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Strong Convergence Theorem Involving Two-Step

Inertial Technique Without On-Line Rule for Split 
Feasibility Problem
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Abstract This work presents an approach for solving the split feasibility
problem in an efficient manner. For solving the split feasibility problem, we
present a method with a two-step inertial extrapolation and self-adaptive step-
size. The adjustable stepsize and two-step inertial extrapolation both con-
tribute to the proposed method’s improved rate of convergence and decreased
computational complexity. The strong convergence results are obtained with-
out on-line rule of the inertial parameters and the iterates. This makes our
proof arguments different from what is obtainable in the literature where on-
line rule is imposed on algorithms involving inertial extrapolation step. As far
as we know, no strong convergence result has been obtained before now for
algorithms with two step inertial for solving split feasibility problems in the
literature. To demonstrate the viability of our suggested strategy, numerical
results are provided at the end.
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1. Introduction

The split feasibility problem (SFP) is defined as the problem of finding a point
x̂ ∈ C such that

Ax̂ ∈ Q, (1.1)

where C ⊆ H1 and Q ⊆ H2 are nonempty, closed and convex sets, and A : H1 → H2

is a bounded and linear operator. We denote the solution set of the problem (1.1)
by Ω. For the purpose of resolving inverse problems associated with phase retrievals
and medical image recovery, Censor and Elfving [10] first presented the SFP in
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finite dimensional Hilbert space. Numerous studies have demonstrated the SFP’s
versatility in a variety of fields, including computer tomography, picture restoration,
and data reduction (see [11–14,33,39] and other references therein).

Various iterative strategies for solving the SFP have been investigated and in-
troduced by a number of researchers (see [9, 15–17, 20, 36, 41] and other references
therein). The CQ algorithm, developed by Bryne [8], is a well-known algorithm for
finding the solution to the SFP. Iteratively, this algorithm generates the sequence
{xk}:

xk+1 = PC(xk − λA∗(I − PQ)Axk), ∀ k ≥ 1, (1.2)

where λ ∈
(
0, 2

∥A∥2

)
, PC , PQ are the orthogonal projections onto C and Q respec-

tively. A weak convergence result was established by the author. The drawback of
this approach is that it requires the calculation of the spectral radius of the matrix
A∗A or the norm estimate of the linear operator A, both of which are challenging
and occasionally impossible to do in an infinite dimensional setting. To overcome
this drawback, Byrne [8] presented a method for estimating matrix norms (see [8],
Proposition 4.1). The condition on this method is highly stringent. In order to
overcome this drawback, López et al. [27] substituted an adaptive stepsize for the
stepsize in (1.2) and defined it as follows:

ηk =
σkF (xk)

∥▽F (xk)∥2
, k ≥ 1,

where ηk ∈ (0, 4), F (xk) = 1
2∥(I − PQ)Axk∥2 and ▽F (xk) = A∗(I − PQAxk) for

all k ≥ 1. Several authors have adopted this adaptive stepsize for solving the SFP
(see [19,20,25]).

Iterative methods for approximating solutions of the SFP are known to have slow
convergence properties. In recent years, a host of researchers have invested consid-
erable effort into enhancing the convergence properties of these iterative algorithms.
Among the prominent strategies for getting acceleration is the inertial extrapolation
technique, which traces its roots back to Polyak’s early work on smooth convex min-
imization problems. In essence, the inertial acceleration strategy entails forming a
nonconvex combination of two previous terms to derive the subsequent iterate. For
further insights into this technique and its applications to iterative methods tailored
for solving the SFP (1.1), interested readers may refer to [2, 3, 5, 6, 32], along with
the additional references cited therein.

Dang et al. [18] recently proposed one-step inertial relaxed CQ techniques for
finding the solution of (1.1) and they proposed them as follows:

xk+1 = PCk
(yk − λA∗(I − PQk

)Ayk) (1.3)

and

xk+1 = (1− αk)yk + αkPCk
(yk − λA∗(I − PQk

)Ayk), (1.4)

where yk = xk + θk(xk − xk−1), αk ∈ (0, 1), λ ∈
(
0, 2

∥A∥2

)
and 0 ≤ θk ≤ θ̄k with

θ̄k := min

{
θ,

(
max

1

{k2∥xk − xk−1∥2, k2∥xk − xk−1∥}

)}
, θ ∈ [0, 1).

The authors proved that {xk} generated by algorithms (1.3) and (1.4) converges
weakly to a point in Ω.
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Remark 1.1. The condition on θ̄k is what is called the on-line rule. Observe that
the step size λ depends on the knowledge of the operator norm. It is well-known
that computing norm of operators is not an easy task in practice.

However, it has been discovered that in certain scenarios, the one-step inertial
technique fails to give the desired acceleration effect. In [26] it was remarked that
acceleration could be obtained using more than two points xk, xk−1. For example,
acceleration may be obtained using the two-step inertial method defined as follows:

yk = xk + θ(xk − xk−1) + δ(xk−1 − xk−2),

where θ > 0 and δ < 0. Poon and Liang [31] discussed the limitation of the one-
step inertial acceleration of ADMM and they proposed an adaptive acceleration for
ADMM. In [30], Polyak discussed that the multi-step inertial methods can boost the
speed of optimization methods even though no convergence results of such multi-
step inertial methods were given by Polyak [30]. Recently, the multi-step inertial
methods have been studied by some researchers (see [21,23,28,29]).

Inspired by the mentioned works above and other related works in literature
(without on-line rule see, e.g., [24, 40]), our contributions are the following:

• we introduce a new Halpern-type CQ method with a two-step inertial extrap-
olation and self-adaptive stepsize for finding the solution of the SFP (1.1).
The strong convergence results of the sequence generated by our proposed
method are presented.

• Our approach includes two-step inertial (which accelerates convergence) and
a self-adaptive step size (which reduces computational complexity). Conse-
quently, our approach overcomes the restrictions of the one-step inertial with
on-line rule studied in [1, 4, 5, 7, 18] and also the limitation of estimating the
linear operator or the spectral radius of a matrix used in [8].

• We give numerical results of our proposed method to demonstrate the appli-
cability of our method.

2. Preliminaries

To obtain our strong convergence, we present some basic results, lemmas and defi-
nitions in this section.

Definition 2.1. A mapping S : H1 → H1 is

(i.) nonexpansive if

∥Sx− Sy∥ ≤ ∥x− y∥, ∀ x, y ∈ H1;

(ii.) firmly nonexpansive if

∥Sx− Sy∥2 ≤ ∥x− y∥2 − ∥(I − S)x− (I − S)y∥2, ∀ x, y ∈ H1.

Equivalently, the firmly nonexpansive mapping is given by

∥Sx− Sy∥2 ≤ ⟨x− y, Sx− Sy⟩, ∀ x, y ∈ H1.
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It can be seen in [22] that T is firmly nonexpansive if and only if I −S is firmly
nonexpansive.

Recall that for a nonempty, closed and convex subset C of H1, the metric pro-
jection denoted by PC , is a map defined on H1 onto C which assigns to each x ∈ H1,
the unique point in C, denoted by PCx such that

||x− PCx|| ≤ ||x− y||,∀ y ∈ C.

Lemma 2.1. Let C be a closed and convex subset of a real Hilbert space H1 and
x, y ∈ H1. Then

(i) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ ;
(ii) ∥PCx− y∥2 ≤ ∥x− y∥2 − ∥x− PCx∥2.

Lemma 2.2. If u and v are non-negative numbers, then

(i) uv ≤ u2

2p + pv2

2 , ∀p > 0, ( Peter-Paul Inequality)

(ii) (u+ v)2 ≤ (2 +
√
2)u2 +

√
2v2.

Lemma 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H1.
For any x ∈ H1 and z ∈ C, we have

z = PCx⇐⇒ ⟨x− z, z − y⟩ ≥ 0, for all y ∈ C.

Lemma 2.4. The following assertions hold in H1 :

(1) 2⟨x, y⟩ = ∥x∥2 + ∥y∥2 − ∥x− y∥2 = ∥x+ y∥2 − ∥x∥2 − ∥y∥2, ∀x, y ∈ H1;

(2) ∥αx + βy∥2 = α(α + β)∥x∥2 + β(α + β)∥y∥2 − αβ(1 − α)∥x − y∥2, ∀x, y ∈
H1, α, β ∈ R;

(3) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀ x, y ∈ H1.

Lemma 2.5. Let x, y, z ∈ H1 and α, β ∈ R. Then

∥(1 + α)x− (α− β)y − βz∥2

=(1 + α)∥x∥2 − (α− β)∥y∥2 − β∥z∥2 + (1 + α)(α− β)∥x− y∥2

+ β(1 + α)∥x− z∥2 − β(α− β)∥y − z∥2.

Definition 2.2. A function F : H1 → R is called convex, if for all v ∈ [0, 1] and
x, y ∈ H1,

F (vx+ (1− v)y) ≤ vF (x) + (1− v)F (y).

Remark 2.1. If F is convex on H1 and differentiable then

F (y) ≥ F (x) + ⟨y − x, ▽F (x)⟩, ∀ y ∈ H1.

Definition 2.3. A convex function F : H1 → R is said to be subdifferentiable at a
point x ∈ H1 if the set

∂F (x) = {u ∈ H1 | F (y) ≥ F (x) + ⟨u, y − x⟩, ∀y ∈ H1} (2.1)

is nonempty, where each element in ∂F (x) is called a subgradient of F at x, ∂F (x)
is called the subdifferential of F at x and the inequality in (2.1) is called the subd-
ifferential inequality of F at x.
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Remark 2.2. If F is convex and differential, then its gradient and subgradient
coincide.

Definition 2.4. A function F : H1 → R is said to be lower semicontinuous at x if

xn → x implies F (x) ≤ lim inf
n→∞

F (xn).

Note that F is lower semicontinuous on H1 if it is lower semicontinuous at every
point x ∈ H1.

Lemma 2.6. [9] Let F (x) := 1
2∥(I − PQ)Ax∥2, x ∈ C. Then

(a) F is convex and differentiable.

(b) ▽F (x) = A∗(I − PQ)Ax, x ∈ H1.

(c) F is lower semicontinuous on H1.

(d) ▽F Lipschitz continuous with Lipschitz constant ∥A∥2.

Lemma 2.7. Suppose that {Υk} and {rk} are sequences of nonnegative real num-
bers such that

Υk+1 ≤ (1− αk)Υk + sk + rk, n ≥ 0,

where {αk} is a sequence in (0, 1) and {sk} is a real sequence. Let
∑∞

t=1 rk < ∞
and sk ≤ αkM for some M ≥ 0. Then, {Υk} is bounded.

3. Proposed method

Assumption 1. The following assumptions will be used in the convergence analysis
of our proposed Algorithm.

(a) σ ∈ (0, 4);

(b) θ and δ lie in the region

choose 0 < θ ≤ 1

3
, τ ∈ (0, 1), χ = −1

τ
and then choose δ such that

max

{
−θ
2
,
2θ − 2

3 − 8θ2χ

3 + 5θ
, θ − 1

3
− 2χ

}
< δ ≤ 0 and δ2 ≤ θ2;

(c) with the choices of δ and θ in (b) above, compute

δ(3θ + 2 + 4δχ)

2(θ − θδ − 2θ2χ− 1
3 )− δ

and choose

αk ∈
(
0, 1− δ(3θ + 2 + 4δχ)

2(θ − θδ − 2θ2χ− 1
3 )− δ

)
such that limk→∞ αk = 0 and

∑∞
k=1 αk =∞.
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Algorithm 1. (Strong convergent 2-step inertial CQ method)
Initialization: Let x0, x1, x2 ∈ H1 be chosen arbitrarily. Set k := 2.
Step 1: Given the iterates xk−2, xk−1, xk for each k ≥ 2, choose {αk}, δ and θ
satisfying Assumption (1).
Step 2: Compute{

wk = xk + θ(xk − xk−1) + δ(xk−1 − xk−2),

yk = wk − ηk▽Fk(wk),
(3.1)

xk+1 = PCk
(αkx0 + (1− αk)yk),

where

Fk(wk) :=
1

2

∥∥∥(I − PQk

)
Awk

∥∥∥2, ▽Fk(wk) := A∗(I − PQk
)Awk

and

ηk :=

{
σFk(wk)

∥▽Fk(wk)∥2 , ∥▽Fk(wk)∥ ≠ 0,

0, otherwise.
(3.2)

Set k ← k + 1, and go to Step 2.

4. Convergence analysis

Lemma 4.1. Assume that the solution set Ω of (1.1) is nonempty. Then the
sequence {xk} generated by Algorithm 1 satisfying Assumption 1 is bounded.

Proof. Let p ∈ Ω. Since ▽Fk(wk) = A∗(I − PQk
)Awk, we obtain from the firmly

nonexpansivity of I − PQk
and the definition of Fk(wk) that

⟨▽Fk(wk), wk − p⟩ = ⟨A∗(I − PQk
)Awk, wk − p⟩

= ⟨(I − PQk
)Awk, Awk −Ap⟩

= ⟨(I − PQk
)Awk − (I − PQk

)Ap, Awk −Ap⟩
≥ ∥(I − PQk

)Awk∥2

= 2Fk(wk). (4.1)

From the definition of yk and ηk we have

∥yk − wk∥ = ∥wk − ηk▽Fk(wk)− wk∥
= ηk∥▽Fk(wk)∥

= σ
Fk(wk)

∥▽Fk(wk)∥
. (4.2)

From the definition of yk in Step 2, (4.1) and (4.2), we have

∥yk − p∥2 = ∥wk − p− ηk▽Fk(wk)∥2

= ∥wk − p∥2 + (ηk)
2∥▽Fk(wk)∥2 − 2ηk⟨▽Fk(wk), wk − p⟩

≤ ∥wk − p∥2 + (ηk)
2∥▽Fk(wk)∥2 − 4ηkFk(wk)
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= ∥wk − p∥2 − 4ηkFk(wk) + (ηk)
2∥▽Fk(wk)∥2

= ∥wk − p∥2 − σ(4− σ)
(Fk(wk))

2

∥▽Fk(wk)∥2

≤ ∥wk − p∥2 −
4− σ
σ
∥yk − wk∥2. (4.3)

Also, by the definition of wk, we have

∥wk − p∥2 = ∥(1 + θ)(xk − p)− (θ − δ)(xk−1 − p)− δ(xk−2 − p)∥2

= (1 + θ)∥xk − p∥2 − (θ − δ)xk−1 − p∥2 − δ∥xk−2 − p∥2 (4.4)

+(1 + θ)(θ − δ)∥xk − xk−1∥2

+δ(1 + θ)∥xk − xk−2∥2 − δ(θ − δ)∥xk−1 − xk−2∥2.

From the definition of wk and applying the Cauchy Schwartz inequality, we have

∥xk+1 − wk∥2 = ∥xk+1 − (xk + θ(xk − xk−1) + δ(xk−1 − xk−2))∥2

= ∥xk+1 − xk∥2 − 2θ⟨xk+1 − xk, xk − xk−1⟩
+ 2δ⟨xk − xk+1, xk−1 − xk−2⟩+ θ2∥xk − xk−1∥2

+ 2δθ⟨xk − xk−1, xk−1 − xk−2⟩+ δ2∥xk−1 − xk−2∥2

≥ ∥xk+1 − xk∥2 − 2θ∥xk+1 − xk∥∥xk − xk−1∥
− 2|δ|∥xk+1 − xk∥∥xk−1 − xk−2∥+ θ2∥xk − xk−1∥2

− 2|δ|θ∥xk−1 − xk∥∥xk−1 − xk−2∥+ δ2∥xk−1 − xk−2∥2

≥ ∥xk+1 − xk∥2 − θ
[
∥xk+1 − xk∥2 + ∥xk − xk−1∥2

]
− |δ|

[
∥xk+1 − xk∥2 + ∥xk−1 − xk−2∥2

]
+ θ2∥xk − xk−1∥2 − |δ|θ

[
∥xk−1 − xk∥2 + ∥xk−1 − xk−2∥2

]
+ δ2∥xk−1 − xk−2∥2

= (1− |δ| − θ)∥xk+1 − xk∥2 + (θ2 − θ − |δ|θ)∥xk − xk−1∥2

+ (δ2 − |δ| − |δ|θ)∥xk−1 − xk−2∥2. (4.5)

Let ak := αkx0 + (1− αk)yk. By Lemma 2.4, we have

∥ak − p∥2 = ∥αkx0 + (1− αk)yk − p∥2

= ∥(yk − p)− αk(yk − x0)∥2

= ∥yk − p∥2 + (αk)
2∥yk − x0∥2 − 2αk⟨yk − p, yk − x0⟩

= ∥yk − p∥2 + (αk)
2∥yk − x0∥2 − αk∥yk − x0∥2

−αk∥yk − p∥2 + αk∥x0 − p∥2. (4.6)

Similarly,

∥xk+1 − ak∥2 = ∥ak − xk+1∥2

= ∥yk − xk+1∥2 + (αk)
2∥yk − x0∥2 − αk∥yk − x0∥2

−αk∥yk − xk+1∥2 + αk∥x0 − xk+1∥2. (4.7)
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Also, from (3.1) and Lemma 2.1, we get

∥xk+1 − p∥2 ≤ ∥ak − p∥2 − ∥xk+1 − ak∥2. (4.8)

Putting (4.6) and (4.7) in (4.8), we have

∥xk+1 − p∥2

≤ (1− αk)∥yk − p∥2 + αk∥x0 − p∥2 − (1− αk)∥wk − xk+1∥2 − αk∥xk+1 − x0∥2

≤ (1− αk)∥wk − p∥2 + αk∥x0 − p∥2 − (1− αk)∥yk − xk+1∥2. (4.9)

From (3.1), we have yk = wk−ηk▽Fk(wk). Using this and Lemma 2.2(i), we obtain
the following:

∥yk − xk+1∥2 = ∥wk − xk+1 − ηk▽Fk(wk)∥2

= ∥wk − xk+1∥2 − 2⟨ηk▽Fk(wk), wk − xk+1⟩+ ∥ηk▽Fk(wk)∥2

≥ ∥wk − xk+1∥2 − 2∥ηk▽Fk(wk)∥∥wk − xk+1∥+ ∥ηk▽Fk(wk)∥2

≥ ∥wk − xk+1∥2 − τ∥ηk▽Fk(wk)∥2 −
1

τ
∥wk − xk+1∥2 + ∥ηk▽Fk(wk)∥2

≥ (1 + χ)∥wk − xk+1∥2, (4.10)

where the last inequality follows from the fact that τ ∈ (0, 1) and χ = − 1
τ < −1.

Using (4.10) in (4.9), we get

∥xk+1 − p∥2 ≤ (1− αk)∥wk − p∥2 + αk∥x0 − p∥2 − (1− αk)(1 + χ)∥wk − xk+1∥2

≤ (1− αk)∥wk − p∥2 − (1− αk)∥wk − xk+1∥2 − χ(1− αk)∥wk − xk+1∥2

+αk∥x0 − p∥2. (4.11)

Now, we estimate −χ(1− αk)∥wk − xk+1∥2 as follows:

∥wk − xk+1∥2 ≤ 2∥wk − xk∥2 + 2∥xk − xk+1∥2. (4.12)

Observe that

2∥wk − xk∥2 = 2∥xk + θ(xk − xk−1) + δ(xk−1 − xk−2)− xk∥2

= 2∥θ(xk − xk−1) + δ(xk−1 − xk−2)∥2

= 4θ2∥xk − xk−1∥2 + 4δ2∥xk−1 − xk−2∥2. (4.13)

Combining (4.12) and (4.13), we obtain

−χ(1− αk)∥wk − xk+1∥2 ≤ −2χ(1− αk)∥xk − xk+1∥2 − 4θ2χ(1− αk)∥xk − xk−1∥2

−4δ2χ(1− αk)∥xk−1 − xk−2∥2. (4.14)

Using (4.4), (4.5) and (4.14) in (4.11), we obtain

∥xk+1 − p∥2

≤(1− αk)
[
(1 + θ)∥xk − p∥2 − (θ − δ)∥xk−1 − p∥2 − δ∥xk−2 − p∥2

+(1 + θ)(θ − δ)∥xk − xk−1∥2 + δ(1 + θ)∥xk − xk−2∥2 − δ(θ − δ)∥xk−1 − xk−2∥2
]

− (1− αk)
[
(1− |δ| − θ)∥xk+1 − xk∥2 + (θ2 − θ − |δ|θ)∥xk − xk−1∥2

+(δ2 − |δ| − |δ|θ)∥xk−1 − xk−2∥2
]
+ αk∥x0 − p∥2
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− 2χ(1− αk)∥xk − xk+1∥2 − 4θ2χ(1− αk)∥xk − xk−1∥2

− 4δ2χ(1− αk)∥xk−1 − xk−2∥2, (4.15)

which implies the following:

∥xk+1 − p∥2 − θ∥xk − p∥2 − δ∥xk−1 − p∥2

≤(1− αk)
[
∥xk − p∥2 − θ∥xk−1 − p∥2 − δ∥xk−2 − p∥2

]
− θαk∥xk − p∥2

− δαk∥xk−1−p∥2+(1− αk)
[
(1 + θ)(θ − δ)−(θ2 − θ − |δ|θ)− 4θ2χ

]
∥xk − xk−1∥2

− (1− αk)
[
δ(θ − δ) + (δ2 − |δ| − |δ|θ + 4δ2χ)

]
∥xk−1 − xk−2∥2 + αk∥x0 − p∥2

− (1− αk) [(1− |δ| − θ) + 2χ] ∥xk − xk+1∥2 + (1− αk)δ(1 + θ)∥xk − xk−2∥2.
(4.16)

We estimate (1− αk)δ(1 + θ)∥xk − xk−2∥2 as follows:

∥xk − xk−2∥2 =(∥xk − xk−1 − (xk−2 − xk−1)∥)2

≥(∥xk − xk−1∥ − ∥xk−2 − xk−1∥)2

=∥xk − xk−1∥2 − 2∥xk − xk−1∥∥xk−2 − xk−1∥+ ∥xk−2 − xk−1∥2

≥∥xk − xk−1∥2 −
1

2
∥xk − xk−1∥2 − 2∥xk−2 − xk−1∥2+∥xk−2−xk−1∥2

=
1

2
∥xk − xk−1∥2 − ∥xk−2 − xk−1∥2. (4.17)

From (4.17) and the fact that δ ≤ 0, we obtain

(1− αk)δ(1 + θ)∥xk − xk−2∥2 ≤
1

2
(1− αk)δ(1 + θ)∥xk − xk−1∥2

−(1− αk)δ(1 + θ)∥xk−2 − xk−1∥2. (4.18)

Using (4.18) in (4.16) and the fact that −|δ| = δ, we get

∥xk+1 − p∥2 − θ∥xk − p∥2 − δ∥xk−1 − p∥2

≤(1− αk)
[
∥xk − p∥2 − θ∥xk−1 − p∥2 − δ∥xk−2 − p∥2

]
+ (−θαk − 2δαk)∥xk − p∥2

+ (1− αk)
[
2θ − 2δθ − δ − 4θ2χ

]
∥xk − xk−1∥2

− (1− αk)
[
3δθ + 2δ + 4δ2χ

]
∥xk−1 − xk−2∥2 + αk∥x0 − p∥2

− (1− αk) [(1− |δ| − θ) + 2χ] ∥xk − xk+1∥2

+

[
1

2
(1− αk)δ(1 + θ)− 2δαk

]
∥xk − xk−1∥2. (4.19)

The inequality above implies the following:

∥xk+1 − p∥2 − θ∥xk − p∥2 − δ∥xk−1 − p∥2 +
2

3
∥xk − xk+1∥2

≤(1− αk)

[
∥xk − p∥2 − θ∥xk−1 − p∥2 − δ∥xk−2 − p∥2 +

2

3
∥xk − xk−1∥2

]
+ (1− αk)

[
2θ − 2θδ − δ − 4θ2χ− 2

3

]
∥xk − xk−1∥2 + (−θαk − 2δαk)∥xk − p∥2

− (1− αk)
[
3δθ + 2δ + 4δ2χ

]
∥xk−1 − xk−2∥2 + αk∥x0 − p∥2
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−
[
(1− αk)(1− |δ| − θ + 2χ)− 2

3

]
∥xk − xk+1∥2

+

[
1

2
(1− αk)δ(1 + θ)− 2δαk

]
∥xk − xk−1∥2. (4.20)

Observe that

(−θαk − 2δαk) ≤ 0, (4.21)

since − θ
2 ≤ δ. We note that

lim inf
k→∞

(
(1− αk)(1 + δ − θ + 2χ)− 2

3

)
= 1 + δ − θ + 2χ− 2

3
> 0, (4.22)

since θ− 1
3 − 2χ < δ. Therefore, there exists k1 ∈ N such that ∀k ≥ k1, and we have

(1− αk)(1 + δ − θ + 2χ)− 2

3
> 0. (4.23)

Also,

lim
k→∞

[
1

2
(1− αk)δ(1 + θ)− 2δαk

]
=

1

2
δ(1 + θ) < 0. (4.24)

Therefore, there exists k2 ∈ N such that ∀k ≥ k2 ≥ k1.

1

2
(1− αk)δ(1 + θ)− 2δαk < 0. (4.25)

We obtain from (4.21) to (4.25) that

∥xk+1 − p∥2 − θ∥xk − p∥2 − δ∥xk−1 − p∥2 +
2

3
∥xk − xk+1∥2

−(1− αk)

[
2θ − 2θδ − δ − 4θ2χ− 2

3

]
∥xk − xk−1∥2

≤ (1− αk)

[
∥xk − p∥2 − θ∥xk−1 − p∥2 − δ∥xk−2 − p∥2 +

2

3
∥xk − xk−1∥2

]
−(1− αk)

[
3δθ + 2δ + 4δ2χ

]
∥xk−1 − xk−2∥2 + αk∥x0 − p∥2. (4.26)

Since αk < 1− δ(3θ+2+4δχ)

2(θ−θδ−2θ2χ− 1
3 )−δ

, we have that

−(3δθ + 2δ + 4δ2χ) < −(1− αk)

(
2(θ − θδ − 2θ2χ− 1

3
)− δ

)
.

From (4.26),we get

∥xk+1 − p∥2 − θ∥xk − p∥2 − δ∥xk−1 − p∥2 +
2

3
∥xk+1 − xk∥2

−(3δθ + 2δ + 4δ2χ)∥xk − xk−1∥2

≤ (1− αk)
[
∥xk − p∥2 − θ∥xk−1 − p∥2 − δ∥xk−2 − p∥2 +

2

3
∥xk − xk−1∥2

−(3δθ + 2δ + 4δ2χ)∥xk−1 − xk−2∥2
]
+ αk∥x0 − p∥2. (4.27)
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Define for each k ≥ k2,

Υk+1 := ∥xk+1 − p∥2 − θ∥xk − p∥2 − δ∥xk−1 − p∥2 +
2

3
∥xk+1 − xk∥2

−(3δθ + 2δ + 4δ2χ)∥xk − xk−1∥2. (4.28)

We now show that Υk ≥ 0, ∀k ≥ k2. Observe that

∥xk−1 − p∥2 ≤ 2∥xk − xk−1∥2 + 2∥xk − p∥2.

So,

Υk+1 = ∥xk+1 − p∥2 − θ∥xk − p∥2 − δ∥xk−1 − p∥2 +
2

3
∥xk+1 − xk∥2

−(3δθ + 2δ + 4δ2χ)∥xk − xk−1∥2

≥ ∥xk − p∥2 − 2θ∥xk − xk−1∥2 − 2θ∥xk − p∥2 − δ∥xk−2 − p∥2

+
2

3
∥xk − xk−1∥2 − (3δθ + 2δ + 4δ2χ)∥xk−1 − xk−2∥2

= (1− 2θ)∥xk − p∥2 +
(
2

3
− 2θ

)
∥xk − xk−1∥2 − δ∥xk−2 − p∥2

−(3δθ + 2δ + 4δ2χ)∥xk−1 − xk−2∥2

≥ 0, (4.29)

since 0 ≤ θ < 1
3 and δ ≤ 0. We obtain from (4.27) that

Υk+1 ≤ (1− αk)Υk + αk∥x0 − p∥2. (4.30)

By Lemma 2.7, we have that the sequence {Υk} is bounded. Consequently, from
(4.29) that {xk} is bounded.

We now give our strong convergence result.

Theorem 4.1. Suppose that {xk} is generated by Algorithm 1. Then {xk} con-
verges strongly to PΩ(x0) when Assumption 1 is satisfied.

Proof. Suppose p = PΩ(x0). Then by Lemma 2.4, we have

∥ak − p∥2 =∥αkx0 + (1− αk)yk − p∥2

=∥αk(x0 − p) + (1− αk)(yk − p)∥2

=αk∥x0 − p∥2 + (1− αk)
2∥yk − p∥2 + 2αk(1− αk)⟨x0 − p, yk − p⟩

≤αk∥x0 − p∥2 + (1− αk)
2∥wk − p∥2 + 2αk(1− αk)⟨x0 − p, yk − p⟩,

(4.31)

and

∥xk+1 − ak∥2 =(αk)
2∥x0 − xk+1∥2 + (1− αk)

2∥yk − xk+1∥2

+ 2αk(1− αk)⟨x0 − xk+1, yk − xk+1⟩
≥(αk)

2∥x0 − xk+1∥2 + (1− αk)
2∥yk − xk+1∥2

− 2αk(1− αk)∥x0 − xk+1∥∥yk − xk+1∥
≥(αk)

2∥xk+1 − x0∥2 + (1− αk)
2∥xk+1 − yk∥2
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− 2αk(1− αk)M∥xk+1 − yk∥, (4.32)

whereM := supk≥k1
∥xk+1 − x0∥ <∞, since {xk} is bounded. Putting (4.31) and

(4.32) in (4.8)

∥xk+1 − p∥2

≤(αk)
2∥x0 − p∥2 + (1− αk)

2∥wk − p∥2 + 2αk(1− αk)⟨x0 − p, yk − p⟩
− α2∥xk+1 − x0∥2 − (1− αk)

2∥xk+1 − yk∥2 + 2αk(1− αk)M∥xk+1 − yk∥

≤(1− αk)∥wk − p∥2 + αk

(
αk∥x0 − p∥2 + 2(1− αk)⟨x0 − p, yk − p⟩

+ 2(1− αk)M∥xk+1 − yk∥
)
− (1− αk)

2∥xk+1 − yk∥2. (4.33)

Using (4.10) in (4.33), we obtain

∥xk+1 − p∥2

≤(αk)
2∥x0 − p∥2 + (1− αk)

2∥wk − p∥2 + 2αk(1− αk)⟨x0 − p, yk − p⟩
− α2∥xk+1 − x0∥2 − (1− αk)

2∥xk+1 − yk∥2 + 2αk(1− αk)M∥xk+1 − yk∥

≤(1− αk)∥wk − p∥2 + αk

(
αk∥x0 − p∥2 + 2(1− αk)⟨x0 − p, yk − p⟩

+ 2(1− αk)M∥xk+1 − yk∥
)
− (1− αk)

2(1 + χ)∥wk − xk+1∥2

=(1− αk)∥wk − p∥2 + αk

(
αk∥x0 − p∥2 + 2(1− αk)⟨x0 − p, yk − p⟩

+ 2(1− αk)M∥xk+1 − yk∥
)
− (1− αk)

2∥wk − xk+1∥2

− χ(1− αk)
2∥wk − xk+1∥2. (4.34)

Substituting (4.4), (4.5) and (4.14) in (4.34) gives us

∥xk+1 − p∥2

≤(1− αk)
[
(1 + θ)∥xk − p∥2 − (θ − δ)∥xk−1 − p∥2 + (1 + θ)(θ − δ)∥xk − xk−1∥2

+ δ(1 + θ)∥xk − xk−2∥2 − δ(θ − δ)∥xk−1 − xk−2∥2 − δ∥xk−2 − p∥2
]

+ αk

(
αk∥x0 − p∥2 + 2(1− αk)⟨x0 − p, yk − p⟩+ 2(1− αk)M∥xk+1 − yk∥

)
− (1− αk)

2
[
(1 + δ − θ)∥xk+1 − xk∥2 + (θ2 − θ + δθ)∥xk − xk−1∥2

+ (δ2 + δ + δθ)∥xk−1 − xk−2∥2
]
− 2χ(1− αk)

2∥xk − xk+1∥2

− 4θ2χ(1− αk)
2∥xk − xk−1∥2 − 4δ2χ(1− αk)

2∥xk−1 − xk−2∥2.

Since δ ≤ 0, the inequality above implies the following:

∥xk+1 − p∥2

≤(1− αk)
[
(1 + θ)∥xk − p∥2 − (θ − δ)∥xk−1 − p∥2 − δ∥xk−2 − p∥2

]
+ (1− αk)

[
(1 + θ)(θ − δ)− (1− αk)(θ

2 − θ + δθ + 4θ2χ)
]
∥xk − xk−1∥2

− (1− αk)
[
δ(θ − δ) + (1− αk)(δ

2 + δ + δθ + 4δ2χ)
]
∥xk−1 − xk−2∥2
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+
[
− (1− αk)

2(1 + δ − θ + 2χ)
]
∥xk − xk+1∥2

+ αk

(
αk∥x0 − p∥2 + 2(1− αk)⟨x0 − p, yk − p⟩+ 2(1− αk)M∥xk+1 − yk∥

)
.

Therefore,

∥xk+1 − p∥2 − θ∥xk − p∥2 − δ∥xk−1 − p∥2 +
2

3
∥xk+1 − xk∥2

− (3δθ + 2δ + 4δ2χ)∥xk − xk−1∥2

≤(1− αk)
[
∥xk − p∥2 − θ∥xk−1 − p∥2 − δ∥xk−2 − p∥2 +

2

3
∥xk − xk−1∥2

− (3δθ + 2δ + 4δ2χ)∥xk−1 − xk−2∥2
]

+ (1− αk)
[(

(1 + θ)(θ − δ)− 2

3

)
− (3δθ + 2δ + 4δ2χ)

− (1− αk)(θ
2 − θ + δθ + 4θ2χ)

]
∥xk − xk−1∥2

+ (1− αk)
[
(3δθ + 2δ + 4δ2χ)− δ(θ − δ)

− (1− αk)(δ
2 + δ + δθ + 4δ2χ)

]
∥xk−1 − xk−2∥2

+

[
2

3
− (1− αk)

2(1 + δ − θ + 2χ)

]
∥xk − xk+1∥2 − θαk∥xk − p∥2

− δαk∥xk−1 − p∥2 + αk(αk∥x0 − p∥2 + 2(1− αk)⟨x0 − p, yk − p⟩
+ 2(1− αk)M∥xk+1 − yk∥)

≤(1− αk)Υk + αkΦk + (−θαk − 2αkδ)∥xk − p∥2

+
[
(1− αk)

[(
(1 + θ)(θ − δ)− 2

3

)
− (3δθ + 2δ + 4δ2χ)

− (1− αk)(θ
2 − θ + δθ + 4θ2χ)

]
− 2δαk

]
∥xk − xk−1∥2

+ (1− αk)
[
(3δθ + 2δ + 4δ2χ)− δ(θ − δ)− (1− αk)(δ

2 + δ

+ δθ + 4δ2χ)
]
∥xk−1 − xk−2∥2

+

[
2

3
− (1− αk)

2(1 + δ − θ + 2χ)

]
∥xk − xk+1∥2, (4.35)

where

Φk := αk∥x0 − p∥2 + 2(1− αk)⟨x0 − p, yk − p⟩+ 2(1− αk)M∥xk+1 − yk∥2.

Since δ ≥ − θ
2 , we have

−2δαk − θαk ≤ 0, ∀k ≥ k2. (4.36)

Observe that

lim
k→∞

[
2

3
− (1− αk)

2(1 + δ − θ + 2χ)

]
=

2

3
− (1 + δ − θ − 2χ) ≤ 0,

since 2χ+ θ − 1
3 ≤ δ. Observe that θ − 1

3 + 2χ ≤ θ − 1
3 − 2χ ≤ δ. Also,

lim
k→∞

[
(3δθ + 2δ + 4δ2χ)− δ(θ − δ)− (1− αk)(δ

2 + δ + δθ + 4δ2χ)
]
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= δ(θ + 1) ≤ 0. (4.37)

Furthermore,

lim
k→∞

[
(1− αk)

[(
(1 + θ)(θ − δ)− 2

3

)
− (3δθ + 2δ + 4δ2χ)

−(1− αk)(θ
2 − θ + δθ + 4θ2)

]
− 2δαk

]
< 0, (4.38)

since
2θ− 2

3−8θ2χ

3+5θ < δ and δ2 ≤ θ2. Using (4.36)-(4.38) in (4.35), there exists k2 ≥
k1 ∈ N such that for all k ≥ k2 ≥ k1,

Υk+1 ≤ (1− αk)Υk + αkΦk +
[
(1− αk)

[(
(1 + θ)(θ − δ)− 2

3

)
− (3δθ + 2δ + 4δ2χ)

−(1− αk)(θ
2 − θ + δθ + 4θ2χ)

]
− 2δαk

]
∥xk − xk−1∥2. (4.39)

To conclude, it suffices to show, in view of Lemma 2.7 that lim supj→∞ Φkj
≤ 0

for each subsequence {Υkj} ⊂ {Υk} such that lim infj→∞(Υkj+1 −Υkj ) ≥ 0. Now,
let {Υkj} be a subsequence of {Υk} such that lim infj→∞(Υkj+1 −Υkj ) ≥ 0. From
(4.39), we obtain

lim sup
j→∞

[
−
[
(1− αkj

)
[(

(1 + θ)(θ − δ)− 2

3

)
− (3δθ + 2δ + 4δ2χ)

−(1− αkj )(θ
2 − θ + δθ + 4θ2χ)

]
− 2δαkj

]]
∥xkj − xkj−1∥2

≤ lim sup
j→∞

[
(Υkj −Υkj+1) + αkj (Φkj −Υkj )

]
≤ − lim inf

j→∞
(Υkj+1 −Υkj

) ≤ 0.

Since

lim
j→∞

[
−
[
(1− αkj

)
[(

(1 + θ)(θ − δ)− 2

3

)
− (3δθ + 2δ + 4δ2χ)

−(1− αkj
)(θ2 − θ + δθ + 4θ2χ)

]
− 2δαkj

]]
> 0,

we obtain

lim
j→∞

∥xkj
− xkj−1∥ = 0. (4.40)

Consequently,

∥wkj
− xkj

∥2 ≤ θ∥xkj
− xkj−1∥+ |δ|∥xkj−1 − xkj−2∥ → 0, j →∞. (4.41)

Also, we obtain

lim
j→∞

∥xkj+1 − wkj∥ = 0. (4.42)

By Lemma 4.1, {xkj} is bounded. Therefore, we can choose a subsequence {xkji
} ⊂

{xkj} which converges weakly to some u ∈ H1 such that

lim sup
j→∞

⟨x0 − p, xkj
− p⟩ = lim

j→∞
⟨x0 − p, xkji

− p⟩
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= ⟨x0 − p, u− p⟩. (4.43)

From (4.2) and (4.41), we have

lim
j→∞

Fk(wkj )

∥▽Fk(wkj
)∥

= 0. (4.44)

Also, we note that

∥▽Fk(wk)∥ = ∥▽Fk(wk)− ▽F (p)∥
≤ ∥A∥2∥wk − p∥, ∀ p ∈ Ω.

Hence, {▽Fk(xk)} is bounded. Therefore, from (4.2), we have

lim
j→∞

Fkj
(xkj

) = 0. (4.45)

Or equivalently,

lim
j→∞

∥(I − PQkj
)Awkj

∥2 = 0.

Since {wkj
} is bounded, there exists a subsequence {wkji

} of {wkj
} which converges

weakly to u. Without loss of generalities, we can assume from (4.41) that wkj
⇀ u.

Since PQkj
Awkj ∈ Qkj

, we have

q(Awkj ) ≤ ⟨ξkj , Awkj − PQkj
Awkj ⟩, (4.46)

where ξkj ∈ ∂q(Awkj ). From the boundedness assumption of ξkj and (4.45), we
have

q(Axkj ) ≤ ∥ξkj∥∥Awkj − PQAwkj∥ → 0. (4.47)

From the weak lower semicontinuity of the convex function q(x̂) and since wkj
⇀ u,

it follows from (4.47) that

q(Au) ≤ lim inf
j→∞

q(Awkj
) ≤ 0,

which means that Au ∈ Q. Further, using the fact that xkj+1 ∈ Ckj
and by the

definition of Ckj
, we get

c(wkj
) ≤ ⟨ψkj

, wkj
− xkj+1⟩,

where ψkj
∈ ∂c(wkj

). Due to the boundedness of ψkj
and (4.42), we have

c(wkj ) ≤ ∥ψkj∥∥wkj − xkj+1∥ → 0, j →∞.

Similarly, we obtain that c(u) ≤ 0, i.e., u ∈ C, which implies that u ∈ Ω. Since
p = PΩ(x0), we have from (4.43) that

lim sup
j→∞

⟨x0 − p, xkj − p⟩ = lim
j→∞
⟨x0 − p, u− p⟩ ≤ 0. (4.48)

Therefore,
lim sup
j→∞

⟨x0 − p, ykj − p⟩ ≤ 0

by (4.41) and (4.48). Hence,
lim sup
j→∞

Φkj ≤ 0.

Since
∑∞

k=1 αk =∞, we obtain by Lemma 2.7 in (4.35) that limk→∞ Υk = 0. Using
(4.29), we have that {xk} converges strongly to PΩ(x0).
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5. Numerical illustrations and applications to com-
pressed sensing

In this section we compare the performance of our proposed Algorithm 1 with three
recent algorithms in the literature. In the first example, we perform a sensitivity
analysis on the parameters given in Assumption 1. This will give several sets of pa-
rameters that satisfy Assumption 1 and possibly give an idea to choose the optimal
sets of control parameters for Algorithm 1.

Example 5.1. Let A : R3 → R3 be a matrix defined by

Ax :=


−1 3 5

5 3 2

2 1 0



x1

x2

x3

 .

Let C = {x = (x1, x2, x3)
T ∈ R3 : x21 + x22 − 4 ≤ 0} and Q = {x = (x1, x2, x3)

T ∈
R3 : x1 + x23 − 1 ≤ 0}. Set η0 = 1.99, αk = 1

k+1 and x0 = (0, 0, 0)T , x1 = x2 =

(1, 1, 1)T . The simulation is terminated when ∥xk+1 − xk∥ < 10−6 or n = 1001.
The results obtained for various sets of parameters that satisfy Assumption 1 are
presented in Table 1.

Table 1. Performance of Algorithm 1 with Respect to Parameters

σ θ δ Number of Iterations CPU Time (secs)

0.1 0.32 −0.15 1073 0.0688

0.1 0.32 −0.1 947 0.0662

0.1 0.32 −0.05 555 0.0405

0.1 0.22 −0.01 713 0.0487

0.1 0.22 −0.001 690 0.0466

0.1 0.22 0 687 0.0516

0.1 0.323 −0.05 485 0.0348

0.1 0.2 −0.05 876 0.0615

0.1 0.1 −0.05 1194 0.0817

0.1 0.01 −0.005 1493 0.0887

1.5 0.323 −0.05 141 0.0185

2 0.323 −0.05 138 0.0143

2.5 0.323 −0.05 135 0.0165

3.5 0.323 −0.05 160 0.0249
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Discussion. All the sets of parameters considered in Table 1 satisfy the assump-
tions given in Assumption 1. From Table 1, we saw that the performance of our
proposed Algorithm 1 is dependent on the choice of the control parameters σ, θ and
δ. Again, from Table 1, we deduce that the best set of parameters for Algorithm 1
in this example are σ = 2.5, θ = 0.323 and δ = −0.05. However, even though there
is no proof to guarantee convergence, for this particular example, there are sets
of parameters that do not satisfy our Assumption 1 but give good approximation.
For example σ = 2.5, θ = 0.82 and δ = 0.05. This perhaps might suggest that
considering two-step inertial algorithm with both inertial parameters positive may
provide acceleration.

Example 5.2. In this example, we will compare the performance of our proposed
Algorithm 1 with the Algorithms proposed by Vinh et al. [37], Vinh et al. [38] and
Shehu et al. [35]. Let A : Rn → Rn be defined as Ax = Bx where B is a randomly
generated matrix such that its entries bij ∈ (0, 1).

Let C =
{
x ∈ Rn : ∥x∥ ≤ 3

2

}
and Q =

{
x ∈ Rn : ∥x∥ ≤ 2

}
.

We will consider four dimensions n = 50, 100, 300 and 500 and study the behaviour
of Algorithm 3.1 of Vinh et al. [37] (VHDC Alg 3.1), Algorithm 3.1 of Vinh et al. [38]
(VCS Alg 3.1) and fully inertial versions of Algorithm 2 of Shehu et al. [35] (SDL Alg
2) with respect to these dimensions. In VHDC Algorithm 3.1, we choose ρk = 0.1,
θ = 0.82, ϵk = 1

(k+1)2 . In VCS Algorithm 3.1, we choose βk = 1
k+1 and ρk = 3.5k

k+1 .

In SDL Alg 2, we choose θk = 0.9 and σk = 0. The initial guess x0 is set to be
zeros, x1 is generated randomly and we set x2 = x1, for all the algorithms. The
simulation is terminated when Ek = ∥xk+1 − xk∥ < 10−6 or k = 3001. The results
obtained for each dimension are presented in Table 2 and Figures 1 and 2.

Table 2. Performance of the Algorithms in Example 5.2

Iter and CPU Time for the Algorithms for Different Dimensions

Algorithm 1 VHDC Alg 3.1 VCS Alg 3.1 SDL Alg 2

Dim. (n) Iter CPU Time Iter CPU Time Iter CPU Time Iter CPU Time

50 97 0.0142 123 0.0129 1580 0.1093 145 0.0165

100 98 0.0175 141 0.0282 1604 0.1332 213 0.0517

300 101 0.0429 348 0.1640 1623 0.3357 548 0.1853

500 117 0.1411 809 0.7493 1658 1.1713 959 0.9036
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Figure 1. Graph of the Iterates: Top Left n = 50, Top Right= n = 100
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Figure 2. Graph of the Iterates: Top Left n = 300, Top Right= n = 500

Example 5.3. We consider the following LASSO problem

min
{1

2
∥Ax− b∥22 : x ∈ Rn, ∥x∥1 ≤ r

}
, (5.1)

where A ∈ Rm×n, m < n, b ∈ Rm and r > 0.We consider n = 6144 and m = 1440.
A normal distribution with a standard deviation of zero and a unit variance serves
as the basis for the matrix A. Additionally, the genuine spare signal x∗ is formed by
uniformly dispersing throughout the interval [−1, 1] with spikes (nonzero entries)
90 and 180 while the rest are kept at zero. The sample data b is given as b = Ax∗.
The solution of the minimization problem (5.1) under certain conditions on the
matrix A is similar to the ℓ1-norm solution of the undetermined linear system. For
the problem under consideration (1.1), we define

C =
{
x : ∥x∥1 ≤ k

}
and Q = {b}.

We will use the subgradient projection since the projection onto the closed convex
C does not have a closed form solution. Now, we define a convex function d(x) :=
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∥x∥1 − k and define

Ck =
{
x ∈ Rk : d(wk) + ⟨ζk, x− wk⟩ ≤ 0},

where ζ ∈ ∂d(wk). The orthogonal projection on Ck is given by

PCk
(ỹ) =

{
y, d(wk) + ⟨ζk, ỹ − wk⟩ ≤ 0,

y − d(wk)+⟨ζk,ỹ−wk⟩ζk
∥ζk∥2 , otherwise.

Therefore, at point x, the subdifferential ∂c is given by

∂c(x) =


1, x > 0,

[−1, 1], x = 0,

−1, x < 0.

Now, we will compare the performance of our proposed Algorithm 1 with Algorithm
3.1 of Vinh et al. [37] (VHDC Alg 3.1), Algorithm 3.1 of Vinh et al. [38] (VCS Alg
3.1) and fully inertial version of Algorithm 2 of Shehu et al. [35] (SDL Alg 2) in the
restoration process of the sparse signal. We use the same control parameters as in
Example 5.2. Furthermore, we evaluate the mean square error (MSE) defined by:

MSE =
1

k
∥x∗ − x∥2 (5.2)

to make sure that the restored signal has a good length and observation compared
to the original signal, where x∗ is an approximated signal of x. The initial points
x0, x1, x2 are chosen as zero vectors and ∥xk − x∗∥ < 10−5 or maximum number of
iterations k = 3000 are used as stopping criterion. We present the results of the
numerical simulations in Figures 3, 4, 5 and 6.
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6. Conclusion

In this work, we studied the split feasibility problem. We introduced the Halpern-
type algorithm with two-step inertial extrapolation and self adaptive stepsize to
solve the aforementioned problem. We proved that the sequence of the iterates gen-
erated by our proposed algorithm converges strongly to a solution of the SFP under
some conditions on the iterative parameters without the on-line rule assumption.
Finally, we presented numerical results of our proposed method to illustrate the
applicability of our method.
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