gk(z), 1 ≤ k ≤ m, m ≥ 2 are entire
functions that meet conditions listed below

1.
m∑
i=0

fk(z)e
gk(z) ≡ 0,

2. The orders of fk(z) are less than that of egl(z)−gn(z),
for 1 ≤ k ≤ m, 1 ≤ k ≤ l < n ≤ m, then fk ≡ 0 for 1 ≤ k ≤ m.

Lemma 2.4. [21] Let f be a non-zero meromorphic function. Then

m

(
r,
f ′

f

)
= O(log r) as r → ∞

if f is of finite order, and

m

(
r,
f ′

f

)
= O(log T (r, f)) as r → ∞

possibly outside a set E of r with finite linear measure if f is of infinite order.

3. Main result

We now introduce the generalized linear difference operator of f(z) as,

L1(z, f) =

k∑
i=1

bif(z + ci)( ̸≡ 0), (3.1)

respectively, where bi, ci are non negative integers, c0 = 0. In view of the above
discussion it is quite natural to characterize the nature of exponential polynomial
as a solution of certain non linear difference equation.

Consider the following non linear difference equation of the form

fn + q(z)eQ(z)L1(z, f) = α1(z)e
β1(z) + α2(z)e

β2(z), (3.2)

where n is an integer, α1(z), α2(z) are non zero small functions of f and q(z), Q(z)
(non constant), β1(z), β2(z) are non zero polynomials.

Theorem 3.1. If f(z) is a finite order transcendental entire solution of (3.2) with
n ≥ 3 and deg β1 ̸= deg β2, then the following holds:

(i) Suppose deg β1 < deg β2 and ρ(f) = deg β1. Then every solution of f satisifies

ρ(f) < max
{
deg β1, deg β2

}
= degQ(z) and f = γe

β1
n , where γn = α1.

(ii) Suppose deg β1 < deg β2 and ρ(f) ≥ deg β2. Then every solution of f satisifies
ρ(f) = degQ(z) ≥ max

{
deg β1, deg β2

}
.

Similarly we can get for deg β1 > deg β2, ρ(f) ≥ deg β1.

Proof. Let us assume that f(z) is a transcendental entire solution of finite order
for the equation (3.2). To establish the proof of the theorem, we shall consider the
following cases:

Case 1. If ρ(f) < max
{
deg β1, deg β2

}
, then from (3.2) and Lemma 2.1 it

follows that

T (r, eQ(z)) = T

(
r,
α1(z)e

β1(z) + α2(z)e
β2(z) − fn

q(z)L1(z, f)

)
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≤ T
(
r, α1(z)e

β1(z) + α2(z)e
β2(z)

)
+ nT (r, f) + T (r, q(z)L1(z, f))

+ S(r, f)

≤ T
(
r, α1(z)e

β1(z) + α2(z)e
β2(z)

)
+m

(
r,
L1(z, f)

f

)
+m(r, f)

+ nT (r, f) + S(r, f)

≤ T
(
r, α1(z)e

β1(z) + α2(z)e
β2(z)

)
+ (n+ 1)T (r, f) + S(r, f).

That is T (r, eQ(z)) ≤ T
(
r, α1(z)e

β1(z) + α2(z)e
β2(z)

)
, which implies

deg(Q(z)) ≤ max
{
deg β1, deg β2

}
. (3.3)

Concurrently, from equation (3.2) and Lemma 2.1, we deduce the following:

T
(
r, α1(z)e

β1(z) + α2(z)e
β2(z)

)
= m

(
r, fn + q(z)L1(z, f)e

Q(z)
)
+ S(r, f)

≤ (n+ 1)T (r, f) + T (r, eQ(z)) + S(r, f)

≤ T (r, eQ(z)) + S(r, f).

This implies that
max

{
deg β1, deg β2

}
≤ deg(Q(z)). (3.4)

From (3.3) and (3.4), we have

deg(Q(z)) = max
{
deg β1, deg β2

}
and ρ(f) < deg(Q).

By differentiating (3.2), we get

nfn−1f ′ + qL1(z, f)e
QM = α1(z)e

β1(z)M1 + α2(z)e
β2(z)M2, (3.5)

where M = L1(z,f
′)

L1(z,f)
+ q′

q +Q′, M1 = β′
1 +

α′
1

α1
, M2 = β′

2 +
α′

2

α2
are small functions

of f .
Eliminating the terms eα1 and eα2 from (3.2) and (3.5), we obtain the following

expression

M1f
n − nfn−1f ′ + (M1 −M)qL1(z, f)e

Q(z) = (M1 −M2)e
β2α2. (3.6)

Similarly,

M2f
n − nfn−1f ′ + (M2 −M)qL1(z, f)e

Q(z) = (M2 −M1)e
β1α1. (3.7)

Given that deg(β1) ̸= deg(β2), it is evident that M1−M2 ̸= 0. We have deg(β1) <
deg(β2) and deg(β1) = ρ(f). Upon differentiating equation (3.6) and eliminating
the term eβ2 , we arrive at the following expression:

A1e
Q(z) +A2 = 0, (3.8)

where

A1 =
[
M3 −

(
(M1−M)′

M1−M +M
)]

(M1 −M)qL1(z, f),

A2 = fn−2
[
(M1M3 −M′

1)f
2 − n(M1 +M3)ff

′ + n(n− 1)(f ′)2 + nff ′′
]
,
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M4 = (M1−M2)
′

M1−M2
+ β′

2 +
α′

2

α2
.

Since ρ(f) < deg(Q), by equation (3.8) and Lemma 2.3, we get A1 ≡ A2 ≡ 0.

From A1 ≡ 0, we must have either M1−M ≡ 0 or M4−
(

(M1−M)′

M1−M +M
)
≡ 0.

Subcase 1.1. Supposing M1 −M ≡ 0, we have

qeQ(z)L1(z, f) = y1α1e
β1 , y1 ̸= 0. (3.9)

If y1 = 1, then by substituting (3.9) into (3.2), we get fn = α2e
β2 . Since

ρ(f) < deg(β2), which is absurd.
If y1 ̸= 1, then by substituting (3.9) into (3.2), we get

fn + qeQ(z)L1(z, f)

(
1− 1

y1

)
= α2e

β2 . (3.10)

On differentiating (3.10), and eliminating eβ2 , we get

A3e
Q(z) +A4 = 0, (3.11)

where

A3 =

(
1− 1

y1

)
(M2 −M)qL1(z, f),

A4 = fn−1 [fM2 − nf ′] .

Analogous to Case 1, we obtain A3 ≡ A4 ≡ 0. From the condition A3 = 0, we
must have M2 − M = 0. However, since y1 ̸= 1 and qL1(z, f) ̸= 0, we arrive at
M2 = M, which is a contradiction.

This implies that M1 −M2 ≡ 0.

Subcase 1.2. Suppose M4 −
(

(M1−M)′

M1−M +M
)
≡ 0. By integrating we get

(M1 −M)qeQ(z)L1(z, f) = y2(M1 −M2)α2e
β2 , y2 ̸= 0. (3.12)

Substituting (3.12) into (3.6), we have

M1f
n − nfn−1f ′ = (1− y2)(M1 −M2)α2e

β2 . (3.13)

Given that f is a transcendental entire function, by invoking the Hadamard factor-
ization theorem, f can be expressed in the following form:

f(z) = H(z)ev(z). (3.14)

In the representation above, H(z) denotes the canonical product formed by the
zeros of f , and v(z) is a non-constant polynomial satisfying deg(v) = ρ(f).

Substituting the expression (3.14) into (3.13), we obtain:

(H(z)ev(z))n [M1 − nH(v′(z) + 1)] = (1− y2)(M1 −M2)α2e
β2 . (3.15)

Combining (3.15) with deg(v) = ρ(f), we see that deg(v) = deg(β2), which is a
contradiction.

Therefore y2 = 1. From (3.13) we have

M1f − nf ′ = 0. (3.16)
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On integrating, we get fn = y3α1e
β1 , y3 ̸= 0, and we claim that y3 = 1; otherwise

by substituting (3.16) into (3.2), we get

(y3 − 1)α1e
β1 = α2e

β2 − qeQ(z)L1(z, f). (3.17)

Since deg(β2) = deg(Q(z)) > deg(β1) and by Lemma 2.3, we get (y3 − 1)α1 = 0,
and since α1 ̸= 0, we must have y3 = 1. Similarly we can prove another case as
well.
Case 2. If ρ(f) > max{deg(β1), deg(β2)}, it follows from Lemma 2.1 and (3.2)

T (r, eQ(z)) = m

(
r,
α1(z)e

β1(z) + α2(z)e
β2(z) − fn

q(z)L1(z, f)

)
+ S(r, f)

≤ m(r, eβ1) +m(r, eβ2) + (n+ 1)m(r, f) + S(r, f),

i.e.,
T (r, eQ(z)) ≤ (n+ 1)T (r, f) + S(r, f).

This implies that deg(Q(z)) ≤ ρ(f).
We now prove that deg(Q) = ρ(f). Otherwise, if deg(Q) < ρ(f), denoting

D = qeQ and P = α1(z)e
β1(z)+α2(z)e

β2(z). T (r,P) = S(r, f) and T (r,D) = S(r, f),
substituting D and P into (3.2), we have fn = P−DL1(z, f) and using Lemma 2.2,
we get m(r, f) = S(r, f) and N(r, f) = S(r, f), therefore T (r, f) = S(r, f), which is
absurd.

Therefore
deg(Q(z)) = ρ(f) > max{deg(β1), deg(β2)}.

Case 3. If ρ(f) = max{deg(β1), deg(β2)}, it follows from Lemma 2.1 and (3.2)
that

T (r, eQ(z)) = m(r, eQ(z)) + S(r, f)

≤ T (r, eβ1) + T (r, eβ2) + (n+ 1)m(r, f) + S(r, f)

≤ 2ρ(f) + S(r, f),

which implies that deg(Q(z)) ≤ ρ(f).
We now prove that deg(Q(z)) = ρ(f), if deg(Q(z)) < ρ(f) and denoting E=qeQ,

then T (r, E) = S(r, f) and (3.2) becomes

fn + EL1(z, f) = α1(z)e
β1(z) + α2(z)e

β2(z). (3.18)

Differentiating the above equation and eliminating eβ1 , we get

M1f
n − nfn−1f ′ + G1(z, f) = α2M3e

β2 (3.19)

M2f
n − nfn−1f ′ + G2(z, f) = −α1M3e

β1 , (3.20)

where
G1(z, f) = M1EL1(z, f)− (EL1(z, f))

′
,

G2(z, f) = M2EL1(z, f)− (EL1(z, f))
′

and M3 = M1 −M2.

On differentiating (3.19), we get

fn−2
[
(M4M1 −M′

1)f
2 − n(M4 +M1)ff

′ + n(n− 1)(f ′)2 + nf ′′f
]
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= G′
1(z, f)−M4G1(z, f). (3.21)

For the sake of simplicity, we denote

Φ(z) = (M3M1 −M′
1)f

2 − n(M3 +M1)ff
′ + n(n− 1)(f ′)2 + nf ′′f,

Ψ(z) = G′
1 −M3G1,

M3 =
M′

4

M4
+
α′
2

α2
+ β′

2.

Therefore,
fn−1Φ(z) = Ψ(z). (3.22)

Suppose Ψ(z) = 0, we have G′
1 −M3G1 = 0.

If G1 = 0, on integration we get EL1(z, f) = y4α1e
β1 where y4 ̸= 0, from this we

have f(z) = H1(z)e
v1(z), where H1(z) is the canonical product formed by zeros of

f and v1(z) is a non constant polynomial which satisifies deg(v1) = ρ(f).
This implies that deg(β1) = deg(v1) = ρ(f) > deg(β2), which is a contradiction.

Therefore G1 ̸= 0, then we have G′
1(z, f) = M3G1(z, f), which implies that G1(z, f) =

y5M3α2e
β2 , y5 ̸= 0. Substituting this into (3.19), we get

fn−1 [fM1 − nf ′] =

(
1

y5
− 1

)
G1(z, f).

Since n ≥ 3, whether or not y5 = 1, we get from Lemma 2.2 that fM1 − nf ′ = 0.
On integrating we get fn = y6α1e

β1 , y6 ̸= 0 and ρ(f) = deg(β1), which is a
contradiction.

Therefore G2(z, f) ̸= 0 and it follows that Φ(z) ̸= 0.
Consider

Φ(z) = h1f
2 + h2ff

′ + h3(f
′)2 + h4ff

′′, (3.23)

where h1 = M3M1 −M′
1, h2 = −n(M3 +M1), h3 = n(n− 1), h4 = n where h1

and h2 are meromorphic functions that are non zero with T (r, hi) = S(r, f), i = 1, 2.
We now turn into the following cases.
Subcase 3.1 If f has a finite number of zeros, then it is possible to assume that
f is of the form f(z) = R1(z)e

R2(z) where R1(̸= 0), R2 are polynomials, and
deg(R2) = deg(β2), deg(R2) = deg(Q(z)).

Substituting f(z) into (3.19), we get[
M1R1 − nRn−1

1 (R′
1 +R1R′

2)
]
enR2

+

k∑
i=1

{M1ER1(z + ci)− E ′ (R′
1(z + ci) +R1(z + ci)R′

2(z + ci))} eR2(z+ci)

=α2M3e
β2 . (3.24)

If
[
M1R1 − nRn−1

1 (R′
1 +R1R′

2)
]
enR2 = 0, then on integrating we get(

β′
1 +

α′
1

α1

)
R1 − nRn−1

1 (R′
1 +R1R′

2) e
nR2 = 0,

y7α1e
β1 = Rn

1 e
nR2 , y7 ̸= 0,
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and since deg(β1) < deg(R2), it follows from Lemma 2.3 that α1 = 0, which is
absurd.

Therefore
[
M1R1 − nRn−1

1 (R′
1 +R1R′

2)
]
enR2 ̸= 0.

Suppose R2(z) = dnz
n + · · ·+ a0 and β2(z) = anz

n + · · ·+ b0 where di, ai(0 ≤
i ≤ n) are constants and dn, an ̸= 0. This implies that[

M1R1 − nRn−1
1 (R′

1 +R1R′
2)
]
e(ndn−an)z

k+···+(nd0−a0)

+

k∑
i=1

{M1ER1(z + ci)− E ′ (R′
1(z + ci) +R1(z + ci)R′

2(z + ci))} eR2(z+ci)−β2

=α2M3.

From (3.3), we get a contradiction.
Subcase 3.2. Suppose f has infinitely many zeros. Then by (3.23) and Lemma 2.3

we can get m
(
r, Φ
f2

)
= S(r, f), which implies that m

(
r, 1f

)
= S(r, f). From (3.23),

we get

N(2

(
r,

1

f

)
≤ N

(
r,

1

Φ

)
+ S(r, f)

≤ T (r,Φ) + S(r, f) = S(r, f), (3.25)

where N(2

(
r, 1f

)
is the counting function of f for zeros with multiplicity minimun

2. Thus, we have

T (r, f) = T

(
r,

1

f

)
+ S(r, f) = m

(
r,

1

f

)
+N

(
r,

1

f

)
+ S(r, f)

= N1)

(
r,

1

f

)
+ S(r, f).

Therefore we deduce that f has infinitely many simple zeros. By differentiating
(3.23) we get

Φ′(z) = f2h′1 + (2h1 + h′2) ff
′ + h2(f

′)2 + h2ff
(2) + (2h3 + h4)f

′f (2) + h4ff
(3).

(3.26)

From (3.23) and (3.26), we get

f ′
(
(h2Φ− h3Φ

′)f ′ + (2h3 + h4)Φf
(2)
)

=f [(h1Φ
′ − h′1Φ)f + (h2Φ

′ − (2h1 + h′2))f
′

+ (h4Φ
′ − h2Φ)f

(2) − h4Φf
(3)]. (3.27)

If z0 is a simple zero of f and not the zero and pole of the coefficient of (3.27),
substituting z0 into (3.27), we observe that z0 is a zero of (h2Φ− h3Φ

′)f ′ + (2h3 +
h4)Φf

(2).

Let

J (z) =
(h2Φ− h3Φ

′)f ′ + (2h3 + h4)Φf
(2)

f
. (3.28)



Entire Solutions for Certain Class of Non-linear General Difference Equations 1249

Then we can deduce that T (r,J ) = O(log r) by Lemma 2.4, so J (z) is a rational
function. It follows from (3.28)

f (2) =

(
−h2

n(2n− 1)
+
n(n− 1)Φ′

n(2n− 1)Φ

)
f ′ +

J f
n(2n− 1)Φ

. (3.29)

Substituting (3.29) into (3.23), we obtain

Φ(z) = w1f
2 + w2ff

′ + w3(f
′)2, (3.30)

where w1 = h1 + J
(2n−1)Φ , w2 = (n − 1)

[
2h2

2n−1 + nΦ′

(2n−1)Φ

]
, w3 = n(n − 1) are

rational functions and
T (r, wi) = S(r, f). (3.31)

By the similar argument of [2, (from the equation (3.19) to (3.20))] we get

w3(w
2
2−4w1w3)

Φ′

Φ
+w2w

2
2−4w1w2w3+w

′
3w

2
2−4w1w3w

′
3 = w3(w

2
2−4w1w3)

′, (3.32)

representing w2
2 − 4w1w3 = ψ. Now we will discuss the following cases.

Subcase 3.2.1. If ψ(z) ̸= 0 then we get w2

w3
= ψ′

ψ − Φ′

Φ − w′
3

w3
. On substituting all

the parameters and integrating, we get

eβ1+β2 =
K

α1α2M3
ψ

−(2n−1)
2 Φn−1 ∈ S(r, f).

This is possible when β1 = −β2, which is a contradiction since deg(β1) < deg(β2).
Subcase 3.2.2 If ψ ≡ 0, then (3.30) becomes

Φ(z) =

(
w2

2

4w3

)
f2 + w2ff

′ + w3(f
′)2

= w3

[
f ′ +

w2f

2w3

]2
. (3.33)

Let Γ = f ′ + w2f
2w3

, we know that Γ is a non zero rational function from (3.33).

Substituting f ′ = Γ− w2f
2w3

into (3.19), we get(
M1 + n

w2

2w3

)
fn − nΓfn−1 + G1(z, f) = α2M3e

β2 , (3.34)(
M2 +

w2

2w3

)
fn − nΓfn−1 + G2(z, f) = α1M3e

β1 . (3.35)

If M1 + n w2

2w3
≡ 0 and M2 + w2

2w3
≡ 0 then we get M3 = 0 which is absurd.

Consequently we claim (
M1 + n

w2

2w3

)(
M2 +

w2

2w3

)
≡ 0.

Otherwise, since M4 ̸= 0 and α2 ̸= 0, from (3.34), we have

N

(
r,

1

Gi

)
+N(r, f) = N

(
r,

1

M3

)
+N(r, f) = S(r, f), i = 1, 2.
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Therefore from Lemma 2.4, equation (3.31) and T (r,Γ) = S(r, f), there exist two
small functions β1, β2 of f such that

H1 =

(
M1 + n

w2

2w3

)
(f − β1)

n = α2M3e
β2 , (3.36)

H2 =

(
M2 + n

w2

2w3

)
(f − β2)

n = −α1M3e
β1 . (3.37)

Based on Nevanlinna’s second fundamental theorem concerning small functions β1 ≡
β2, from (3.36), we get

eβ1−β2 = −

(
M2 + n w2

2w3

M1 + n w2

2w3

)
∈ S(r, f),

which is possible when β1 = β2, which is a contradiction since deg(β1) < deg(β2).
Therefore

ρ(f) = deg(Q) = max{deg β1, deg β2}.

Some examples have been given to illustrate the sharpness of our result.

Example 3.1. Take L1(z, f) = f(z+2). Then the function f(z) = 2ze−z satisifies

the difference equation f3 + zez
2+z+2f(z + 2) = 8z3e−3z + 2z(z + 2)ez

2

, where
n = 3, q(z) = z, Q(z) = z2 + z + 2, α1 = 8z3, c1 = 2, ci = 0(i = 2 to k), β1 =
−3z, β2 = z2, , α2 = 2z(z + 2). Then clearly we can see that deg β1 = 1 < 2 =
deg β2 and ρ(f) = deg β1 = 1 < max{1, 2} = 2 = degQ(z). Thus the conclusion (i)
of Theorem 3.1 holds.

Example 3.2. Take L1(z, f) = f(z+1). Then the function f(z) = ze−z
2

satisifies

the difference equation f3 + zez
2+z+1f(z + 1) = z3e−3z2 + z(z + 1)e−z, where

n = 3, q(z) = z, Q(z) = z2 + z + 1, α1 = z3, c1 = 2, ci = 0(i = 2 to k), β1 =
−3z2, β2 = −z, , α2 = z(z + 1). Then clearly we can see that deg β2 = 1 < 2 =
deg β1 and ρ(f) = degQ(z) = 2 ≥ deg β1. Thus the conclusion (ii) of Theorem 3.1
holds.

The following example demonstrates that a function fulfilling the conditions of
Theorem 3.1 and satisfying equation 3.2 can be constructed even in the case where
deg β1 = deg β2.

Example 3.3. Take L1(z, f) = f(z+1). Then the function f(z) = ez satisifies the
difference equation f3(z)+ez[f(z+1)] = e3z+e2z+1, where n = 3, q(z) = 1, Q(z) =
z, k = 1, b1 = 1, c1 = 1, α1(z) = 1, β1(z) = 3z, α2(z) = 1, β2(z) = 2z + 1. This
example satisfies the conditions of the Theorem 3.1 with degβ1 = 1 = degβ2, and
ρ(f) = 1 = degβ1.

4. Conclusion

In this paper, we explored the existence of transcendent entire solutions for a par-
ticular class of nonlinear difference equation (3.2). Our main result, characterizes
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the possible entire solution of the finite order in terms of their order of growth in
relation to the degrees of polynomials β1(z) and β2(z). Specifically, if the order
ρ(f) is smaller than the maximum of the degrees β1 and β2, either f has a smaller
order than the degree Q(z), or f takes the form f = γeβ1/n, where γn = α1. On the
other hand, if ρ(f) is equal to the maximum degree, then ρ(f) must be the degree of
Q(z). Our findings are demonstrated by providing examples. These results improve
and generalize some previously established results on the existence of meromorphic
solutions for related nonlinear difference or differential equations.

Open problem

1. For the class of non-linear difference equation 3.2, do meromorphic solutions
exist, and if yes, how can they be characterized?

2. What are the conditions under which the non-linear difference equation 3.2
has solutions of infinite order, and how can its growth properties be explained?

3. What can be said about the distribution and nature of zeros and poles of
transcendental solutions to these types of non-linear difference equations?
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