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Abstract The ongoing COVID-19 pandemic, caused by the highly contagious
coronavirus, poses significant challenges to public health worldwide. Effective
control measures are essential to mitigate the spread of the virus and pro-
tect vulnerable populations. This study aims to develop novel mathematical
models using fractional derivatives to analyze the dynamics of the COVID-19
outbreak. By employing modified mathematical procedures, we explore the im-
pact of quarantine and isolation as control measures on the disease’s transmis-
sion dynamics. We investigate a system representing COVID-19 through three
different arbitrary-order derivative operators: the Atangana-Baleanu deriva-
tive with the generalized Mittag-Leffler function, the Caputo derivative with a
power law, and the Caputo-Fabrizio derivative with exponential decay. Using
fixed-point theory, we assess the existence and uniqueness of solutions for the
arbitrary-order system. Our analysis includes numerical simulations that re-
veal how varying the fractional order influences the behavior of the epidemic.
The results demonstrate that increasing the fractional order generally slows
the disease’s progression, reflecting the memory effect inherent in fractional
derivatives. Specifically, higher values of the fractional order correspond to a
more gradual spread, reducing the peak number of infections and extending
the outbreak’s duration. The work highlights the critical importance of using
fractional order models to capture the complex dynamics of disease spread and
emphasizes that the implementation of quarantine and isolation for treatment
significantly decreases the cumulative number of new cases and the overall
transmission rate of COVID-19. This research underscores the effectiveness of
utilizing fractional-order models to better understand and control the complex
dynamics of disease transmission.
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1. Introduction

An extension of integer-order derivatives and integrals to arbitrary-order deriva-
tives is known as the calculus of arbitrary-order derivatives. In the field of applied
mathematics, fractional calculus has become a potent tool for solving real-world
problems. Compared to classical integer-order operators, arbitrary-order operators
offer a greater capacity to capture the memory and inheritance aspects of real-world
situations.

The applications of arbitrary-order derivatives are extremely varied and include
signal processing, biomathematics, engineering, and physics [1,2], among other do-
mains [3–9]. Numerous arbitrary-order derivatives in fractional calculus (FC) ex-
ist and are typically classified into two types in the literature: singular and non-
singular.

The most widely used of them are the Riemann-Liouville and Caputo opera-
tors [10], which are based on the power law kernel. The idea of arbitrary-order
differentiation and integration incorporating a power law kernel has recently un-
dergone historical evolution, where the power law kernel has been examined and
modified by a non-singular kernel [11,12].

In fractional modeling of real-world problems, two widely used derivatives are
the Caputo-Fabrizio (CF) derivative, which involves the exponential law kernel [12],
and the Atangana-Baleanu (AB) fractional derivative, which was developed based
on the Mittag-Leffler kernel with non-local and non-singular properties [11].

Numerous investigators have focused on the scientific applications of these variab-
le-order derivative operators to identify the mathematical systems that these three
kinds of kernels are used to describe [13–19].

It can be difficult to pinpoint a specific remedy to an issue at times. Many
researchers are naturally more interested in finding fractional operators and us-
ing numerical techniques to solve problems as a result of this predicament. The
arbitrary-order differential equations can be solved using a variety of numerical
methods [20–24].

Researchers have focused more on modeling and analyzing infectious diseases
in the bio-mathematical sciences using fractional operators in recent years; some
notable studies in this area may be found in [25–32]. Many nations have recently
experienced an epidemic of COVID-19, a deadly disease that goes untreated. Since
the start of the pandemic, the number of cases of SARS-CoV-2 disease, also known
as COVID-19, has been rapidly increasing, making it a serious concern. The recently
identified virus from the SARS-CoV-2 virus family is the cause of the respiratory
disease COVID-19.

The most typical signs and symptoms of COVID-19 include fever, exhaustion,
dry cough, and dyspnea. Human-to-human transmission of the disease is mostly
through tiny droplets released during coughing, sneezing, or talking. After being
originally discovered in Wuhan, China, in December 2019, the SARS-CoV-2 virus
quickly spread to other parts of the world. Numerous people have died as a result
of the new outbreak throughout many nations.

Humanity was thrust into a state of extreme fear by the novel COVID-19 out-
break, which compelled people to concentrate their efforts on studying and fore-
casting the disease’s future course. When it comes to understanding how diseases
spread, predicting the future, and making decisions to stop the spread of infectious
diseases, mathematical systems have been extremely important.
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Different mathematical approaches have been developed specifically to explore
the COVID-19 pandemic as seen in the works of [33–38]. Also, Khan et al. [39]
developed a mathematical model for COVID-19 dynamics using both integer order
and Atangana-Baleanu derivative approaches, analyzing stability through fractional
Lyapunov functions and implementing numerical solutions via modified Adams-
Bashforth scheme. Kumar et al. [40] investigated COVID-19 dynamics using three
different fractional derivative approaches (Caputo, Caputo-Fabrizio, and Atangana-
Baleanu), analyzing existence and uniqueness through fixed-point theory and pro-
viding numerical solutions with varying arbitrary power values. Ghanbari and
Kumar [41] studied a fractional predator-prey-pathogen model using Atangana-
Baleanu operators, analyzing equilibrium stability, solution uniqueness, and chaotic
behaviors through numerical simulations with various fractional derivative values.
Kumar et al. [42] analyzed COVID-19 spread in India using Hermite wavelets basis
for solving a fractional-order model with Caputo derivative, employing operational
matrix with collocation scheme and providing numerical simulations for different
fractional orders. Kumar et al. [43] developed a three-dimensional fractional host-
parasitoid population model using Caputo operator, investigating chaotic behaviors
and providing numerical solutions through Adam-Bashforth-Moulton and Toufik-
Atangana schemes. Veeresha et al. [44] investigated fractional generalized nonlinear
Schrödinger equation using ν-homotopy analysis transform method with Atangana-
Baleanu derivative, proving the existence of solution and demonstrating numerical
validations through case studies.

Despite the aforementioned research works on modeling the transmission dynam-
ics of COVID-19, there still exists a significant gap in devising measures to reduce
the burden of the disease. Thus, the novelty of this research lies in investigating the
effect of fractional order on the transmission dynamics of COVID-19 in the presence
of quarantine and isolation for treatment as control measures. In achieving this aim,
we examine the COVID-19 mathematical system within the structure of fractional
derivative operators using three distinct kernel types with the specific aim of investi-
gating the effect of fractional order, quarantine, and treatment on the transmission
dynamics of COVID-19. The advantages of the suggested approach using fractional
operators over existing methods are significant. First, fractional order derivatives
can approximate real data with greater flexibility than classical derivatives. Second,
this approach accounts for non-locality, a feature that classical derivatives cannot
capture. Additionally, fractional order derivatives exhibit a memory effect with re-
markable characteristics that cannot be replicated in classical models. The memory
effect in fractional models can be adjusted to achieve various degrees of responses,
providing a more nuanced understanding of the system being studied. Also, the
fractional derivative epidemic models provide powerful and hereditary properties
of the system, which are neglected or difficult to incorporate in classical models.
Futhermore, when fitting data, the fractional models have one more degree of free-
dom than the integer-order model, which gives several better responses. This can
be seen in the work of Chen et al. [45], where they demonstrated that the fractional
order model can predict the number of infectious people accurately and help con-
cerned bodies, such as policymakers, stakeholders, and health professionals, make
well-informed decisions in preventing and controlling an epidemic.

Using the recommended numerical techniques, the approximate solution is ob-
tained for all the fractional operators that are proposed. A significant limitation of
using fractional order models to analyze the spread of infectious diseases is the risk
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of over-fitting, as their flexibility can capture noise rather than meaningful patterns.
To address this, we implemented cross-validation techniques to evaluate model per-
formance on unseen data, ensuring robust generalization. We also simplified the
model by reducing the number of parameters, enhancing its predictive capability
as seen in table (1) and table (2). Additionally, we conducted temporal and spatial
validation to confirm that the model generalizes effectively across different time pe-
riods and geographical contexts. The remaining portion of this work is defined as
follows: The mathematical preliminary for the fractional order derivatives is given
in Section (1.1). We presented in Section (2), the mathematical model formulation
for both classical and fractional orders. Numerical methods for fractional Caputo
derivative with power law and that of Caputo-Fabrizio derivative with an expo-
nential law were presented in section (3), with the existence and uniqueness of the
model solutions examined alongside the numerical scheme in the same section.

The analysis of the COVID-19 fractional order model via the Atangana-Baleanu
(AB) derivative operator and the model simulation are provided in Section (4). In
Section (5), conclusion and numerical findings are presented.

1.1. Fractional calculus preliminaries

Some basic definitions and results needed for this study are presented in this section.
Important definitions involving the different kernels required for this research are
discussed briefly. [46–52].

Definition 1.1. [10]. The Liouville-Caputo fractional order derivative of order
θ ∈ [0, 1) is defined as:

C
0 D

θ
t x(t) =

1∣∣∣(1− θ)

t∫
0

(t− ψ)
−θ d

dt
x (ψ) dψ. (1.1)

Definition 1.2. [12] The Caputo-Fabrizio (CF) derivative that has no singular
kernel of a function x (t) of the fractional order θ ∈ (0, 1) is defined as:

CF
0 Dθ

t x (t) =
N (θ)

1− θ

t∫
0

exp

[
−θ (t− ψ)

1− θ

]
d

dt
x (ψ) dψ, (1.2)

where N (θ) = N (0) = N (1). Secondly, x ∈ Q
′
(0, T ) , T > 0.

Definition 1.3. [53]. For the function x (t), the fractional order integral with
order θ ∈ (0, 1) is defined as:

CF
0 Iθt x (t) =

2 (1− θ)

(2− θ)N (θ)
x (t) +

2θ

(2− θ)N (θ)

t∫
0

x (ψ) dψ. (1.3)

Definition 1.4. [11]. The Atagana-Baleanu (AB) fractional order operator of
order θ ∈ (0, 1) in Caputo sense is defined as:

ABC
0 Dθ

t x (t) =
AB (θ)

(1− θ)

t∫
0

γ0

[
−θ(t− ψ)

θ

1− θ

]
d

dt
x (ψ) dψ, (1.4)
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where γθ is a Mittag-Leffler function and is defined as:

γθ (m) =

∞∑
k=0

mk∣∣∣(θk + 1)
, θ ∈ C,R (θ) > 0,m ∈ C,

also AB (θ) = 1− θ + θ

|(θ) represents the normalization function.

The fractional order integral discussion related to the Atagana-Baleanu deriva-
tive is defined as:

AB
0 Iθt x (t) =

(1− θ)

AB (θ)
x (t) +

θ

AB (θ)
∣∣∣(θ)

t∫
0

(t− ψ)
θ−1

x (ψ) dψ. (1.5)

2. Mathematical model formulation

We divide the human population into five compartments, the Susceptible Individuals
(S), the Exposed Individuals (E), the Quarantined Individuals (Q), the Infected but
Isolated for Treatment Individuals (IT ) and the Recovered Individuals (R).
Susceptible Individuals (S): The population of susceptible individuals is re-
cruited at a constant rate, denoted by Λ, which represents the birth rate and immi-
gration into the population. The class decreases due to natural mortality at a rate
µ, reflecting the average lifespan of individuals. Additionally, susceptible individu-
als can become infected through two main routes: contact with exposed individuals
at a transmission rate β1, and contact with infected individuals who are isolated for
treatment at a transmission rate β2. The parameter β1 models the rate at which
exposed individuals, who are in the incubation phase, transmit the disease to sus-
ceptible individuals. On the other hand, β2 accounts for the possibility that isolated
infected individuals may still transmit the virus under certain circumstances, such
as ineffective isolation or late detection. The susceptible population also increases
when recovered individuals lose their immunity and re-enter the susceptible class
at a rate ω, representing the waning immunity observed in some individuals after
recovery. Furthermore, individuals who were quarantined but found to be free of
COVID-19 after diagnosis may return to the susceptible population at a rate λ,
indicating the reintroduction of these individuals into the community after being
cleared of the disease. The dynamics of this class is therefore formulated as:

dS

dt
= Λ− β1SE − β2SIT + λQ+ ωR− µS.

Exposed Individuals (E): The population of exposed individuals increases as a
result of new infections, which occur when susceptible individuals come into contact
with exposed individuals and infected but isolated individuals at rates β1 and β2,
respectively. The exposed class decreases at the rate α1, representing the progres-
sion of exposed individuals to fully infected status, at which point they are moved
to an isolation center for treatment. Another significant reduction in the exposed
population occurs at the rate τ , which corresponds to the quarantine of individuals
whose COVID-19 infection status is not yet confirmed. This parameter τ reflects
the rate at which individuals exhibiting symptoms or identified as potential cases
are temporarily removed from the general population to undergo diagnostic testing.
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This process helps to prevent further transmission while awaiting confirmation of
the disease. If these quarantined individuals are diagnosed as negative, they may
return to the susceptible class; otherwise, they progress into the appropriate infec-
tion categories. Finally, the exposed class also decreases due to natural mortality
at the rate µ. The overall dynamics of the exposed population are thus formulated
as:

dE

dt
= β1SE + β2SIT − α1E − τE − µE.

Quarantined Individuals (Q): The population of quarantined individuals in-
creases at the rate τ , which represents the transfer of unconfirmed COVID-19 cases
from the exposed class into quarantine for diagnostic testing. This quarantined
class decreases as individuals who are diagnosed to be free of COVID-19 return to
the susceptible population at a rate λ. The parameter λ captures the reintegration
of these individuals into the community after testing negative, thereby reducing the
number of quarantined individuals. Additionally, the quarantined class decreases
at the rate α2, which accounts for the progression of those diagnosed as COVID-19
positive. These individuals are transferred to an isolation center for medical treat-
ment to prevent further transmission and to receive care. Finally, similar to other
classes, the quarantined population is subject to natural mortality at the rate µ.
The overall dynamics of the quarantined population are thus formulated as:

dQ

dt
= τE − λQ− α2Q− µQ.

Infected but Isolated for Treatment Individuals (IT ): The population of
infected individuals who are isolated for treatment increases through two main
processes. First, exposed individuals who become fully infectious are transferred to
this class at a rate α1, representing the progression from the exposed stage to active
infection requiring isolation. Second, quarantined individuals who are confirmed to
be COVID-19 positive after diagnostic testing are moved to the isolation center for
treatment at a rate α2. These transfers help in segregating infectious individuals
from the general population to reduce transmission risks. The size of the isolated
infected population decreases due to recovery after treatment, which occurs at a
rate ϕ. The parameter ϕ reflects the effectiveness of medical treatment in reducing
the number of active cases. Additionally, this class reduces due to deaths caused
by the disease at a rate σ, representing disease-induced mortality, and from natural
deaths at a rate µ. Together, these factors shape the overall dynamics of the isolated
infected population, which are formulated as:

dIT
dt

= α1E + α2Q− ϕIT − σIT − µIT .

Recovered Individuals (R): The population of recovered individuals increases
at a rate ϕ, which corresponds to the recovery of infected individuals following
treatment. This recovery signifies the transition from the isolated infected class
back to the recovered class, reflecting the effectiveness of medical interventions in
curing COVID-19. However, the recovered population also experiences a decrease
as individuals lose their immunity and become susceptible to reinfection at a rate ω.
This parameter ω captures the phenomenon of waning immunity, where individuals
who have recovered from COVID-19 may not maintain long-term protection against
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the virus. Finally, the recovered class decreases due to natural mortality at a rate
µ, which affects all individuals in the population regardless of their infection status.
The dynamics of the recovered population are thus formulated as:

dR

dt
= ϕIT − ωR− µR.

The flow diagram that is associated with the above description is shown in Fig. (1)

Figure 1. Flow diagram for the COVID-19 model

The mathematical model associated with our assumptions and the above model
description is given by

dS
dt = Λ− β1SE − β2SIT + λQ+ ωR− µS,

dE
dt = β1SE + β2SIT − α1E − τE − µE,

dQ
dt = τE − λQ− α2Q− µQ,

dIT
dt = α1E + α2Q− ϕIT − σIT − µIT ,

dR
dt = ϕIT − ωR− µR.


(2.1)

2.1. Fractional COVID-19 mathematical model

We extend in this section the integer model presented in equation (2.1) as follows:

DtS (t) = Λ− β1SE − β2SIT + λQ+ ωR− µS,

DtE (t) = β1SE + β2SIT − α1E − τE − µE,

DtQ (t) = τE − λQ− α2Q− µQ,

DtIT (t) = α1E + α2Q− ϕIT − σIT − µIT ,

DtR (t) = ϕIT − ωR− µR,


(2.2)
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with initial conditions
S0 (t) = S (0), E0 (t) = E (0), Q0 (t) = Q (0), IT0 (t) = IT (0), R0 (t) = R (0).

Model (2.2) is therefore re-modeled by replacing the classical derivative (Dt) us-
ing

(
C
0 D

θ
t

)
,
(
CF
0 Dθ

t

)
and

(
ABC
0 Dθ

t

)
which represents the Caputo derivative with

fractional order θ, Caputo-Fabrizio derivative with fractional order θ and Atagana-
Baleanu derivative with fractional order θ respectively.

The modified COVID-19 model with Caputo derivative of fractional order θ with
power law is presented as:

C
0 D

θ
tS (t) = Λ− β1SE − β2SIT + λQ+ ωR− µS,

C
0 D

θ
tE (t) = β1SE + β2SIT − α1E − τE − µE,

C
0 D

θ
tQ (t) = τE − λQ− α2Q− µQ,

C
0 D

θ
t IT (t) = α1E + α2Q− ϕIT − σIT − µIT ,

C
0 D

θ
tR (t) = ϕIT − ωR− µR.


(2.3)

The modified COVID-19 model with Caputo-Fabrizio derivative of fractional order
θ, which has an exponential kernel law is presented as:

CF
0 Dθ

tS (t) = Λ− β1SE − β2SIT + λQ+ ωR− µS,

CF
0 Dθ

tE (t) = β1SE + β2SIT − α1E − τE − µE,

CF
0 Dθ

tQ (t) = τE − λQ− α2Q− µQ,

CF
0 Dθ

t IT (t) = α1E + α2Q− ϕIT − σIT − µIT ,

CF
0 Dθ

tR (t) = ϕIT − ωR− µR.


(2.4)

Also the modified COVID-19 model with Atagana-Baleanu-derivative with gener-
alized Mittag-Leffler function is presented as:

ABC
0 Dθ

tS (t) = Λ− β1SE − β2SIT + λQ+ ωR− µS,

ABC
0 Dθ

tE (t) = β1SE + β2SIT − α1E − τE − µE,

ABC
0 Dθ

tQ (t) = τE − λQ− α2Q− µQ,

ABC
0 Dθ

t IT (t) = α1E + α2Q− ϕIT − σIT − µIT ,

ABC
0 Dθ

tR (t) = ϕIT − ωR− µR.


(2.5)

3. Numerical method for the Caputo derivative

We introduce briefly the predictor-Corrector type numerical algorithm to solve
COVID-19 model with Caputo derivative of fractional order (θ).

C
0 D

θ
t x (t) = F (t, x (t)) , 0 ≤ t ≤ T,

x(n) (0) = x
(n)
0 , n = 0, 1, 2, ...k − 1.

 (3.1)

Equation (3.1) is the same as the Volterra integral equation.
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x (t) =

|θ|−1∑
n=0

x
(n)
0

tn

n!
+

1∣∣∣(θ)
t∫

0

F (ψ, x (ψ))

(t− ψ)
1−θ

dψ. (3.2)

Setting P = T
N , tr = rp, (r = 0, 1, 2, 3, ...R).

We therefore discretize equation (3.2) as follows:

xp (tr+1) =

|θ|−1∑
n=0

tnr+1

n!
x
(n)
0 +

P θ∣∣∣(θ + 2)

[
F
(
tr+1, x

V
P (tr+1)

)
+

k∑
i=0

bi,k+1F (ti, xr (ti))

]
,

(3.3)
where xp (tr+1) is called the predicted value which is evaluated using the arbitrary
Adams-Bashforth method as given below:

xVP (tr+1) =

|θ|−1∑
n=0

tnr+1

n!
x
(n)
0 +

1∣∣∣(θ)
k∑

i=0

di,k+1F (ti, xr (ti)) , (3.4)

where

bi,k+1 =


rθ+1 − (r − θ) (r + 1)

θ
, i = 0,

(r − i+ 2)
θ+1

+ (r − i)
θ+1 − 2(r − i+ 1)

θ+1
, 1 ≤ i ≤ r,

1.i = r + 1,

and

di,k+1 =
P θ

θ

(
(r + 1− i)

θ − (r − i)
θ
)
, 0 ≤ i ≤ k, i = 1, 2, 3.

3.1. Predictor-corrector numerical method for the COVID-19
model with Caputo fractional derivative

From our model (2.3), we employ the predictor-corrector numerical method to solve
the fractional operator. Model (2.3) to this end is discretized as follows:

Sr+1 = S(0) +
P θ∣∣θ + 2

∣∣
[
F1

(
tr+1, S

V
r+1, E

V
r+1, Q

V
r+1, I

V
Tr+1, R

V
r+1

)
+

k∑
i=0

bi,k+1F1

(
ti, Si, Ei, Qi, ITi, Ri

)]
,

Er+1 = E(0) +
P θ∣∣θ + 2

∣∣
[
F2

(
tr+1, S

V
r+1, E

V
r+1, Q

V
r+1, I

V
Tr+1, R

V
r+1

)
+

k∑
i=0

bi,k+1F2

(
ti, Si, Ei, Qi, ITi, Ri

)]
,

Qr+1 = Q(0) +
P θ∣∣θ + 2

∣∣
[
F3

(
tr+1, S

V
r+1, E

V
r+1, Q

V
r+1, I

V
Tr+1, R

V
r+1

)
+

k∑
i=0

bi,k+1F3

(
ti, Si, Ei, Qi, ITi, Ri

)]
,

ITr+1 = IT (0) +
P θ∣∣θ + 2

∣∣
[
F4

(
tr+1, S

V
r+1, E

V
r+1, Q

V
r+1, I

V
Tr+1, R

V
r+1

)
+

k∑
i=0

bi,k+1F4

(
ti, Si, Ei, Qi, ITi, Ri

)]
,

Rr+1 = R(0) +
P θ∣∣θ + 2

∣∣
[
F5

(
tr+1, S

V
r+1, E

V
r+1, Q

V
r+1, I

V
Tr+1, R

V
r+1

)
+

k∑
i=0

bi,k+1F5

(
ti, Si, Ei, Qi, ITi, Ri

)]
.

(3.5)
SV
r+1, E

V
r+1, Q

V
r+1, T

V
Tr+1, R

V
r+1 are therefore written as follows:
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SV
r+1 = S (0) + 1

|(θ)

[
k∑

i=0

di,k+1F1 (ti, Si, Ei, Qi, ITi, Ri)

]
,

EV
r+1 = E (0) + 1

|(θ)

[
k∑

i=0

di,k+1F2 (ti, Si, Ei, Qi, ITi, Ri)

]
,

QV
r+1 = Q (0) + 1

|(θ)

[
k∑

i=0

di,k+1F3 (ti, Si, Ei, Qi, ITi, Ri)

]
,

IVTr+1 = IT (0) + 1

|(θ)

[
k∑

i=0

di,k+1F4 (ti, Si, Ei, Qi, ITi, Ri)

]
,

RV
r+1 = R (0) + 1

|(θ)

[
k∑

i=0

di,k+1F5 (ti, Si, Ei, Qi, ITi, Ri)

]
,



(3.6)

where

F1 (t, S,E,Q, IT , R) = Λ− β1SE − β2SIT + λQ+ ωR− µS,

F2 (t, S,E,Q, IT , R) = β1SE + β2SIT − α1E − τE − µE,

F3 (t, S,E,Q, IT , R) = τE − λQ− α2Q− µQ,

F4 (t, S,E,Q, IT , R) = α1E + α2Q− ϕIT − σIT − µIT ,

F5 (t, S,E,Q, IT , R) = ϕIT − ωR− µR.


(3.7)

3.2. Existence and uniqueness of solutions for the modified
COVID-19 model with Caputo-Fabrizio derivative

In this section, we employ the fixed point theorem to investigate the existence
and uniqueness of solution for the modified COVID-19 model with Caputo-Fabrizio
derivative presented in equation (2.4).

The model is therefore transformed into an integral equation given as:

S (t)− S (0) =CF
0 Iθt [Λ− β1SE − β2SIT + λQ+ ωR− µS] ,

E (t)− E (0) =CF
0 Iθt [β1SE + β2SIT − α1E − τE − µE] ,

Q (t)−Q (0) =CF
0 Iθt [τE − λQ− α2Q− µQ] ,

IT (t)− IT (0) =CF
0 Iθt [α1E + α2Q− ϕIT − σIT − µIT ] ,

R (t)−R (0) =CF
0 Iθt [ϕIT − ωR− µR] .


(3.8)

The kernel is defined as follows:

Y1 (t, S) = Λ− β1SE − β2SIT + λQ+ ωR− µS,

Y2 (t, E) = β1SE + β2SIT − α1E − τE − µE,

Y3 (t, Q) = τE − λQ− α2Q− µQ,

Y4 (t, IT ) = α1E + α2Q− ϕIT − σIT − µIT ,

Y5 (t, R) = ϕIT − ωR− µR.


(3.9)

We obtain the following after using the arbitrary integral in equation (3.8).
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S (t)− S (0) = 2(i−θ)
(2−θ)N(θ)Y1 (t, S) +

2θ
(2−θ)N(θ)

t∫
0

Y1 (ϕ, S) dϕ,

E (t)− E (0) = 2(i−θ)
(2−θ)N(θ)Y2 (t, S) +

2θ
(2−θ)N(θ)

t∫
0

Y2 (ϕ, S) dϕ,

Q (t)−Q (0) = 2(i−θ)
(2−θ)N(θ)Y3 (t, S) +

2θ
(2−θ)N(θ)

t∫
0

Y3 (ϕ, S) dϕ,

IT (t)− IT (0) = 2(i−θ)
(2−θ)N(θ)Y4 (t, S) +

2θ
(2−θ)N(θ)

t∫
0

Y4 (ϕ, S) dϕ,

R (t)−R (0) = 2(i−θ)
(2−θ)N(θ)Y5 (t, S) +

2θ
(2−θ)N(θ)

t∫
0

Y5 (ϕ, S) dϕ.



(3.10)

Theorem 3.1. The kernels Y1, Y2, Y3, Y4 and Y5 in equation (3.9) fulfill the Lips-
chitz and contraction condition provided that the inequality given below is satisfied

0 ≤ (β1g2 + β2g4 + µg1) < 1.

Proof. Starting with kernel Y1 and assuming that kernel Y1, has S and S∗ as
functions, then we can say

∥Y1 (t, S)− Y1 (t, S
∗)∥

= ∥− (β1E + β2IT + µ)S − S∗∥
≤ (β1 ∥E∥+ β2 ∥IT ∥+ µ) ∥S − S∗∥
≤ (β1g2 + β2g4 + µg1) ∥S − S∗∥ . (3.11)

Let L1 = (β1g2 + β2g4 + µg1). Considering the fact that

∥S∥ ≤ g1, ∥E∥ ≤ g2, ∥Q∥ ≤ g3, ∥IT ∥ ≤ g4, ∥R∥ ≤ g5

are functions that are bounded where g1, g2, g3, g4 and g5 are some non-negative
constants. We therefore have that:

∥Y1 (t, S)− Y1 (t, S
∗)∥ ≤ ρ1 ∥S − S∗∥ . (3.12)

Equation (3.12) means kernel Y1 satisfies the Lipschitz condition. For the contrac-
tion condition, 0 ≤ ρ1 < 1 settles the case.

Similarly, we can write expressions for the remaining kernels as follows:

∥Y2 (t, E)− Y2 (t, E
∗)∥ ≤ ρ2 ∥E − E∗∥ ,

∥Y3 (t, E)− Y3 (t, E
∗)∥ ≤ ρ3 ∥Q−Q∗∥ ,

∥Y4 (t, E)− Y4 (t, E
∗)∥ ≤ ρ4 ∥IT − IT

∗∥ ,

∥Y5 (t, E)− Y5 (t, E
∗)∥ ≤ ρ5 ∥R−R∗∥ .


(3.13)

Introducing the recursive formula using equation (3.10) gives:
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Sr (t) =
2(1−θ)

(2−θ)N(θ)Y1 (t, Sr−1) +
2θ

(2−θ)N(θ)

t∫
0

Y1 (ϕ, Sr−1) dϕ,

Er (t) =
2(1−θ)

(2−θ)N(θ)Y2 (t, Er−1) +
2θ

(2−θ)N(θ)

t∫
0

Y2 (ϕ,Er−1) dϕ,

Qr (t) =
2(1−θ)

(2−θ)N(θ)Y3 (t, Qr−1) +
2θ

(2−θ)N(θ)

t∫
0

Y3 (ϕ,Qr−1) dϕ,

IT r (t) =
2(1−θ)

(2−θ)N(θ)Y4 (t, IT r−1) +
2θ

(2−θ)N(θ)

t∫
0

Y4 (ϕ, IT r−1) dϕ,

Rr (t) =
2(1−θ)

(2−θ)N(θ)Y5 (t, Rr−1) +
2θ

(2−θ)N(θ)

t∫
0

Y5 (ϕ, Sr−1) dϕ,



(3.14)

where S0 = S (0) , E0 = E (0) , Q0 = Q (0) , IT0 = I (T0) , R0 = R (0) are the initial
conditions for the recursive expression given in (3.14).

Equation (3.15) is obtained after taking the difference between successive terms.

ψr(t) = Sr(t)− Sr−1(t) =
2(1− θ)

(2− θ)N(θ)
Y1(t, Sr−1) +

2θ

(2− θ)N(θ)

∫ t

0

Y1(ϕ, Sr−1)dϕ,

χr(t) = Er(t)− Er−1(t) =
2(1− θ)

(2− θ)N(θ)
Y2(t, Er−1) +

2θ

(2− θ)N(θ)

∫ t

0

Y2(ϕ,Er−1)dϕ,

πr(t) = Qr(t)−Qr−1(t) =
2(1− θ)

(2− θ)N(θ)
Y3(t, Qr−1) +

2θ

(2− θ)N(θ)

∫ t

0

Y3(ϕ,Qr−1)dϕ,

Ωr(t) = ITr(t)− ITr−1(t) =
2(1− θ)

(2− θ)N(θ)
Y4(t, ITr−1

) +
2θ

(2− θ)N(θ)

∫ t

0

Y4(ϕ, ITr−1
)dϕ,

σr(t) = Rr(t)−Rr−1(t) =
2(1− θ)

(2− θ)N(θ)
Y5(t, Rr−1) +

2θ

(2− θ)N(θ)

∫ t

0

Y5(ϕ,Rr−1)dϕ.

(3.15)
Expressing our model variables in terms of an infinite series, we have that

Sr (t) =
r∑

i=1

ψi (t) ,Er (t) =
r∑

i=1

χi (t) ,Qr (t) =
r∑

i=1

πi (t) ,

ITr (t) =
r∑

i=1

Ωi (t) ,Rr (t) =
r∑

i=1

σi (t).

We obtain equation (3.16) by taking the norm of equation (3.15).

∥ψr(t)∥ = ∥Sr(t)− Sr−1(t)∥ =
∥∥∥ 2(1−θ)
(2−θ)N(θ)Y1(t, Sr−1) +

2θ
(2−θ)N(θ)

∫ t

0
Y1(ϕ, Sr−1)dϕ

∥∥∥ .
(3.16)

Equation(3.16) is modified as (3.17), when we apply the triangle inequality

∥ψr(t)∥ = ∥Sr(t)− Sr−1(t)∥ ≤ 2(1−θ)
(2−θ)N(θ) ∥Y1(t, Sr−1)∥+ 2θ

(2−θ)N(θ)

∥∥∥∫ t

0
Y1(ϕ, Sr−1)dϕ

∥∥∥ .
(3.17)

Using the Lipschitz condition which is satisfied from theorem (3.1), Section (3.2)
by kernels, we now rewrite equation (3.17) as:

∥ψr(t)∥ = ∥Sr(t)− Sr−1(t)∥ ≤ 2(1−θ)
(2−θ)N(θ)ρ1 ∥Sr−1 − Sr−2∥+ 2θ

(2−θ)N(θ)ρ1
∫ t

0
∥Sr−1 − Sr−2∥ dϕ.

(3.18)
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Therefore we have

∥ψr(t)∥ = ∥Sr(t)− Sr−1(t)∥ ≤ 2(1−θ)
(2−θ)N(θ)ρ1 ∥ψr−1(t)∥+ 2θ

(2−θ)N(θ)ρ1
∫ t

0
∥ψr−1(ϕ)∥ dϕ.

(3.19)
The following results are obtained following the same procedure used in equation
(3.19)

∥χr(t)∥ = ∥Sr(t)− Sr−1(t)∥ ≤ 2(1− θ)

(2− θ)N(θ)
ρ1 ∥χr−1(t)∥+

2θ

(2− θ)N(θ)
ρ1

∫ t

0

∥χr−1(ϕ)∥ dϕ,

∥πr(t)∥ = ∥Sr(t)− Sr−1(t)∥ ≤ 2(1− θ)

(2− θ)N(θ)
ρ1 ∥πr−1(t)∥+

2θ

(2− θ)N(θ)
ρ1

∫ t

0

∥πr−1(ϕ)∥ dϕ,

∥Ωr(t)∥ = ∥Sr(t)− Sr−1(t)∥ ≤ 2(1− θ)

(2− θ)N(θ)
ρ1 ∥Ωr−1(t)∥+

2θ

(2− θ)N(θ)
ρ1

∫ t

0

∥Ωr−1(ϕ)∥ dϕ,

∥σr(t)∥ = ∥Sr(t)− Sr−1(t)∥ ≤ 2(1− θ)

(2− θ)N(θ)
ρ5 ∥ψr−1(t)∥+

2θ

(2− θ)N(θ)
ρ5

∫ t

0

∥σr−1(ϕ)∥ dϕ.

(3.20)

Theorem 3.2. The fractional order model (2.4) coupled solution exists, if there
exist some t0 whenever

2 (1− θ)

(2− θ)N (θ)
ρ1 +

2θ

(2− θ)
ρ1t0 < 1.

Proof. The model variables S (t) , E (t) , Q (t) , I (Tt) and R (t) are taken to be
bounded functions of which Lipschitz condition is fulfilled by their kernels.

We therefore obtain the following results by employing equations (3.19) and
(3.20) recursively.

∥ψr (t)∥ ≤ ∥S (0)∥
[

2(1−θ)
(2−θ)N(θ)ρ1 +

2(1−θ)
(2−θ)N(θ)ρ1t

]r
,

∥χr (t)∥ ≤ ∥E (0)∥
[

2(1−θ)
(2−θ)N(θ)ρ2 +

2(1−θ)
(2−θ)N(θ)ρ2t

]r
,

∥πr (t)∥ ≤ ∥Q (0)∥
[

2(1−θ)
(2−θ)N(θ)ρ3 +

2(1−θ)
(2−θ)N(θ)ρ3t

]r
,

∥Ωr (t)∥ ≤ ∥IT (0)∥
[

2(1−θ)
(2−θ)N(θ)ρ4 +

2(1−θ)
(2−θ)N(θ)ρ4t

]r
,

∥σr (t)∥ ≤ ∥R (0)∥
[

2(1−θ)
(2−θ)N(θ)ρ5 +

2(1−θ)
(2−θ)N(θ)ρ5t

]r
.

(3.21)

We assume the following so as to show that equation (3.21) is a unique solution
of the Caputo-Fabrizio derivative COVID-19 model presented in equation (2.4).

S (t)− S (0) = Sr (t)−Ar (t) ,

E (t)− E (0) = Er (t)−Br (t) ,

Q (t)−Q (0) = Qr (t)− Cr (t) ,

IT (t)− IT (0) = ITr (t)−Dr (t) ,

R (t)−R (0) = Rr (t)− Fr (t) ,


(3.22)

such that
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∥Ar(t)∥ =
∥∥∥ 2(1−θ)
(2−θ)N(θ) (Y1(t, S)− Y1(t, Sr−1)) +

2θ
(2−θ)N(θ)

∫ t

0
(Y1(ϕ, S)− Y1(ϕ, Sr−1)) dϕ

∥∥∥ .
≤ 2(1−θ)

(2−θ)N(θ) ∥Y1(t, S)− Y1(t, Sr−1)∥+ 2θ
(2−θ)N(θ)

∫ t

0
∥Y1(ϕ, S)− Y1(ϕ, Sr−1)∥ dϕ,

∥Ar (t)∥ ≤ 2 (1− θ)

(2− θ)N (θ)
ρ1 ∥S − Sr−1∥+

2θ

(2− θ)N (θ)
∥S − Sr−1∥ t. (3.23)

Then,

∥Ar (t)∥ ≤
[

2 (1− θ)

(2− θ)N (θ)
ρ1 +

2θ

(2− θ)N (θ)
ρ1t

]r+1

E. (3.24)

When t = t0, we have that

∥Ar (t)∥ ≤
[

2 (1− θ)

(2− θ)N (θ)
ρ1 +

2θ

(2− θ)N (θ)
ρ1t0

]r+1

E. (3.25)

Taking the limit of equation (3.25) as r → inf, then we have ∥Ar (t)∥r leading to
zero.

In the same way, we can show that ∥Br (t)∥ → 0, ∥Cr (t)∥ → 0, ∥Dr (t)∥ →
0, ∥Fr (t)∥ → 0.

We therefore conclude that the existence of the solution to our model (2.4) is
proved.

We now discuss the uniqueness of the solution to model (2.4) in Theorem (3.3).

Theorem 3.3. The fractional COVID-19 model (2.4) with Caputo-Fabrizio deriva-
tive has a unique solution whenever(

1− 2 (1− θ)

(2− θ)N (θ)
ρ1 −

2θ

(2− θ)N (θ)
ρ1t

)
> 0.

Proof. Assuming that the fractional model (2.4) has another solution of the form
S∗ (t) , E∗ (t) , Q∗ (t) , I∗T (t) and R∗ (t), therefore

S(t)− S∗(t) = 2(1−θ)
(2−θ)N(θ) (Y1(t, S)− Y1(t, S

∗)) + 2θ
(2−θ)N(θ)

∫ t

0
(Y1(ϕ, S)− Y1(ϕ, S

∗)) dϕ.

(3.26)
Taking the norm of the above equation (3.26), we have

∥S(t)− S∗(t)∥ ≤ 2(1−θ)
(2−θ)N(θ)∥Y1(t, S)− Y1(t, S

∗)∥+ 2θ
(2−θ)N(θ)

∫ t

0
∥Y1(ϕ, S)− Y1(ϕ, S

∗)∥ dϕ.
(3.27)

Since the Lipschitz condition is satisfied by the kernel, then we have that,

∥S(t)− S∗(t)∥ ≤ 2(1−θ)
(2−θ)N(θ)ρ1∥S(t)− S∗(t)∥+ 2θ

(2−θ)N(θ)ρ1t∥S(t)− S∗(t)∥.
(3.28)
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Equation (3.28) can also be expressed as

∥S (t)− S∗ (t)∥
(
1− 2 (1− θ)

(2− θ)N (θ)
ρ1 −

θ

(2− θ)N (θ)
ρ1t

)
≤ 0. (3.29)

But

∥S (t)− S∗ (t)∥ = 0. (3.30)

Therefore

S (t) = S∗ (t) . (3.31)

This implies the model solution is proved to be unique. The remaining fractions
E (t) , Q (t) , IT (t) and R (t) results can be obtained following the same procedure.

3.3. Caputo-Fabrizio derivative numerical algorithm

In this section, we discussed a numerical method for Caputo-Fabrizio fractional
order derivative following the method used in [23].

CF
0 Dθ

t x (t) = y (t, x (t)) . (3.32)

Using the calculus fundamental theorem we now have,

x (t)− x (0) =
1− θ

N (θ)
y (t, x (t)) +

θ

N (θ)

t∫
0

y (ψ, x (ψ))dψ. (3.33)

For a general case (3.33) becomes

x (tr+1)− x (0) =
1− θ

N (θ)
y (tr+1, x (tr+1)) +

θ

N (θ)

tr+1∫
0

y (t, x (t))dt. (3.34)

Secondly,

x (tr)− x (0) =
1− θ

N (θ)
y (tr−1, x (tr−1)) +

θ

N (θ)

tr∫
0

y (t, x (t))dt. (3.35)

From (3.35), we have that

x(tr+1)− x(tr) =
(1−θ)
N(θ)

(
y(tr, x(tr))− y(tr−1, x(tr−1))

)
+ θ

N(θ)

∫ tr+1

tr
y(t, x(t)) dt,

(3.36)
where
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tr+1∫
tr

y (t, x (t)) dt =

tr+1∫
tr

[
y (tr, xr)

p
(t− tr−1)−

y (tr−1, xr−1)

p
(t− tr)

]

=
3P

2
y (tr, xn)−

P

2
y (tr−1, xr−1) .

(3.37)

From equation (3.36), the following solution is obtained

x (tr+1)− x (tr) =
(1− θ)

N (θ)
[(y (tr, x (tr))− y(tr−1, x (tr−1))]

+
θ

N (θ)

[
3P

2
y (tr, x (tr))−

P

2
y (tr−1, x (tr−1))

]
.

(3.38)

Therefore,

x (tr+1)− x (tr) =

(
(1− θ)

N (θ)
+

3θP

2N (θ)

)
y (tr, x (tr))

−
(
(1− θ)

N (θ)
+

θP

2N (θ)

)
y (tr−1, x (tr−1)) .

(3.39)

Equation (3.39) has the solution of the form

x (r+1)− x (r) =
(

(1−θ)
N(θ) + 3θP

2N(θ)

)
y (r, x (tr))

−
(

(1−θ)
N(θ) + θP

2N(θ)

)
y (tr−1, x (tr−1)) .

(3.40)

This is the two-step Adams-Bashforth-Moulton numerical method for the Caputo-
Fabrizio fractional order derivative.

3.4. Caputo-Fabrizio derivative COVID-19 model numerical
method

We now employ the above two-step Adams-Bashforth-Moulton numerical algorithm
proposed to obtain the approximate solution of model (2.4).

Sr+1 = Sr +
(

(1−θ)
N(θ) + 3θP

2N(θ)

)
y1 (tr, Sr, Er, Qr, ITr, Rr)

−
(

(1−θ)
N(θ) + θP

2N(θ)

)
y1 (tr−1, Sr−1, Er−1, Qr−1, ITr−1, Rr−1) ,

Er+1 = Er +
(

(1−θ)
N(θ) + 3θP

2N(θ)

)
y2 (tr, Sr, Er, Qr, ITr, Rr)

−
(

(1−θ)
N(θ) + θP

2N(θ)

)
y2 (tr−1, Sr−1, Er−1, Qr−1, ITr−1, Rr−1) ,

Qr+1 = Qr +
(

(1−θ)
N(θ) + 3θP

2N(θ)

)
y3 (tr, Sr, Er, Qr, ITr, Rr)

−
(

(1−θ)
N(θ) + θP

2N(θ)

)
y3 (tr−1, Sr−1, Er−1, Qr−1, ITr−1, Rr−1) ,

ITr+1 = ITr +
(

(1−θ)
N(θ) + 3θP

2N(θ)

)
y4 (tr, Sr, Er, Qr, ITr, Rr)

−
(

(1−θ)
N(θ) + θP

2N(θ)

)
y4 (tr−1, Sr−1, Er−1, Qr−1, ITr−1, Rr−1) ,

Rr+1 = Rr +
(

(1−θ)
N(θ) + 3θP

2N(θ)

)
y5 (tr, Sr, Er, Qr, ITr, Rr)

−
(

(1−θ)
N(θ) + θP

2N(θ)

)
y5 (tr−1, Sr−1, Er−1, Qr−1, ITr−1, Rr−1) .

(3.41)
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4. Adams-type predictor corrector numerical method
with Atagana-Baleanu-derivative fractional order
model

In this section, we employ the Adams-type predictor corrector numerical method
used [54] to obtain an approximate solution of our COVID-19 model (2.5).

Recall that our COVID-19 model in the sense of Atagana-Baleanu-derivative
with the generalized Mittag-Leffler function is given as:

ABC
0 Dθ

tS (t) = Λ− β1SE − β2SIT + λQ+ ωR− µS,

ABC
0 Dθ

tE (t) = β1SE + β2SIT − α1E − τE − µE,

ABC
0 Dθ

tQ (t) = τE − λQ− α2Q− µQ,

ABC
0 Dθ

t IT (t) = α1E + α2Q− ϕIT − σIT − µIT ,

ABC
0 Dθ

tR (t) = ϕIT − ωR− µR.


This can also be written as:

ABC
0 Dθ

tS (t) = y1 (t, S,E,Q, IT , R) ,

ABC
0 Dθ

tE (t) = y2 (t, S,E,Q, IT , R) ,

ABC
0 Dθ

tQ (t) = y3 (t, S,E,Q, IT , R) ,

ABC
0 Dθ

t IT (t) = y4 (t, S,E,Q, IT , R) ,

ABC
0 Dθ

tR (t) = y5 (t, S,E,Q, IT , R) .


(4.1)

Applying the Atagana-Baleanu (AB) fractional order integral on both sides of the
equation.

S(t) = S0(t) +
(1− θ)

AB(θ)
y1(t, S,E,Q, IT , R) +

θ

AB
∣∣∣ (θ) ∣∣∣

∫ t

0

y1(t, S,E,Q, IT , R)(t− ψ)θ−1dψ,

E(t) = E0(t) +
(1− θ)

AB(θ)
y2(t, S,E,Q, IT , R) +

θ

AB
∣∣∣ (θ) ∣∣∣

∫ t

0

y2(t, S,E,Q, IT , R)(t− ψ)θ−1dψ,

Q(t) = Q0(t) +
(1− θ)

AB(θ)
y3(t, S,E,Q, IT , R) +

θ

AB
∣∣∣ (θ) ∣∣∣

∫ t

0

y3(t, S,E,Q, IT , R)(t− ψ)θ−1dψ,

IT (t) = IT0(t) +
(1− θ)

AB(θ)
y4(t, S,E,Q, IT , R) +

θ

AB
∣∣∣ (θ) ∣∣∣

∫ t

0

y4(t, S,E,Q, IT , R)(t− ψ)θ−1dψ,

R(t) = R0(t) +
(1− θ)

AB(θ)
y5(t, S,E,Q, IT , R) +

θ

AB
∣∣∣ (θ) ∣∣∣

∫ t

0

y5(t, S,E,Q, IT , R)(t− ψ)θ−1dψ.

(4.2)
To investigate the above fractional order integral numerically, we therefore ap-
proximate the fractional order integral numerically. Employing the Adams-type
predictor-corrector method presented in [54] for Atagana-Baleanu fractional inte-
gral, we now have
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AB
0 Iθt [x (t)] =

1− θ

AB (θ)
x (t) +

θ

AB (θ)
∣∣∣(θ)

t∫
0

x (ψ) (t− ψ)
θ−1

dψ. (4.3)

by letting P = T
N , tr = rp, (r = 0, 1, 2, 3, ...R).

We therefore consider the solution in the interval of [0, T ].

Therefore the corrector formula for the Atagana-Baleanu fractional-integral ver-
sion is presented as:

xp (tr+1) = x0 (tr+1) +
(1−θ)P θ

AB(θ)|(θ+2)
y
(
tr+1, x

V
p (tr+1)

)
+ θP θ

AB(θ)|(θ+2)

k∑
i=0

Υi,r+1y (ti, xp (ti)) ,

where

Υi,r+1 =


rθ+1 − (r − θ) (r + 1)

θ
, ifi = 0,

(r − i+ 2)
θ+1

+ (r − i)
θ+1 − 2(r − i+ 1)

θ+1
, 1 ≤ i ≤ r,

1i = r + 1.

Similarly, the predictor xV (tr+1) is expressed as given below:

xVP (tr+1) = x0 +
(1−θ)
AB(θ)y (tr, xP (tr))

+ θ

AB(θ)|(θ) 2

k∑
i=0

∆i,r+1y (ti, xp (ti)) ,

where

∆i,r+1 =
P θ

θ

(
(r + 1− i)

θ − (r − i)
θ
)
, 0 ≤ i ≤ r.

We therefore present our model (2.5) as given in (4.4) using the Adam-type predictor-
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corrector numerical method.

Sr+1 = S (0) + (1−θ)P θ

AB(θ)|(θ+2)

y1(tr+1,S
V
r+1,E

V
r+1,Q

V
r+1,I

V
Tr+1,R

V
r+1)

+ θPθ

AB(θ)|(θ+2)

k∑
i=0

Υi,r+1y1(ti,Si,Ei,Qi,ITi,Ri)

 ,
Er+1 = E (0) + (1−θ)P θ

AB(θ)|(θ+2)

y2(tr+1,S
V
r+1,E

V
r+1,Q

V
r+1,I

V
Tr+1,R

V
r+1)

+ θPθ

AB(θ)|(θ+2)

k∑
i=0

Υi,r+1y1(ti,Si,Ei,Qi,ITi,Ri)

 ,
Qr+1 = Q (0) + (1−θ)P θ

AB(θ)|(θ+2)

y3(tr+1,S
V
r+1,E

V
r+1,Q

V
r+1,I

V
Tr+1,R

V
r+1)

+ θPθ

AB(θ)|(θ+2)

k∑
i=0

Υi,r+1y1(ti,Si,Ei,Qi,ITi,Ri)

 ,
ITr+1 = IT (0) + (1−θ)P θ

AB(θ)|(θ+2)

y3(tr+1,S
V
r+1,E

V
r+1,Q

V
r+1,I

V
Tr+1,R

V
r+1)

+ θPθ

AB(θ)|(θ+2)

k∑
i=0

Υi,r+1y1(ti,Si,Ei,Qi,ITi,Ri)

 ,
Rr+1 = R (0) + (1−θ)P θ

AB(θ)|(θ+2)

y4(tr+1,S
V
r+1,E

V
r+1,Q

V
r+1,I

V
Tr+1,R

V
r+1)

+ θPθ

AB(θ)|(θ+2)

k∑
i=0

Υi,r+1y1(ti,Si,Ei,Qi,ITi,Ri)

 ,

(4.4)

where SV
r+1, E

V
r+1, Q

V
r+1, I

V
Tr+1, R

V
r+1 are the predictors given as:

SV
r+1 = S(0) +

(1− θ)

AB(θ)
y1(tr, Sr, Er, Qr, ITr, Rr) +

θ∣∣∣ (θ) ∣∣∣2AB(θ)

k∑
i=0

∆i,k+1y1(ti, Si, Ei, Qi, ITi, Ri),

EV
r+1 = E(0) +

(1− θ)

AB(θ)
y2(tr, Sr, Er, Qr, ITr, Rr) +

θ∣∣∣ (θ) ∣∣∣2AB(θ)

k∑
i=0

∆i,k+1y2(ti, Si, Ei, Qi, ITi, Ri),

QV
r+1 = Q(0) +

(1− θ)

AB(θ)
y3(tr, Sr, Er, Qr, ITr, Rr) +

θ∣∣∣ (θ) ∣∣∣2AB(θ)

k∑
i=0

∆i,k+1y3(ti, Si, Ei, Qi, ITi, Ri),

IVTr+1 = IT (0) +
(1− θ)

AB(θ)
y4(tr, Sr, Er, Qr, ITr, Rr) +

θ∣∣∣ (θ) ∣∣∣2AB(θ)

k∑
i=0

∆i,k+1y4(ti, Si, Ei, Qi, ITi, Ri),

RV
r+1 = R(0) +

(1− θ)

AB(θ)
y5(tr, Sr, Er, Qr, ITr, Rr) +

θ∣∣∣ (θ) ∣∣∣2AB(θ)

k∑
i=0

∆i,k+1y5(ti, Si, Ei, Qi, ITi, Ri).

(4.5)

4.1. Fractional order COVID-19 model simulation

In this section, we present the numerical simulation of the COVID-19 model employ-
ing the three differential operators used. The values of our model variable(parameters)
used for this simulation are presented in Tables (1) and (2) below.



COVID-19 Dynamics with Three Fractional Operators 1293

Variables Description Values/day Sources

(Parameters)

S Susceptible individuals 100 [30]

E Exposed individuals 70 Estimated

Q Quarantined individuals 50 Estimated

IT Infected but isolated for treatment 20 Estimated

R Recovered individuals 10 Estimated

Λ Recruitment rate 400 [58]

β1 Contact rate of S and E 0.3 [55]

β2 Contact rate of S and IT 0.4 [58]

λ Rate at which the quarantined be-
comes susceptible

0.05 Estimated

Table 1. Description of Variables and Parameters

Variables Description Values/day Sources

(Parameters)

ω Rate at which the recovered be-
comes susceptible

0.001 Estimated

α1 Rate at which the exposed becomes
infectious and taken for treatment

0.35 [56]

α2 Rate at which the quarantined who
develops symptoms and are taken
for treatment

0.45 [30]

Υ Rate at which the exposed are
quarantined for diagnosis

0.003 [57]

ϕ Rate at which those treated recov-
ered

0.1 Estimated

σ COVID-19 disease induced death
rate

0.002 [58]

µ Natural death rate 0.0005 [58]

Table 2. Description of Variables and Parameters

The multifaceted depiction of all compartments − Susceptible (S), Exposed (E),
Quarantined (Q), Isolated for Treatment (IT ), and Recovered (R) − presented on
a single graph, while varying the fractional order (θ), offers a comprehensive explo-
ration of the epidemic’s dynamics under differing memory effects. As θ is increased
to 0.95 as observed in Figures (2(a)),(6(a)) and (10(a)), the epidemic response
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(a) Behaviors of the system (2.3) by adopting
Caputo derivative for θ = 0.95

(b) Behaviors of the system (2.3) by adopting
Caputo derivative for θ = 0.85

Figure 2. Total Human Population

(a) Behaviors of the system (2.3) by adopting
Caputo derivative for θ = 0.75

(b) The plot for the Susceptible population for
Caputo derivative

Figure 3. Human Population

is characterized by a substantial memory influence, engendering smoother transi-
tions between compartments. This manifests as a gradual ascent and decline of
each population, effectively elongating the outbreak’s duration and tempering the
zenith of infections. The pronounced memory effect facilitates a more discernible
progression of the epidemic, allowing for more measured responses and potentially
enhanced management of healthcare resources. This enables healthcare systems to
anticipate and allocate resources such as hospital beds, medical supplies, and health-
care personnel more effectively over time, preventing sudden surges that overwhelm
the system. However, this smoother trajectory might also imply a prolonged pe-
riod of susceptibility and a more protracted recovery phase as the epidemic wanes.
Conversely, when θ diminishes to 0.85 as observed in Figures (2(b)),(6(b)) and
(10(b)), the memory effect weakens, precipitating sharper transitions between com-
partments. This intensifies the initial surge of exposed and quarantined individuals,
suggesting a potentially more rapid transmission and response dynamics. The sharp
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(a) The plot for the Exposed population for Ca-
puto derivative

(b) The plot for the Quarantined population for
Caputo derivative

Figure 4. Human Population

(a) The plot for the Isolated population for Ca-
puto derivative

(b) The plot for the Recovered population for
Caputo derivative

Figure 5. Human Population

rise indicates that interventions like quarantining or isolation must be implemented
promptly to prevent rapid virus transmission. This surge also underscores the ur-
gency of enforcing social distancing or other immediate measures. The accelerated
rise in these populations might reflect a more urgent need for containment mea-
sures and resource allocation to curb the spread of the disease. However, despite
these intensified efforts, the isolated for treatment population experiences a delayed
peak, indicating an extended strain on healthcare infrastructure. This delayed peak
underscores the complexities of managing the epidemic, necessitating sustained vigi-
lance and adaptable healthcare systems to address evolving demands. Although the
initial phases may show sharp increases, the delayed peak for the treated population
indicates that hospitals will face sustained pressure over an extended period, necessi-
tating consistent preparedness and effective resource management. Notably, amidst
these variations in θ, the recovered population exhibits a consistent upward trajec-
tory, illustrating the enduring progression of immunity within the population. This
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(a) Behaviors of the system (2.4) by adopting
Caputo-Fabrizio derivative for θ = 0.95

(b) Behaviors of the system (2.4) by adopting
Caputo-Fabrizio derivative for θ = 0.85

Figure 6. Human Population

(a) Behaviors of the system (2.4) by adopting
Caputo-Fabrizio derivative for θ = 0.75

(b) The plot for the Susceptible population for
Caputo-Fabrizio derivative

Figure 7. Human Population

resilience in the recovered population underscores the potential for long-term im-
munity and serves as a beacon of hope amidst the challenges posed by the epidemic.
The intricate interplay between θ variations and epidemic dynamics using the three
different differential fractional order operators unveils a spectrum of scenarios, each
presenting unique challenges and opportunities for public health intervention. These
insights are invaluable for guiding public health policies, as they enable flexibility
in strategies based on disease progression. Slower dynamics prioritize long-term
public health interventions, while faster dynamics require immediate containment
measures. These insights gleaned from the comprehensive analysis of all compart-
ments on a single graph serve as a valuable guide for policymakers, enabling them
to tailor interventions, allocate resources judiciously, and foster resilient healthcare
systems capable of effectively managing epidemics amidst evolving circumstances.

When these compartments are plotted using different fractional derivative oper-
ators − specifically, the fractional Caputo derivative operator, the Caputo-Fabrizio
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(a) The plot for the Exposed population for
Caputo-Fabrizio derivative

(b) The plot for the Quarantined population for
Caputo-Fabrizio derivative

Figure 8. Human Population

(a) The plot for the Isolated population for
Caputo-Fabrizio derivative

(b) The plot for the Recovered population for
Caputo-Fabrizio derivative

Figure 9. Human Population

operator, and the Atagana-Baleanu operator − the resulting graphs offer nuanced
insights into the epidemic dynamics. The fractional Caputo derivative operator,
known for its widespread application in modeling complex systems with memory
effects, captures the gradual transitions between compartments, reflecting the ex-
tended duration of the outbreak and the tempered peaks of infections as observed in
Figures (3(b)), (4(a)), (4(b)), (5(a)) and (5(b)). This gradual progression indicates a
slower spread of infection, where the memory effects of past states influence current
infection rates, leading to a more controlled and extended outbreak. Such behavior
suggests that interventions can be implemented in a less reactive manner, allowing
health systems more time to adapt and allocate resources effectively. Conversely, the
Caputo-Fabrizio operator, incorporating a stretched exponential function, provides
a more nuanced representation of the COVID-19 epidemic dynamics, potentially
revealing subtle variations in the rate of change within each compartment as ob-
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(a) Behaviors of the system (2.5) by adopting
Caputo-Fabrizio derivative for θ = 0.95

(b) Behaviors of the system (2.5) by adopting
Atagana Baleanu derivative for θ = 0.85

Figure 10. Human Population

(a) Behaviors of the system (2.5) by adopting
Caputo-Fabrizio derivative for θ = 0.75

(b) The plot for the Susceptible population for
the Atagana Baleanu derivative

Figure 11. Human Population

served in Figures (7(b)), (8(a)), (8(b)), (9(a)) and (9(b)). This operator smooths
out abrupt changes, portraying a system where sudden shifts in infection dynamics
are less likely, making it suitable for understanding epidemics that display inter-
mediate memory effects. This reflects a more adaptive public health response, as
the smoother curve allows for gradual policy changes in response to evolving data.
Meanwhile, the Atagana-Baleanu operator, which incorporates a power-law kernel,
offers a unique perspective on the epidemic’s dynamics, possibly highlighting long-
range correlations and non-local effects that influence the spread of the disease as
observed in Figures (11(b)), (12(a)), (12(b)), (13(a)) and (13(b)). The power-law
kernel emphasizes the non-local influences, where past states of infection have long-
term effects on future disease dynamics. This leads to more prolonged epidemic
cycles, where the effects of initial infections reverberate through time, underscoring
the need for sustained long-term intervention strategies. The Susceptible Popula-
tion (S) exhibits a gradual decline over time, reflecting the spread of the disease and
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(a) The plot for the Exposed population for the
Atagana Baleanu derivative

(b) The plot for the Quarantined population for
the Atagana Baleanu derivative

Figure 12. Human Population

(a) The plot for the Isolated population for the
Atagana Baleanu derivative

(b) The plot for the Recovered population for
the Atagana Baleanu derivative

Figure 13. Human Population

the decrease in susceptible individuals due to infections and natural deaths. When
plotted using the fractional Caputo derivative operator, this decline is smooth and
gradual, capturing the epidemic’s progression. This suggests that as the memory ef-
fect increases, the reduction in the susceptible population becomes slower, allowing
for a more predictable and gradual exhaustion of susceptible individuals, which pro-
vides critical insight into how public health measures can be sustained over longer
periods. The Caputo-Fabrizio operator reveals nuanced variations in the decline
rate, while the Atagana-Baleanu operator highlights long-range correlations or non-
local effects influencing susceptibility dynamics. These long-range effects indicate
that even past exposures have an extended influence on future susceptibility, mean-
ing that early interventions can have far-reaching consequences on the susceptible
population’s long-term behavior.
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(a) Phase portrait of S, E and Q (b) Phase portrait of E, Q and IT

Figure 14. Human Population

(a) Phase portrait of Q, IT and R
(b) Effect of varying α1 on the Cumulative new cases
of COVID-19

Figure 15. Human Population

5. Conclusion

In order to comprehend the transmission of disease in a general given population, we
have evaluated a variable-order fractional COVID-19 outbreak system in the current
study. By using the fractional derivatives of Caputo with power law, Fabrizio with
exponential law and Atangana-Baleanu with generalized Mittag-Leffler function the
suggested model was made more inclusive.

For a more accurate approximation of the system, three distinct kernels were
utilized in the fractional-order derivative operators. A numerical scheme was used
to solve the alternative systems: the arbitrary-order Caputo Fabrizio derivative
was based on the two-step Adams-Bashforth method, the Atangana-Baleanu frac-
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tional derivative was based on the Adams type predictor-corrector, and the Caputo
fractional derivative was based on the Adams-Bashforth-Moulton scheme. Addi-
tionally, the current investigation’s use of fixed-point theory supported the need for
the fractional-order system for the Caputo Fabrizio to have the presence of a unique
solution. We also observed from the graphs of our numerical simulations that in-
creasing the fractional order (memory effect) generally leads to a slower progression
of the disease, reflecting the memory effect inherent in fractional derivatives. Specif-
ically, higher values of the fractional order correspond to a more gradual spread,
reducing the peak number of infections and spreading the cases over a longer pe-
riod, as seen in the dynamics of the population of the Isolated for treatment class
depicted in Figures (5(a)), (9(a)), and (13(a)). Our graphical representations inves-
tigate the efficiency and dependability of the suggested methods. The impacts of
the different arbitrary-order values have been examined and are shown graphically
in a number of figures.

The results indicate that quarantine and isolation for treatment measures sig-
nificantly impact the transmission dynamics of COVID-19. Increasing the rate of
isolation of infected individuals α1 leads to a notable decrease in the cumulative
number of new cases. This is attributed to the prompt removal of infected indi-
viduals from the general population, reducing the contact rate between infected
and susceptible individuals and thereby slowing the spread of the virus. Similarly,
effective quarantine measures that quickly identify and isolate exposed individu-
als before they become infectious can substantially reduce the overall transmission
rate. The graphs clearly demonstrate that higher rates of quarantine and isolation
result in lower peaks of infections and a faster decline in new cases, highlighting the
importance of these interventions in controlling the outbreak. These findings un-
derscore the critical role of timely and effective quarantine and isolation strategies
in mitigating the impact of infectious disease outbreaks.

In summary, the model dynamics are better explained by the arbitrary-order
derivative operators that were applied.

Direction for future research
Future research could expand on this work by addressing the challenges studied
in the novel trial functions and rogue waves of the generalized breaking soliton
equation, using the bilinear neural network method developed by Zhang et al. as
presented in [59].
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