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Inertial Self-Adaptive Method for Solving Fixed 
Point Constraint Split Common Null Point 

Problem
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Abstract In this manuscript, we study the split null point problem in the
settings of real Hilbert spaces using two different iterative methods. In our
first method, we propose a self-adaptive algorithm with an inertial technique
for solving split common null point problem and fixed point of a finite family
of a demimetric mapping without the computation of the resolvent of a mono-
tone operator. In our second method, we propose a self-adaptive algorithm
with a multi-step inertial technique to approximate a solution of the afore-
mentioned problems and to accelerate the rate of convergence of our iterative
method. The selection of the stepsize employed in our iterative algorithms
does not require prior knowledge of the operator norm. Lastly, we present a
numerical example to show the performance of our iterative algorithms. The
result discussed in this article extends and complements many related results
in literature.
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ric mappings, iterative method

MSC(2010) 47H06, 47H09, 47J05, 47J25.

1. Introduction

Throughout this manuscript, let H denote a real Hilbert space with inner product
⟨, ., ⟩ and the induced norm ∥.∥. Let I be the identity operator on H, N be the set
of all natural numbers and R be the set of real numbers. For a self-operator Ψ on
H, we denote by Fix(Ψ) = {p ∈ H : Ψ(p) = p}, the set of all fixed points of Ψ.

Let H1 and H2 be real Hilbert spaces and Bj : H1 → H2 (1 ≤ j ≤ m) be
bounded linear operator. The split common null point problem (in short, SCNPP)
is to find a point

x∗ ∈ H1 such that 0 ∈
r⋂

i=1

Ψi(x
∗), (1.1)

and such that the point

y∗j = Bjx
∗ ∈ H2 solves 0 ∈ ∆j(y

∗
j ), j = 1, 2, · · · ,m, (1.2)

†the corresponding author.
Email address: hammedabass548@gmail.com, hammed.abass@smu.ac.za
(H.A. Abass),
Department of Mathematics and Applied Mathematics, Sefako Makgatho
Health Science University, P.O. Box 94, Pretoria 0204, South Africa.

http://dx.doi.org/10.12150/jnma.2025.1254


Split Common Null Point Problem 1255

where Ψi : H1 → 2H1 (1 ≤ i ≤ r) and ∆j : H2 → 2H2 (1 ≤ j ≤ m) are set-valued
mappings.

The SCNPP (1.1)-(1.2) includes several optimization problems such as varia-
tional inequalities, convex feasibility problem and many constrained optimization
problems as special cases, (see [7, 9, 24,25,29,32]).

If m = r = 1, the SCNPP (1.1)-(1.2) reduces to the following split null point
problem (in short, SNPP) which is to find a point

x∗ ∈ H1 such that 0 ∈ Ψ1(x
∗), (1.3)

and the point

y∗ = B1x
∗ ∈ H2 solves 0 ∈ ∆1(y

∗). (1.4)

We denote by Θ the solution set of SNPP (1.3)-(1.4).

x∗ solves SNPP (1.3)-(1.4) ⇐⇒ x∗ = JΨ1

λ (x∗ − γB∗
1(I − J∆1

λ )B1x
∗), (1.5)

where λ > 0, γ > 0 and JΨ
λ = (I + λΨ)−1 denotes the resolvent of a monotone

operator Ψ.
In 2012, Bryne et al. [7] introduced the following forward-backward algorithm

to solve SNPP (1.3)-(1.4): find x1 ∈ H1

xt+1 = JΨ
λ (xt − γB∗(I − J∆

λ )Bxt) (1.6)

where the stepsize γ ∈ (0, 2
L ) with L = ∥B∗B∥, JΨ

λ = (I + λΨ)−1 and J∆
λ =

(I + λ∆)−1 are the resolvents of Ψ and ∆ respectively.
Recently, Kazmi and Rizvi [22] studied the SNPP and fixed point of a nonex-

pansive mapping. They proposed the following iterative method to approximate
the solution of the aforementioned problems as follows:{

yt = JΨ
λ (xt + γB∗(J∆

λ − I)Bxt),

xt+1 = αtf(xt) + (1− αt)Syt,

where f and S are contraction and nonexpansive mappings respectively.
In 2018, Jailoka and Suantai [20] proposed the following iterative method for ap-

proximating the solution of SNPP and fixed point of a multivalued demicontractive
mappings as follows: 

x1 ∈ H1,

yt = JΨ
λt
(xt + γB∗(J∆

λt
− I)Bxt),

ut = (1− δ)yt + δzt, zt ∈ Tyt,

xt+1 = αtu+ (1− αt)ut, t ∈ N,

where γ, δ and the sequences {αt} and {λt} satisfy the following conditions:

(i) γ ∈
(
0, 2

∥B∥2

)
and δ ∈ (0, 1− k),

(ii) αt ∈ (0, 1) such that lim
t→∞

αt = 0 and
∞∑
t=1

αt = ∞,
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(iii) λt ∈ (0,∞) such that lim inf
t→∞

λt > 0.

They established a strong convergence result using the above iterative algorithm.
The common drawback in the results mentioned above (see [7, 12, 20, 22]) is

that at each step of the iterative processes, one has to compute the resolvent of
one of the operators which is certainly not convenient. Another drawback of these
iterative algorithms is the need to calculate the stepsize which solely depends on
the operator norm ∥B∗B∥. In order to overcome this difficulty, linesearch and self-
adaptive step size algorithms have been proposed (see [3, 5, 6, 13, 28, 34]). Readers
can consult [26,31,33,37] for more details on SCNPP.

In recent years, authors have been concerned with effective iterative methods
with a faster rate of convergence. In this direction, there have been several extrap-
olation methods employed by researchers. One of such methods is the inertial-type
method which originates from the heavy ball method (an implicit discretization)
in time of second-order dynamical systems (see [4]). The inertial technique finds
crucial application in the construction of effective and accelerated algorithms in
optimization theory (see [1, 2, 4, 10, 27, 30]). In this method, the next iterate is de-
termined by two preceding iterates (xt−1 and xt) and an inertial parameter θt which
controls the momentum xt − xt−1.

In 2016, Liang [19] proposed a multi-step inertial splitting method. Let Q =
{0, 1, · · · , q − 1}, q ∈ N+, and the multi-step inertial form is as follows:

yt = xt +
∑
i∈Q

δi,t(xt−i − xt−i−1).

In this paper, we propose two self-adaptive algorithms with inertial extrapolation
method for solving the SCNPP (1.1)-(1.2) and the fixed point of a finite family of
a demimetric mappings in the settings of real Hilbert spaces. Under suitable condi-
tions, we establish that the sequence generated by our iterative method converges
strongly to a solution of the aforementioned problems without the computation
of the monotone operator. Also, the selection of our stepsize does not need prior
knowledge of the operator norms. Secondly, we propose a self-adaptive method with
a multi-step inertial technique for solving SCNPP and fixed point of a finite family
of demimetric mappings in real Hilbert space, we prove a strong convergence theo-
rem under suitable conditions. Lastly, we present a numerical example to illustrate
the performance of our algorithms. Our results extend and generalize many related
results in the literature.

2. Preliminaries

We state some known and useful results which will be needed in the proof of our
main theorem. In the sequel, we denote strong and weak convergence by ”→” and
”⇀” respectively.

Let Ω be a nonempty, closed and convex subset of real Hilbert space H. A point
p ∈ ∆ is said to be a fixed point of a mapping Ψ : H → H if Ψp = p. We denote by
Fix(Ψ), the set of all fixed points of Ψ. Also, in the sequel, we use PΩ to denote
the projection from H onto Ω, namely:

PΩx := argmin
{
∥x− y∥ : y ∈ Ω}, x ∈ H.
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The following is a characterization of the projection PΩ: Given x ∈ H and y ∈ Ω,

PΩx = z ⇔ ⟨x− z, y − z⟩ ≤ 0, ∀ y ∈ C. (2.1)

The following property of the projection PΩ is known as firmly nonexpansive

⟨x− y, PΩx− PΩ⟩ ≥ ∥PΩx− PΩy∥2, ∀ x, y ∈ H.

Definition 2.1. Let H be a real Hilbert space. An operator ∆ : H → H is said to
be µ- inverse strongly monotone (µ- ism), if there exists a number µ > 0 such that

⟨∆(x)−∆(y), x− y⟩ ≥ µ∥∆(x)−∆(y)∥2, ∀ x, y ∈ H.

It is easy to find that if ∆ is µ- ism, then ∆ is Lipschitz (see definition below) with
constant 1

µ , i.e.

∥∆x−∆y∥ ≤ 1
µ∥x− y∥, ∀ x, y ∈ H.

Definition 2.2. Let H be a real Hilbert space. The mapping Ψ : H → H is called

(i) k-contractive, if there exists a constant k ∈ [0, 1) such that

∥Ψx−Ψy∥ ≤ k∥x− y∥, ∀ x, y ∈ H.

(ii) Lipschitz with the constant k > 0, if

∥Ψx−Ψy∥ ≤ k∥x− y∥, ∀ x, y ∈ H.

(iii) nonexpansive, if

∥Ψx−Ψy∥ ≤ ∥x− y∥, ∀ x, y ∈ H.

(iv) quasi-nonexpansive, if Fix(Ψ) ̸= ∅ and

∥Ψx− p∥ ≤ ∥x− p∥, ∀ x ∈ H and p ∈ Fix(Ψ).

(v) β-strict pseudo-contraction [20], if there exists a constant β ∈ [0, 1) such that

∥Ψx−Ψy∥2 ≤ ∥x− y∥2 + β∥(x−Ψx)− (y −Ψy)∥2, ∀ x, y ∈ H.

Definition 2.3. [35] Let H be a real Hilbert space and let η be a real number
with η ∈ (−∞, 1). Let Ψ : H → H with Fix(Ψ) ̸= ∅ be called η-demimetric, if for
any x ∈ H and p ∈ Fix(Ψ)

⟨x− p, x−Ψx⟩ ≥ 1− η

2
∥x−Ψx∥2.

We give the following example of η-demimetric mapping in real Hilbert space.

Example 2.1. Let H be the real line and Ω = [−2, 1]. Define

Ψx =

{
x+9
10 , x ∈ [0, 1]
3+x
4 , x ∈ [−2, 0).

Obviously, Fix(Ψ) = {1}. We will show that there exists η ∈ (−∞, 1) such that

|Ψx− 1|2 ≤ |x− 1|2 + η|x−Ψx|2, ∀ x ∈ [−2, , 1].
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Consider the following two cases:
Case 1: Let x ∈ [0, 1]. Then∣∣x−Ψx

∣∣2 =
∣∣x− x+ 9

10

∣∣2 =
∣∣ 9
10

(x− 1)
∣∣2 =

81

100

∣∣x− 1
∣∣2.

Also, ∣∣Ψx− 1
∣∣ = ∣∣x+ 9

10
− 1

∣∣2 =
1

100

∣∣x− 1
∣∣2

=
∣∣x− 1

∣∣2 − 99

100

∣∣x− 1
∣∣2

= |x− 1|2 − 99

81
× 81

100

∣∣x− 1
∣∣2

≤ |x− 1|2 + η1 ×
81

100
|x− 1|2,

for any η1 ∈ [− 99
81 , 1). Hence

∣∣Ψx− 1
∣∣2 ≤

∣∣x− 1
∣∣2 + η1

∣∣x−Ψx
∣∣2.

Case 2: Let x ∈ [−2, 0). Thus

∣∣x−Ψx
∣∣2 =

∣∣x− 3 + x

4

∣∣2 =
∣∣3(x− 1)

4

2∣∣2 =
9

16

∣∣x− 1
∣∣2.

Then ∣∣Ψx− 1
∣∣2 =

∣∣3 + x

4
− 1

∣∣2 =
∣∣x− 1

4

∣∣2 =
1

16

∣∣x− 1
∣∣2

=
∣∣x− 1

∣∣2 − 15

16

∣∣x− 1
∣∣2

=
∣∣x− 1

∣∣2 − 15

9
× 9

16

∣∣x− 1
∣∣2

≤
∣∣x− 1

∣∣2 + η2 ×
9

16

∣∣x− 1
∣∣2,

for any η2 ∈ [− 15
9 , 1). Hence

∣∣Ψx− 1
∣∣2 ≤

∣∣x− 1
∣∣2 + η2

∣∣x−Ψx
∣∣2.

In particular, choose η = min{η1, η2}. Thus, Ψ is −15
9 - demimetric.

It has been established that the class of demimetric mappings is more general
than the class of strict pseudo-contractive mappings and quasi-nonexpansive map-
pings, (see [35]).

Lemma 2.1. [11] Let H be a real Hilbert space. Then ∀ x, y ∈ H and α ∈ (0, 1),
we have

(i) 2⟨x, y⟩ = ||x||2 + ||y||2 − ||x− y||2 = ||x+ y||2 − ||x||2 − ||y||2,
(ii) ||αx+ (1− α)y||2 = α||x||2 + (1− α)||y||2 − α(1− α)||x− y||2,
(iii) ||x+ y||2 ≤ ||x||2 + 2⟨y, x+ y⟩.

Lemma 2.2. [35] Let H be a real Hilbert space and let η be a real number with
η ∈ (−∞, 1). Let Ψ : H → H be an η- demimetric mapping. Then Fix(Ψ) is closed
and convex.

Definition 2.4. Let Ψ : H → H be a mapping. Then I−Ψ is said to be demiclosed
at 0, if for any sequence {xt} in H, the condition xt ⇀ x and lim

t→∞
∥Ψxt − xt∥ = 0,

imply x = Ψx.
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Lemma 2.3. [14] Let H be a real Hilbert space, and let Ψ : H → H be η− strict
pseudo-contractive mapping. Then I − T is demiclosed at 0.

Lemma 2.4. [18] Assume that {bt} is a sequence of nonnegative real numbers
such that

bt+1 ≤ (1− σt)bt + σtat, t ≥ 0,

bt+1 ≤ bt − ηt + φt, t ≥ 0,

where {σt} is a sequence in (0, 1), {ηt} is a sequence of nonnegative real numbers,
and {at} and {φt} are two sequences in R satisfying

(i)
∞∑
t=0

σt = ∞,

(ii) lim
t→∞

φt = 0,

(iii) lim
k→∞

ηtk = 0, implies lim sup
k→∞

atk ≤ 0 for any subsequence {tk} ⊂ {t}. Then,

lim
t→∞

bt = 0.

3. Main result

In this section, we present our iterative method and establish its convergence result
for solving split null point problem and fixed point problem.

We state our assumptions as follows:

Assumption 1. (L1)H1 and H2 are two real Hilbert spaces, and Bj : H1 →
H2, j = 1, 2, · · · ,m are bounded linear operators with B∗

j : H2 → H1 being the
adjoint of Bj . Let ϕ be a k− contractive mapping on H1 with 0 ≤ κ < 1.

(L2) For i = 1, 2, · · · , r, {φi}ri=1 ⊂ (−∞, 1) and let {Ui}ri=1 : H1 → H1 be a
finite family of φi- demimetric mappings such that Ui − I is demiclosed at 0, and
φ = min{φ1, φ2, · · · , φr}.

(L3) For i = 1, 2, · · · , r and j = 1, 2, · · · ,m, let Ψi : H1 → H1 and ∆j : H2 → H2

be λi and θj- inverse strongly monotone mapping, respectively.

(L4) Let

Γ :=
{
x∗ ∈

r⋂
i=1

Ψ−1
i (0)

⋂ r⋂
i=1

Fix(Ui) and 0 ∈ ∆j(Bjx
∗), j = 1, 2, · · · ,m}.

We assume that Γ ̸= ∅.

Assumption 2. (M1) Define the mapping:

hi(x) =
1

2
∥Ψix∥2, sj(x) =

1

2
∥∆j(Bjx)∥2.

σ2(x) =

( r∑
i=1

∥Ψix∥
)2

+

( m∑
j=1

∥B∗
j∆j(Bjx)∥

)2

.



1260 H. A. Abass

(M2) Choose sequences {ϵt}, {αt,i}, {βt} and {ρt} such that

(i) βt ∈ [a, b] ⊂ (0, 1), lim
t→∞

βt = 0 and
∞∑
t=1

βt = ∞;

(ii) {ρt} ⊂ (0, ω), where ω = min{4λ, 4θ} with λ = min{λ1, λ2, · · ·λr} and θ =
min{θ1, θ2, · · · θm};

(iii) lim
t→∞

(1− βt)βt > 0, inf
t
ρt(ω − ρt) > 0 and

r∑
i=1

αt,i = 1;

(iv) ϵt = ◦(βt), i.e. lim
t→∞

ϵt
βt

= 0.

Algorithm 3.1. Extrapolation method for split common null point and
fixed point problem.
Initialization: Given ϵ > 0, δ > 3, let q0, q1 ∈ H1 and {ρt} ⊂ (0, ω).
Step 1: Given qt−1, qt and compute

wt = qt + ξt(qt − qt−1),

where ξt satisfies 0 ≤ |ξt| ≤ ξ̄t with ξ̄t defined by

ξ̄t =

{
min

{
t−1

t+δ−1 ,
εt

||qt−qt−1∥

}
, qt ̸= qt−1

t−1
t+δ−1 , qt = qt−1.

Step 2: Compute

yt = wt − γt

r∑
i=1

Ψi(wt),

where

γt =


ρt

r∑
i=1

hi(wt)

σ2(wt)
, σ2(wt) ̸= 0,

0, otherwise.

Step 3: Compute

zt = yt +

r∑
i=1

αt,i
1− φi

2
(Ui − I)yt.

Step 4: Compute

ut = zt − τt

m∑
j=1

B∗
j∆j(Bjzt),

where

τt =


ρt

m∑
j=1

sj(zt)

σ2(zt)
, σ2(zt) ̸= 0,

0, otherwise.
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Step 5: Compute

qt+1 = βtϕ(wt) + (1− βt)ut.

Step 6: If ∥qt+1−qt∥ ≤ ε, then the iterative process stops. Otherwise, set t := t+1
and go to Step 1.

Theorem 3.1. Suppose Assumption 1 and Assumption 2 hold. Then the sequence
{qt} generated by Algorithm 3.1 converges in norm to p = PΓ(0) (i.e. the minimum
norm element of the solution set Γ).

Proof. Let p ∈ Γ. Thus p ∈ Ψ−1
i (0). Since Ψi : H1 → H1 and ∆j : H2 → H2 are

λi (1 ≤ i ≤ r) and θj (1 ≤ j ≤ m)-inverse strongly monotone, respectively, we have
for all t ≥ N

⟨Ψiwt, wt − p⟩ = ⟨Ψiwt −Ψip, wt − p⟩
≥ λi∥Ψiwt∥2

= 2λihi(wt)

≥ 2λhi(wt),

and

⟨B∗
j∆j(Bjzt), zt − p⟩ = ⟨∆j(Bjzt), Bjzt −Bjp⟩

≥ θj∥∆j(Bjzt)∥2

= 2θjsj(zt)

≥ 2θsj(zt).

Now, using Step 2 of Algorithm 3.1, we get

∥yt − p∥2 = ∥wt − γt

r∑
i=1

Ψiwt − p∥2

≤ ∥wt − p∥2 + γ2
t

∥∥∥∥ r∑
i=1

Ψiwt

∥∥∥∥2 − 2γt

〈 r∑
i=1

Ψiwt, wt − p

〉

≤ ∥wt − p∥2 + γ2
t

( r∑
i=1

∥∥Ψiwt

∥∥)2 − 4λγt

r∑
i=1

hi(wt)

≤ ∥wt − p∥2 +
ρt(ρt − 4λ)

( r∑
i=1

hi(wt)
)2

σ2(wt)
. (3.1)

Also, using Step 4 of Algorithm 3.1, we get

∥ut − p∥2 = ∥zt − τt

m∑
j=1

B∗
j∆j(Bjzt)− p∥2

= ∥zt − p∥2 + τ2t

∥∥∥∥ m∑
j=1

B∗
j∆j(Bjzt)

∥∥∥∥2 − 2τt

〈 m∑
j=1

B∗
j∆j(Bjzt), zt − p

〉

≤ ∥zt − p∥2 + τ2t

( m∑
j=1

∥∥B∗
j∆j(Bjzt)

∥∥)2

− 4θτt

m∑
j=1

sj(zt)
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≤ ∥zt − p∥2 +
ρt(ρt − 4θ)

( m∑
j=1

sj(zt)
)2

σ2(zt)
. (3.2)

By utilizing the convexity of ∥.∥2, we obtain from Step 3 of Algorithm 3.1 that

∥zt − p∥2

=
∥∥yt + r∑

i=1

αt,i
1− φi

2
(Ui − I)yt − p

∥∥2
≤

r∑
i=1

αt,i

∥∥yt + 1− φi

2
(Ui − I)yt − p

∥∥2
=

r∑
i=1

αt,i

(
∥yt − p∥2 +

(1− φi

2

)2∥(Ui − I)yt∥2 + 2
(1− φi

2

)〈
yt − p, (Ui − I)yt

〉)

=

r∑
i=1

αt,i

(
∥yt − p∥2+(

1− φi

2
)2
∥∥(Ui − I)yt

∥∥2−2
(1− φi

2

)(1− φi

2

)∥∥(Ui − I)yt
∥∥2)

≤∥yt − p∥2 −
r∑

i=1

αt,i
(1− φi)

2

4

∥∥(Ui − I)yt
∥∥2. (3.3)

By substituting (3.3) into (3.2), we get

∥ut − p∥2 ≤∥yt − p∥2 −
r∑

i=1

αt,i
(1− φi)

2

4

∥∥(Ui − I)yt
∥∥2

+

ρt(ρt − 4θ)
( m∑
j=1

sj(zt)
)2

σ2(zt)
. (3.4)

On substituting (3.1) into (3.4), we have

∥ut − p∥2 ≤∥wt − p∥2 −
r∑

i=1

αt,i
(1− φi)

2

4
∥(Ui − I)yt∥2 +

ρt(ρt − 4λ)
( r∑
i=1

hi(wt)
)2

σ2(wt)

+

ρt(ρt − 4θ)
( m∑
j=1

sj(zt)
)2

σ2(zt)

=∥wt − p∥2 −
r∑

i=1

αt,i
(1− φi)

2

4
∥(Ui − I)yt∥2 −

ρt(4λ− ρt)
( r∑
i=1

hi(wt)
)2

σ2(wt)

−
ρt(4θ − ρt)

( m∑
j=1

sj(zt)
)2

σ2(zt)
(3.5)

≤∥wt − p∥2. (3.6)

Using Step 1 of Algorithm 3.1, we get

∥ut − p∥ ≤ ∥wt − p∥
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= ∥qt + ξt(qt − qt−1)− p∥
≤ ∥qt − p∥+ |ξt| · ∥qt − qt−1∥. (3.7)

Utilizing Step 5 of Algorithm 3.1 and (3.7), we have

∥qt+1 − p∥ = ∥βtϕ(wt) + (1− βt)ut − p∥
= ∥βt(ϕ(wt)− p) + (1− βt)(ut − p)∥
≤ βt∥ϕ(wt)− ϕ(p)∥+ βt∥ϕ(p)− p∥+ (1− βt)∥ut − p∥
≤ βtκ∥wt − p∥+ βt∥ϕ(p)− p∥+ (1− βt)

(
∥qt − p∥+ |ξt| · ∥qt − qt−1∥

)
≤ (1− (1− κ)βt)∥qt − p∥+ (1− κ)βt

∥ϕ(p)− p∥+ |ξt| · ∥qt−qt−1∥
βt

1− κ

≤ max

{
∥qt − p∥,

∥ϕ(p)− p∥+ |ξt| · ∥qt−qt−1∥
βt

1− κ

}
.

From condition (iv) of Assumption 2 and the definition of ξ̄t, we get
{
|ξt|·

∥qt−qt−1∥
βt

}
is bounded. Thus, there exists some constant M1 > 0 such that

M1 = sup
t≥1

{∥ϕ(p)− p∥+ |ξt| · ∥qt−qt−1∥
βt

1− κ

}
.

Then, by the mathematical induction, we conclude that

∥qt − p∥ ≤ max{∥q1 − p∥,M1}.

Therefore, {qt} is bounded. Consequently, {wt}, {zt}, {ut} and {ϕ(wt)} are bounded.
It is obvious to see from Step 1 of Algorithm 3.1 that

∥wt − p∥2 = ∥qt + ξt(qt − qt−1)− p∥2

≤ ∥qt − p∥2 + 2⟨qt − p+ ξt(qt − qt−1), ξt(qt − qt−1)⟩
≤ ∥qt − p∥2 + 2

(
∥qt − p∥+ |ξt| · ∥qt − qt−1∥

)
|ξt| · ∥qt − qt−1∥

≤ ∥qt − p∥2 + 2M2|ξt| · ∥qt − qt−1∥
≤ ∥qt − p∥2 + 2M2ϵt, (3.8)

where M2 = supt≥1{∥qt − p∥+ |ξt| · ∥qt − qt−1∥}.
On the other hand, using (3.5), we have

∥qt+1 − p∥2 =∥βtϕ(wt) + (1− βt)ut − p∥2

=∥βt(ϕ(wt)− p) + (1− βt)(ut − p)∥2

≤βt∥ϕ(wt)− p∥2 + (1− βt)∥ut − p∥2

=βt∥ϕ(wt)− ϕ(p) + ϕ(p)− p∥2 + (1− βt)∥ut − p∥2

≤βt

(
κ2∥wt − p∥2 + 2⟨ϕ(wt)− ϕ(p), ϕ(p)− p⟩+ ∥ϕ(p)− p∥2

)
+ (1− βt)∥ut − p∥2

=βt

(
κ2∥wt − p∥2 + 2⟨ϕ(wt)− p+ p− ϕ(p), ϕ(p)− p⟩+ ∥ϕ(p)− p∥2

)
+ (1− βt)∥ut − p∥2

=βt

(
κ2∥wt − p∥2 + 2⟨ϕ(wt)− p, ϕ(p)− p⟩ − ∥ϕ(p)− p∥2

)
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+ (1− βt)∥ut − p∥2

≤βt∥wt − p∥2 + (1− βt)

(
∥wt − p∥2 −

r∑
i=1

αt,i
(1− φi)

2

4
∥(Ui − I)yt∥2

−
ρt(4λ− ρt)

( r∑
i=1

hi(wt)
)2

σ2(wt)
−

ρt(4θ − ρt)
( m∑
j=1

sj(zt)
)2

σ2(zt)

)
+ 2βt⟨ϕ(wt)− p, ϕ(p)− p⟩

=∥wt − p∥2 − (1− βt)

( r∑
i=1

αt,i
(1− φi)

2

4
∥(Ui − I)yt∥2

+

ρt(4λ− ρt)
( r∑
i=1

hi(wt)
)2

σ2(wt)
+

ρt(4θ − ρt)
( m∑
j=1

sj(zt)
)2

σ2(zt)

)
+ 2βt⟨ϕ(wt)− p, ϕ(p)− p⟩

≤∥qt − p∥2 − (1− βt)

( r∑
i=1

αt,i
(1− φi)

2

4
∥(Ui − I)yt∥2

+

ρt(4λ− ρt)
( r∑
i=1

hi(wt)
)2

σ2(wt)
+

ρt(4θ − ρt)
( m∑
j=1

sj(zt)
)2

σ2(zt)

)
+ 2M2ϵt + 2βt⟨ϕ(wt)− p, ϕ(p)− p⟩. (3.9)

Set

ϑt :=(1− βt)

( r∑
i=1

αt,i
(1− φi)

2

4
∥(Ui − I)yt∥2 −

ρt(4λ− ρt)
( r∑
i=1

hi(wt)
)2

σ2(wt)

−
ρt(4θ − ρt)

( m∑
j=1

sj(zt)
)2

σ2(zt)

)
,

and

χt := 2M2ϵt + 2βt⟨ϕ(wt)− p, ϕ(p)− p⟩.

Thus (3.9) implies that

rt+1 ≤ rt − ϑt + χt. (3.10)

By the boundedness of {ϕ(wt)} and β → 0, we have that lim
t→∞

χt = 0. Thus, {χt}
satisfies condition (ii) of Lemma 2.4. In order to complete the proof, it suffices to
verify that ϑtk → 0 (k → ∞). Noticing {ρtk} ≤ min{4λ, 4θ}, (3.9) implies that

∞∑
t=1

ρtk(ω − ρtk)

( (
r∑

i=1

hi(wtk))
2

σ2(wtk)
+

(
m∑
j=1

sj(ztk))
2

σ2(ztk)

)
< ∞.
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Since infk ρtk(ω − ρtk) > 0 and the boundedness of σ2(wtk) and σ2(ztk), it turns
out that

lim
k→∞

hi(wtk) = 0 = lim
k→∞

sj(ztk), for i = 1, · · · , r and j = 1, 2, · · · ,m. (3.11)

Also, from the condition on αtk,i, it turns out that

lim
k→∞

∥ytk − Uiytk∥ = 0, i = 1, 2, · · · , r. (3.12)

From Step 1 of Algorithm 3.1, we have that

∥wtk − qtk∥ = |ξtk | · ∥qtk − qtk−1
∥ ≤ ϵtk → 0 as k → ∞. (3.13)

Also, using Algorithm 3.1 and (3.12), it can be easily seen that

lim
k→∞

∥ztk − ytk∥ = 0. (3.14)

Since {wt}, yt, {ut} and {zt} are bounded, there exist subsequences {wtk}, {ytk},
{utk}, {ztk} and a constant M > 0 such that

r∑
i=1

∥Ψi(wtk)∥ ≤ M and

m∑
j=1

∥B∗
j∆j(Bjztk)∥ ≤ M. This together with Step 2 and Step 4 of Algorithm 3.1

implies that

∥ytk − wtk∥ ≤ Mγtk → 0, ∥utk − ztk∥ ≤ Mτtk → 0. (3.15)

From condition (i) of Assumption 2, it turns out that

∥qtk+1
− utk∥ ≤ βtk∥ϕ(wtk)− utk∥ → 0, k → ∞. (3.16)

From (3.13), (3.14) and (3.15), we obtain

lim
k→∞

∥ytk − qtk∥ = 0,

lim
k→∞

∥utk − ytk∥ = 0,

lim
k→∞

∥utk − qtk∥ = 0,

lim
k→∞

∥ztk − qtk∥ = 0,

lim
k→∞

∥qtk+1
− qtk∥ = 0.

(3.17)

Since {qt} is bounded, there exists a subsequence {qtk} ⇀ x∗ ∈ Γ. Also, using
the fact that {yt}, {zt} and {wt} are bounded, there exist subsequences {ytk} of
{yt}, {ztk} of {zt} and {wtk} of {wt} which converge weakly to x∗ ∈ Γ. We will
verify that Ψi(x

∗) = 0 and ∆j(Bjx
∗) = 0 for each fixed 1 ≤ i ≤ r and 1 ≤ j ≤ m. To

establish this, we apply (3.11) to get that Ψi(wtk) → 0 in norm and ∆j(Bjztk) → 0
in norm (as k → ∞). Since Ψi is λi- ism, we get

⟨Ψiwtk −Ψix
∗, wtk − x∗⟩ ≥ λi∥Ψiwtk −Ψix

∗∥2. (3.18)

Now, since Ψiwtk → 0 in norm and wtk ⇀ x∗, by taking the limit as k → ∞ in
(3.18), we arrive at Ψi(x

∗) = 0. Similarly, since ∆j is θj- ism, we can repeat the
argument in (3.18) (simply replacing Ψi with ∆j) with Bjztk ⇀ Bjx

∗. Hence, 0 =
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∆j(Bjx
∗). In addition, using (3.12) and Lemma 2.3, we get that x∗ ∈

r⋂
i=1

Fix(Ui).

Therefore, we conclude that x∗ ∈ Γ.
Next, we show that {qt} converges strongly to p.
From Algorithm 3.1, (3.6) and (3.8), we have

∥qt+1 − p∥2 = ∥βt(ϕ(wt)− p) + (1− βt)(ut − p)∥2

= β2
t ∥ϕ(wt)− ϕ(p) + ϕ(p)− p∥2 + (1− βt)∥ut − p∥2

+ 2βt(1− βt)⟨ϕ(wt)− ϕ(p) + ϕ(p)− p, ut − p⟩
≤ 2β2

t (κ
2∥wt − p∥2 + ∥ϕ(p)− p∥2) + (1− βt)

2∥wt − p∥2

+ 2βt(1− βt)(κ∥wt − p∥2 + ⟨ϕ(p)− p, ut − p⟩)
= (1− βt(2− βt(1 + 2κ2)− 2κ(1− βt)))∥wt − p∥2

+ 2β2
t ∥ϕ(p)− p∥2 + 2βt(1− βt)⟨ϕ(p)− p, ut − p⟩

≤ (1− βt(2− βt(1 + 2κ2)− 2κ(1− βt)))∥qt − p∥2 + 2M2εt

+ 2β2
t ∥ϕ(p)− p∥2 + 2βt(1− βt)⟨ϕ(p)− p, ut − p⟩. (3.19)

By setting at = ∥qt − p∥2,Υt = βt(2− βt(1 + 2κ2)− 2κ(1− βt)), and

Φt :=
2(M2

ϵt
βt

+ βt∥ϕ(p)− p∥2 + (1− βt)⟨ϕ(p)− p, ut − p⟩)
2− βt(1 + 2κ2)− 2κ(1− βt)

,

then (3.19) implies that

qt+1 ≤ (1−Υt)at +ΥtΦt. (3.20)

Since
∞∑
t=0

βt = ∞, we have that
∞∑
t=0

Υt = ∞. Thus, {Υt} satisfies condition (i) of

Lemma 2.4. Next, we show that lim sup
k→∞

Φtk ≤ 0. To establish this, we choose a

subsequence {utk} of {ut} such that

lim
k→∞

⟨ϕ(p)− p, utk − p⟩ = lim sup
t→∞

⟨ϕ(p)− p, ut − p⟩.

Since {utk} ⇀ x∗, it follows that

lim sup
t→∞

⟨ϕ(p)− p, ut − p⟩ = lim
k→∞

⟨ϕ(p)− p, utk − p⟩

= ⟨ϕ(p)− p, x∗ − p⟩
≤ 0. (3.21)

Thus, lim sup
k→∞

Φtk ≤ 0. By substituting (3.21) into (3.20) and applying Lemma 2.4,

we obtain that the sequence {qt} converges strongly to p ∈ Γ, which completes the
proof.

Algorithm 3.2. Multi-step inertial method for split common null point
and fixed point problem.
Initialization: Given ϵ > 0, δ > 3, s ∈ N+ let q1, q0, · · · , q1−s ∈ H1 and {ρt} ∈
(0, ω).



Split Common Null Point Problem 1267

Step 1: Given qt, qt−1, · · · , qt−s and compute

wt = qt +
∑
i∈Q

ξi,t(qt−i − qt−i−1),

where Q := {0, 1, · · · , s− 1} and ξi,t satisfies 0 ≤ |ξi,t| ≤ ξ̄t with ξ̄t defined by

ξ̄t =

min

{
t−1

t+δ−1 ,
εt∑

i∈Q

||qt−i−qt−i−1∥

}
,

∑
i∈Q

∥qt−i − qt−i−1∥ ≠ 0

t−1
t+δ−1 , otherwise.

Step 2: Compute

yt = wt − γt

r∑
i=1

Ψi(wt),

where

γt =


ρt

r∑
i=1

hi(wt)

σ2(wt)
, σ2(wt) ̸= 0,

0, otherwise.

Step 3: Compute

zt = yt +

r∑
i=1

αt,i
1− φi

2
(Ui − I)yt.

Step 4: Compute

ut = zt − τt

m∑
j=1

B∗
j∆j(Bjzt),

where

τt =


ρt

m∑
j=1

sj(zt)

σ2(zt)
, σ2(zt) ̸= 0,

0, otherwise.

Step 5: Compute

qt+1 = βtϕ(wt) + (1− βt)ut.

Step 6: If ∥qt+1−qt∥ ≤ ε, then the iterative process stops. Otherwise, set t := t+1
and go to Step 1.

Theorem 3.2. Suppose Assumptions 1 and Assumptions 2 hold. Then the sequence
{qt} generated by Algorithm 3.1 converges in norm to p = PΓ(0) (i.e. the minimum
norm element of the solution set Γ).
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Proof. Let p ∈ Γ. Then we have from Step 1 of Algorithm 3.2 that

∥yt − p∥ = ∥qt +
∑
i∈Q

|ξi,t| · ∥qt−i − qt−i−1∥

≤ ∥qt − p∥+ ξ̄t
∑
i∈Q

∥qt−i − qt−i−1∥.

Using the approach in Algorithm 3.1, we can establish that {qt}, {ut}, {wt}, {yt}
and ϕ(wt) are bounded.

Also, using Step 1 of Algorithm 3.2, we have

∥wt − p∥2 = ∥qt +
∑
i∈Q

ξi,t(qt−i − qt−i−1)− p∥2

≤ ∥qt − p∥2 + 2⟨qt − p+
∑
i∈Q

ξi,t(qt−i − qt−i−1),
∑
i∈Q

ξi,t(qt−i − qt−i−1)⟩

≤ ∥qt − p∥2 + 2M4|ξt|
∑
i∈Q

∥qt−i − qt−i−1∥

≤ ∥qt − p∥2 + 2M4ϵt,

where M4 = sup
t≥1

{
∥qt − p∥+ |ξt|

∑
i∈Q

∥qt−i − qt−i−1∥}.

The rest of the proof follows from the one of Theorem 3.1. This completes the
proof.

We state the consequence of our main result.
If Ui is a quasi-nonexpansive mapping, then we have

Corollary 3.1.

Algorithm 3.3. Extrapolation method for split common null point and
fixed point problem.

Initialization: Given ϵ > 0, δ > 3,
r∑

i=1

αt,i = 1 and let q0, q1 ∈ H1 and {ρt} ∈

(0, ω).
Step 1: Given qt−1, qt and compute

wt = qt + ξt(qt − qt−1),

where ξt satisfies 0 ≤ |ξt| ≤ ξ̄t with ξ̄t defined by

ξ̄t =

{
min

{
t−1

t+δ−1 ,
εt

||qt−qt−1∥

}
, qt ̸= qt−1

t−1
t+δ−1 , qt = qt−1.

Step 2: Compute

yt = wt − γt

r∑
i=1

Ψi(wt),

where

γt =


ρt

r∑
i=1

hi(wt)

σ2(wt)
, σ2(wt) ̸= 0,

0, otherwise.
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Step 3: Compute

zt = αt,0yt +

r∑
i=1

αt,iUiyt.

Step 4: Compute

ut = zt − τt

m∑
j=1

B∗
j∆j(Bjzt),

where

τt =


ρt

m∑
j=1

sj(zt)

σ2(zt)
, σ2(zt) ̸= 0,

0, otherwise.

Step 5: Compute

qt+1 = βtϕ(wt) + (1− βt)ut.

Step 6: If ∥qt+1−qt∥ ≤ ε, then the iterative process stops. Otherwise, set t := t+1
and go to Step 1.

4. Numerical example

In this section, we present a numerical example to demonstrate the performance of
our iterative method in comparison with the un-accelerated iterative method.

Example 4.1. Let H1 = H2 = L2[0, 2π]. Define the mappings Ψ1,∆1 and B1x(t),

Ψ1x(t) :=
x(t)
2 ,∆1(x)(t) :=

2x(t)
3 and U1x(t) :=

−5x(t)
3 for all x ∈ L2[0, 2π]. Then

it can be shown that Ψ1 and ∆1 are 1
2− inverse strongly monotone mappings.

In addition, it is easy to observe that U1 is 1
4− strict pseudo-contraction. Put

Υ(x) = 1
100x, ϵt =

βt

t0.01 with βt =
1

10t , ω = 2, ρt = 2 − ( 1
(t+1) ) and αt,1 = 1

2 for all

t ≥ 1. We use ∥qt+1 − qt∥ < ε as the stopping criteria. Take ε = 10−5, we display
the numerical result in Figure 1.

(Case 1) q0(t) = (sin(−3t)+cos(−10t))/600 and q1(t) = (sin(−5t)+cos(−7t))/500,

(Case 2) q0(t) =
t2

100 and q1(t) =
2t2

300 ,

(Case 3) q0(t) =
(t2−e−t)

100 and q1(t) =
(t2−e−t)

300 .
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Figure 1. Example 4.1. Top : Case 1, Middle: Case 2, Bottom: Case 3
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5. Conclusion

In this manuscript, we propose two different iterative methods for solving SCNPP
and fixed point problem of finite family of a demimetric mappings. We establish
strong convergence results for both iterative methods under the assumption that
the operators are inverse strongly monotone. Our algorithms have two advantages:
(i) they are forward (hence less computational cost), which do not involve any com-
putation of any resolvent of a monotone operator as opposed by several backward
algorithms in the literature, and (ii) they do not require any prior knowledge of the
operator norms. These advantages makes both algorithms easily implementable.
Lastly, the class of mappings employed in this manuscript generalizes the class of
pseudo-contractive, quasi-nonexpansive and nonexpansive mappings.
Competing interests: The authors declare that there is no conflicting interests.
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