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Study of Certain Navier Problems in Sobolev
Space with Weights

Y. Fadil1,†, M. El Ouaarabi2 and M. Oukessou1

Abstract In this paper, we study the following Navier problem

−div
[
v1K(z,∇w) + v2L(z, w,∇w)

]
+∆

[
ϕ1|∆w|t−2∆w + ϕ2|∆w|q−2∆w

]
+

v3b(z, w) + v4|w|p−2w = h(z),

Here, h ∈ Lp′(Q, v1−p′

1 ), K, L and b are Carathéodory functions and ϕ1,ϕ2,v1,
v2, v3 and v4 are Ap-weights functions. By using the theory of monotone opera-
tors (Browder–Minty Theorem), we demonstrate the existence and uniqueness
of weak solution to the above problem.

Keywords Navier problem, degenerate quasilinear elliptic equations, weighted
Sobolev spaces, weak solution
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1. Introduction

Nonlinear elliptic equations with perturbation in the sense of singularity and decay
are useful problems arising from these differential equations in various applica-
tions, including non-Newtonian fluid mechanics, reaction-diffusion difficulties, flows
in porous media and hydrology, (we refer to [3, 6, 19] where it is possible to find
some examples of applications of degenerate elliptic equations).

In the so-called degenerate partial differential equations, which have different
types of singularities in the coefficients, it is natural to find solutions in weighted
Sobolev spaces [8–10, 13]. The weightless Sobolev spaces W k,t(Q), in general, ap-
pear as solution spaces for parabolic and elliptic partial differential equations. In
particular when t = q = 2 and ϕ1 = ϕ2 ≡ 1, v1 = v3 = v4 = 0 and v2 = 1 we have
the equation

∆2w −
n∑

j=1

DjLj(z, w,∇w) = h,
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where ∆2w is the biharmonic operator. Many real phenomena, such as radar imag-
ing or incompressible flows, are the subject of mathematical models in which bihar-
monic equations are found.

There are a lot of examples of weight (see [13] ). A well-established class of
weights, introduced by B. Muckenhoupt [16] , is the class of Ap-weights (or Muck-
enhoupt class) . These weights have found many useful applications in harmonic
analysis [17].

Our goal in this paper is to show the uniqueness and existence of a weak solution
in the weighted Sobolev space. Consider W 1,t

0 (Q, v) (see Definition 2.2) for the
Navier problem associated with the degenerate elliptic equation
∆
[
ϕ1|∆w|t−2∆w + ϕ2|∆w|q−2∆w

]
− div

[
v1K(z,∇w) + v2L(z, w,∇w)

]
+v3b(z, w) + v4|w|p−2w = h in Q,

w(z) = ∆w(z) = 0 on ∂Q,
(1.1)

where, Q is a bounded open set in Rd,ϕ1,ϕ2, v1, v2, v3 and v4 are a weight functions,
and the functions L : Q× R× Rd −→ Rd, K : Q× Rd −→ Rd and b : Q× R −→ R
are Caratéodory functions that satisfy the growth assumptions, monotonicity and
ellipticity conditions. Problems like (1.1) have been studied by many authors in the
unweighted and weighted case (see [2, 4, 22]).

The structure of this work is as follows: in Section 2, we give some basic results
and some technical lemmas. In Section 3, we specify all the assumptions on K, L,
b and we present the notion of weak solution for Problem (1.1). The main results
will be proved in Section 4.

2. Preliminaries

To understand our findings, we must first review certain definitions and fundamental
aspects which are used during this paper. Full presentations can be found in the
monographs by A. Torchinsky [17] and J. Garcia-Cuerva et al. [11].

We will call a locally integrable function v by a weight on Rd such that v(z) > 0
for a.e. z ∈ Rd. Each weight v gives rise to a measure on the measurable subsets of
Rd by integration. This measure will be denoted v. Thus,

v(E) =

∫
E

v(z)dz for measurable subset E ⊂ Rd.

For 0 < t < ∞, we denote by Lt(Q, v) the space of measurable functions v on Q
such that

||h||Lt(Q,v) =

(∫
Q
|h|tv(z)dz

) 1
t

<∞,

where h is a weight, and Q, is open in Rd. It is a widely known fact that the space
Lt(Q, v), endowed with this norm is a Banach space. We also have that the dual
space of Lt(Q, v) is the space Lt′(Q, v1−t′).

Let us now specify the conditions on the weight v that ensure that the functions
in Lt(Q, v) are locally integrable on Q.
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Proposition 2.1. ( [14,15]). Let 1 ≤ t <∞. If the weight v is such that

v
−1
t−1 ∈ L1

loc(Q) if t > 1,

ess sup
z∈B

1

v(z)
< +∞ if t = 1,

for every ball B ⊂ Q, then

Lt(Q, v) ⊂ L1
loc(Q).

As a result, under the conditions of the Proposition 2.1, the convergence in
Lt(Q, v) implies convergence in L1

loc(Q). In addition, every function in Lt(Q, v) has
distributional derivatives. So it makes sense to talk about distributional derivatives
of functions in Lt(Q, v).

Definition 2.1. Let 1 ≤ t <∞. A weight v is said to be an At-weight, or v belongs
to the Muckenhoupt class, if there exists a positive constant ζ = ζ(t, v) such that,
for every ball B ⊂ Rd

(
1

|B|

∫
B

v(z)dz

)(
1

|B|

∫
B

(v(z))
−1
t−1 dz

)t−1

⩽ ζ if t > 1,

(
1

|B|

∫
B

v(z)dz

)
ess sup

z∈B

1

v(z)
⩽ ζ if t = 1,

where |.| denotes the n-dimensional Lebesgue measure in Rd.

The infimum over all such constants ζ is called the At constant of v. We denote
by At, 1 ≤ t <∞, the set of all At weights.

If 1 ≤ q ≤ t < ∞, then A1 ⊂ Aq ⊂ At and the Aq constant of f equals the At

constant of f (we refer to [12,13,18] for more informations about Ap-weights).

Proposition 2.2. ( [19]). Let f ∈ At with 1 ⩽ t < ∞ and let E be a measurable
subset of a ball B ⊂ Rd. Then (

|E|
|B|

)t

⩽ C
v(E)

v(B)
,

where C is the At constant of v.

The weighted Sobolev space W k,t(Q, v) is defined as follows.

Definition 2.2. Let Q ⊂ Rd be open, and let f be At-weights, 1 ⩽ t < ∞. We
define the weighted Sobolev space W k,t(Q, v) as the set of functions w ∈ Lt(Q, v)
with Dkw ∈ Lt(Q, v), for k = 1, ..., n. The norm of w in W k,t(Q, v) is given by

||w||Wk,t(Q,v) =

(∫
Q
|w(z)|tvdz +

∫
Q
|∇w(z)|tvdz

) 1
t

. (2.1)

We also define W 1,t
0 (Q, v) as the closure of C∞

0 (Q) in W 1,t(Q, v) with respect to the
norm (2.1).
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Equipped with this norm, W 1,t(Q, v) and W 1,t
0 (Q, v) are reflexive and separa-

ble Banach spaces (see [14, Proposition 2.1.2]). For more detail about the spaces
W 1,t(Q, v) see [13,15]. The dual of space W 1,t

0 (Q, v) is defined as[
W 1,t

0 (Q, v)
]∗

=

{
h−

n∑
i=1

Dihi/,
hi
v

∈ Lt
′

(Q, v), i = 1, ..., n

}
.

To show the main reasoning of this paper, we rely on the following results .

Definition 2.3. We denote H =W 1,p
0 (Q, v1) ∩W 2,t (Q, ϕ1) with the norm

∥w∥H = ∥∆w∥Lt(Q,ϕ1) + ∥|∇w|∥Lp(Q,v1).

Theorem 2.1. ( [10]). Let v ∈ At, 1 ⩽ t < ∞, and let Q be a bounded open
set in Rd. If wn −→ w in Lt(Q, v), then there exists a subsequence (wnm

) and
ψ ∈ Lt(Q, v) such that

(i) wnm
(z) −→ w(z), nm −→ ∞, v-a.e. on Q.

(ii) |wnm
(z)| ⩽ ψ(z), v-a.e. on Q.

Theorem 2.2. ( [7]). Let v ∈ At, 1 < t < ∞, and let Q be a bounded open set in
Rd. There exist constants MQ and δ positive such that for all φ ∈ W 1,t

0 (Q, v) and
all ν satisfying 1 ⩽ ν ⩽ n

n−1 + δ,

||φ||Lνt(Q,v) ⩽MQ||∇φ||Lt(Q,v),

where MQ depends only on n, t, the At constant of v and the diameter of Q.

Proposition 2.3. ( [5]). Let 1 < p <∞.

(i) There exists a positive constant Mp such that for all η, µ ∈ Rd, we have∣∣∣|µ|p−2µ− |η|p−2η
∣∣∣ ≤Mp|µ− η|

(
|µ|+ |η|

)p−2

.

(ii) There exist two positive constants βp and τp such that for every z, y ∈ Rd, it
holds that

βp

(
|z|+ |y|

)p−2

|z−y|2 ≤
〈
|z|p−2z−|y|p−2y, z−y

〉
≤ τp

(
|z|+ |y|

)p−2

|z−y|2.

Theorem 2.3. ( [21]). Let S : H −→ H∗ be a coercive, hemi-continuous and mono-
tone operator on the real, separable, reflexive Banach space H. Then the following
statements are valid:

1- The equation Sw = T has a solution w in H, for all T ∈ H∗ .

2- If the operator S is strictly monotone, then equation Sw = T has a unique
solution w ∈ H .

3. Basic assumptions and concept of solutions

3.1. Basic assumptions

Let us give the specific conditions of Problem (1.1). We assume the following
assumptions: Q is a bounded open subset of Rd( d ≥ 2); 1 < q, s < p <∞;
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let v1, v2, v3 and v4 be a weights functions, and let K : Q× Rd −→ Rd;

L : Q×R×Rd −→ Rd, with L(z, η, µ) =
(
L1(z, η, µ), ...,Ln(z, η, µ)

)
and K(z, µ) =(

K1(z, µ), ...,Kn(z, µ)
)
and b : Q×R −→ R, satisfying the following assumptions:

(I) Lk, Kk (for k = 1, ..., n), and b are Caratéodory functions.

(II) There are positive functions h1, h2, h3, h4 ∈ L∞(Q) and τ1 ∈ Lp′
(Q, v1)(

with 1
p+

1
p′ = 1

)
, τ2 ∈ Lq′(Q, v2)

(
with 1

q+
1
q′ = 1

)
and τ3 ∈ Ls′(Q, v3)

(
with

1
s + 1

s′ = 1
)
such that :

|K(z, µ)| ≤ τ1(z) + h1(z)|µ|p−1,

|L(z, η, µ)| ≤ τ2(z) + h2(z)|η|q−1 + h3(z)|µ|q−1,

and
|b(z, η)| ≤ τ3(z) + h4(z)|η|s−1.

(III) There exists a constant α > 0 such that :〈
K(z, µ)−K(z, µ

′
), µ− µ

′
〉
⩾ α|µ− µ

′
|p,〈

L(z, η, µ)− L(z, η
′
, µ

′
), µ− µ

′
〉
⩾ 0,

and (
b(z, η)− b(z, η

′
)
)(
η − η

′
)
⩾ 0,

whenever (η, µ), (η′, µ′) ∈ R×Rn with η ̸= η
′
and µ ̸= µ

′
(
where ⟨., .⟩ denotes

here the usual inner product in Rn
)
.

(IV) There are constants β1, β2, β3 > 0 such that :〈
K(z, µ), µ

〉
⩾ β1|µ|p,〈

L(z, η, µ), µ
〉
⩾ β2|µ|q + β3|η|q,

and
b(z, η) · η ⩾ 0.

3.2. Concept of solutions

The definition of a weak solution for Problem (1.1) is as follows

Definition 3.1. One says w ∈ H is a weak solution to Problem (1.1), provided
that∫

Q
|∆w|t−2∆w∆vϕ1dz +

∫
Q
|∆w|q−2∆w∆vϕ2dz +

∫
Q
⟨K(z,∇w),∇v⟩ v1 dz

+
∫
Q⟨L(z, w,∇w),∇v⟩ v2 dz +

∫
Q
b(z, w) v v3 dz +

∫
Q
|w|p−2w v v4 dz

=

∫
Q
hvdz,

for all v ∈ H.
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Remark 3.1. We aim to establish a relationship between v1, v2 and v3, in order
to guarantee the existence and uniqueness of the solution to the problem (1.1). At
first we notice, for all v1, v2, v3 ∈ Ap :

(i) If ϕ2

ϕ1
∈ Lr0 (Q, ϕ1) where r0 = t

t−q and (2 ≤ q < t < ∞) then there exists a
constant M > 0 such that

∥w∥Lq(Q,ϕ2) ≤Mt,q∥w∥Lt(Q,ϕ1)

where Mt,q = ∥ϕ2/ϕ1∥1/qLr0 (Q,ϕ1)
. In fact, by Hölder’s inequality

∥w∥qLq(Q,ϕ2)
=

∫
Q
|w|qϕ2dz =

∫
Q
|w|q ϕ2

ϕ1
ϕ1dz

≤
(∫

Q
|w|qt/qϕ1dz

)q/t
(∫

Q

(
ϕ2
ϕ1

)t/(t−q)

ϕ1dz

)(t−q)/t

= ∥w∥qLt(Q,ϕ1)
∥ϕ2/ϕ1∥Lr0 (Q,ϕ1)

.

(2i) If v2
v1

∈ Lr1(Q, v1) where r1 = p
p−q and 1 < q < p < ∞, then, by Hölder

inequality we obtain

||w||Lq(Q,v2) ⩽Mp,q||w||Lp(Q,v1),

where Mp,q = || v2v1 ||
1/q
Lr1 (Q,v1)

.

(3i) Analogously, if v3
v1

∈ Lr2(Q, v1) where r2 = p
p−s and 1 < s < p <∞, then

||w||Ls(Q,v3) ⩽Mp,s||w||Lp(Q,v1),

where Mp,s = ||v3v1 ||
1/s
Lr2 (Q,v1)

.

(4i) Analogously, if v4
v1

∈ Lr3(Q, v1) where r3 = p
p−p′ and 1 < p′ < p <∞, then

||w||Ls(Q,v4) ⩽Mp,p′ ||w||Lp(Q,v1),

where Mp,p′ = || v4v1 ||
1/p′

Lr3 (Q,v1)
.

4. Main result

4.1. Result on the existence and uniqueness

The main result of this article is given in the following theorem.

Theorem 4.1. Let vi ∈ Ap(i = 1, 2, 3, 4) and ϕ1, ϕ2 ∈ At , 1 < q, s < p, t < ∞
and assume that the assumptions (I) − (IV) hold. If ϕ2

ϕ1
∈ Lt/(t−q) (Q, ϕ1), h

v1
∈

Lp′
(Q, v1), v2

v1
∈ Lp/(p−q)(Q, v1) and v3

v1
∈ Lp/(p−s)(Q, v1), then Problem (1.1) has

exactly one solution w ∈ H.
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4.2. Proof of Theorem 4.1

The essence of our demonstration is to transform Problem (1.1) to an operator
problem Aw = G and apply Theorem 2.3.

We define

F : H×H −→ R

and

G : H −→ R,

where F and G are defined below.
Then w ∈ H is a weak solution of (1.1) if and only if

F(w, v) = G(v), for all v ∈ H.

The proof of Theorem 4.1 is divided into several notes.

4.2.1. Equivalent operator equation

In this subsection, we prove that Problem (1.1) is equivalent to an operator equation
Aw = G.

Using Hölder inequality and Theorem 2.2, we obtain

|G(v)| ≤
∫
Q

|h|
v1

|v|v1 dz

≤ ||h/v1||Lp′ (Q,v1)
||v||Lp(Q,v1)

≤ MQ||h/v1||Lp′ (Q,v1)
||v||H.

Since h/v1 ∈ Lp′
(Q, v1), then G ∈ H∗.

The operator F is broken down into the from

F(w, v) = F1(w, v) + F2(w, v) + F3(w, v) + F4(w, v) + F5(w, v) + F6(w, v),

where Fi : H×H −→ R, for i = 1, 2, 3, 4, 5, 6, are defined as

F1(w, v) =

∫
Q
⟨K(z,∇w),∇v⟩v1dz , F2(w, v) =

∫
Q
⟨L(z, w,∇w),∇v⟩v2dz,

F3(w, v) =

∫
Q
b(z, w)v v3dz , F4(w, v) =

∫
Q
|w|p−2w v v4 dz,

F5(w, v) =

∫
Q
|∆w|t−2∆w∆vϕ1dz and F6(w, v) =

∫
Q
|∆w|q−2∆w∆vϕ2dz.

Then, we have

|F(w, v)| ≤ |F1(w, v)|+ |F2(w, v)|+ |F3(w, v)|

+|F4(w, v)|+ |F5(w, v)|+ |F6(w, v)|.
(4.1)
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On the other hand, we get by using (II), Hölder inequality, Remark 3.1 (i) and
Theorem 2.2,

|F1(w, v)| ≤
∫
Q
|K(z,∇w)||∇v|v1dz

≤
∫
Q

(
τ1 + h1|∇w|p−1

)
|∇v|v1dz

≤ ||τ1||Lp′ (Q,v1)
||∇v||Lp(Q,v1) + ||h1||L∞(Q)||∇w||p−1

Lp(Q,v1)
||∇v||Lp(Q,v1)

≤
(
||τ1||Lp′ (Q,v1)

+ ||h1||L∞(Q)||w||p−1
H

)
||v||H,

and

|F2(w, v)|

≤
∫
Q |L(z, w,∇w)||∇v|v2dz

≤
∫
Q

(
τ2 + h2|w|q−1 + h3|∇w|q−1

)
|∇v|v2dz

≤ ||τ2||Lq′ (Q,v2)
||∇v||Lq(Q,v2) + ||h2||L∞(Q)||w||q−1

Lq(Q,v2)
||∇v||Lq(Q,v2)

+ ||h3||L∞(Q)||∇w||q−1
Lq(Q,v2)

||∇v||Lq(Q,v2)

≤ ||τ2||Lq′ (Q,v2)
Mp,q||∇v||Lp(Q,v1) + ||h2||L∞(Q)M

q−1
p,q ||w||q−1

Lp(Q,v1)
Mp,q||∇v||Lp(Q,v1)

+ ||h3||L∞(Q)M
q−1
p,q ||∇w||q−1

Lp(Q,v1)
Mp,q||∇v||Lp(Q,v1)

≤
[
Mq

p,q

(
Mq−1

Q ||h2||L∞(Q) + ||h3||L∞(Q)

)
||w||q−1

H

+Mp,q||τ2||Lq′ (Q,v2)

]
||v||H.

Analogously, using (II) and remark 3.1 (2i) , we obtain

|F3(w, v)| ≤
∫
Q
|b(z, w)||v|v3dz

≤
[
MQMp,s||τ3||Ls′ (f,v3)

+Ms
p,sM

s
Q||h4||L∞(Q)||w||s−1

H

]
||v||H.

Next, by using Remark 3.1 (4i), we get

|F4(w, v)| ≤
∫
Q
|w|p−1|v|v4dz

≤
(∫

Q
|w|pv4dz

)1/p′(∫
Q
|v|pv4dz

)1/p
= ||w||p−1

Lp(Q,v4)
||v||Lp(Q,v4)

≤ Mp−1
Q MQ||∇w||p−1

Lp(Q,v2)
||∇v||Lp(Q,v2)

≤ Mp
QM

p
p,p′ ||w||p−1

H ||v||H.

We have

|F5(w, v)| ≤
∫
Q
|∆w|t−1|∆v|ϕ1dz ≤

(∫
Q
|∆w|(t−1)t′ϕ1dz

)1/t′ (∫
Q
|∆v|tϕ1dz

)1/t

= ∥∆w∥t−1
Lt(Q,ϕ1)

∥∆v∥Lt(Q,ϕ1)

≤ ∥w∥t−1
H ∥v∥H.
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By Remark 3.1 (i), we get

|F6(w, v)| ≤
∫
Q
|∆w|q−1|∆v|ϕ2dz ≤

(∫
Q
|∆w|(q−1)q′ϕ2dz

)1/q′ (∫
Q
|∆v|qϕ2dz

)1/q

= ∥∆w∥q−1
Lq(Q,ϕ2)

∥∆v∥Lq(Q,ϕ2)

≤Mq−1
t,q ∥∆w∥q−1

Lt(Q,ϕ1)
Mt,q∥∆v∥Lt(Q,ϕ1)

≤Mq
t,q∥w∥

q−1
H ∥v∥H.

Hence, in (4.1) we obtain, for all w, v ∈ H

|F(w, v)|

≤
[
||τ1||Lp′ (Q,v1)

+ ||h1||L∞(Q)||w||p−1
H +MQMp,s||τ3||Ls′ (Q,v3)

+ Mp,q||τ2||Lq′ (Q,v2)
+Mq

p,q

(
Mq−1

Q ||h2||L∞(Q) + ||h3||L∞(Q)

)
||w||q−1

H

+ Ms
p,sM

s
Q||h4||L∞(Q)||w||s−1

H + MQ||w||p−1
H + ∥w∥t−1

H +Mq
t,q∥w∥

q−1
H

]
∥v∥H.

Then for each w ∈ H, F(w, .) is linear and continuous . Thus, there exists a linear
and continuous operator on H denoted by A such that

⟨Aw, v⟩ = F(w, v), for all w, v ∈ H.

Moreover, we have

∥Aw∥∗
≤ ||τ1||Lp′ (Q,v1)

+ ||h1||L∞(Q)||w||p−1
H +MQMp,s||τ3||Ls′ (Q,v3)

+Mp,q||τ2||Lq′ (Q,v2)
+Mq

p,q

(
Mq−1

Q ||h2||L∞(Q) + ||h3||L∞(Q)

)
||w||q−1

H

+Ms
p,sM

s
Q||h4||L∞(Q)||w||s−1

H +Mp
QM

p
p,p′ ||w||p−1

H + ∥w∥t−1
H +Mq

t,q∥w∥
q−1
H ,

where

∥Aw∥∗ := sup

{
|⟨Aw, v⟩| = |F(w, v)| : v ∈ H, ∥v∥H = 1

}
is the norm in H∗. This gives us the operator

A : H −→ H∗

w 7−→ Aw.

It is therefore possible that the equation of Problem (1.1) is equivalent to the equa-
tion of the operator

Aw = G, w ∈ H.
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4.2.2. Monotonicity and Coercivity of the operator A

⋆ Now, we show that A is strictly monotone.
Let v1, v2 ∈ H with v1 ̸= v2. We have

〈
Av1 −Av2, v1 − v2

〉
= F(v1, v1 − v2)−F(v2, v1 − v2)

=

∫
Q

(
|∆v1|t−2

∆v1 − |∆v2|p−2
∆v2

)
∆(v1 − v2)ϕ1dz

+

∫
Q

(
|∆v1|q−2

∆v1 − |∆v2|q−2
∆v2

)
∆(v1 − v2)ϕ2dz

+

∫
Q

〈
K(z,∇v1),∇(v1 − v2)

〉
v1dz −

∫
Q

〈
K(z,∇v2),∇(v1 − v2)

〉
v1dz

+

∫
Q

〈
L(z, v1,∇v1),∇(v1 − v2)

〉
v2dz

−
∫
Q

〈
L(z, v2,∇v2),∇(v1 − v2)

〉
v2dz +

∫
Q
b(z, v1)(v1 − v2)v3dz

−
∫
Q
b(z, v2)(v1 − v2)v3dz

+

∫
Q
|v1|p−2v1(v1 − v2)v4dz −

∫
Q
|v2|p−2v2(v1 − v2)v4dz

=

∫
Q

(
|∆v1|t−2

∆v1 − |∆v2|p−2
∆v2

)
∆(v1 − v2)ϕ1dz

+

∫
Q

(
|∆v1|q−2

∆v1 − |∆v2|q−2
∆v2

)
∆(v1 − v2)ϕ2dz

+

∫
Q

〈
K(z,∇v1)−K(z,∇v2),∇(v1 − v2)

〉
v1dz

+

∫
Q

〈
L(z, v1,∇v1)− L(z, v2,∇v2),∇(v1 − v2)

〉
v2dz

+

∫
Q

(
b(z, v1)− b(z, v2)

)(
v1 − v2

)
v3dz

+

∫
Q

(
|v1|p−2v1 − |v2|p−2v2

)(
v1 − v2

)
v4dz.

Thanks to (III) and Proposition 2.3 (ii), we obtain

〈
Av1 −Av2, v1 − v2

〉
≥ βq

∫
Q
(|∆v1|+ |∆v2|)q−2 |∆v1 −∆v2|2 ϕ2dz

+α
∫
Q |∇(v1 − v2)|p v1 dz

+ βp
∫
Q

(
|v1||v2|

)p−2

|v1 − v2|2 v4 dz

≥ α

∫
Q
|∇(v1 − v2)|pv1dz +

∫
Q
|∆v1 −∆v2|q ϕ2dz

≥ α∥∇(v1 − v2)∥pLp(Q,v1)
.

Therefore, A is strictly monotone .

⋆ In this note, we prove that the operator A is coercive.
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Letting w ∈ H, we have

⟨Aw,w⟩ = F(w,w)

= F1(w,w) + F2(w,w) + F3(w,w) + F4(w,w) + F5(w,w) + F6(w,w)

=

∫
Q
|∆w|pϕ1dz +

∫
Q
|∆w|qϕ2dz

+

∫
Q
⟨K(z,∇w),∇w⟩v1dz +

∫
Q
⟨L(z, w,∇w),∇w⟩v2dz

+

∫
Q
b(z, w)w v3dz +

∫
Q
|w|pv4dz.

Moreover, from (IV) and Theorem 2.2(with ν = 1), we obtain

⟨Aw,w⟩ ≥
∫
Q
|∆w|pϕ1dz + β1

∫
Q
|∇w|pv1dz + β2

∫
Q
|∇w|qv2dz

+ β3

∫
Q
|w|qv2dz +

∫
Q
|w|pv4dz

≥
∫
Q
|∆w|pϕ1dz +min(β1, 1)

[∫
Q
|∇w|pv1dz +

∫
Q
|w|pv4dz

]
+min(β2, β3)

[∫
Q
|∇w|qv2dz +

∫
Q
|w|qv2dz

]
≥min(β1, 1)∥w∥pH.

Hence, we obtain
⟨Aw,w⟩
∥w∥H

≥ min(β1, 1)∥w∥p−1
H .

Therefore, since p > 1, we have

⟨Aw,w⟩
∥w∥H

−→ +∞ as ∥w∥H −→ +∞,

that is, A is coercive.

4.2.3. Continuity of the operator A

Let wn −→ w in H as n −→ ∞. Then ∇wn −→ ∇w in (Lp(Q, v1))i. Hence, thanks
to Theorem 2.1, there exists a sub sequence (wnm

) and ψ ∈ Lp(Q, v1) such that

∇wnm
(z) −→ ∇w(z), a.e. in Q,

|∇wnm(z)| ≤ ψ(z), a.e. in Q.

(4.2)

We will show that Awn −→ Aw in H∗.
The following notes are required to demonstrate this convergence.

Note 1:
For k = 1, ..., n, we define the operator

Bk : H −→ Lp′
(Q, v1)

(Bkw)(z) = Kk(z,∇w(z)).
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We need to show that Bkwn −→ Bkw in Lp′
(Q, v1).

In Banach spaces, we will use the convergence principle and the Lebesgue theo-
rem.

• Let w ∈ H. Using (II) and Theorem 2.2(with ν = 1), we obtain

∥Bkw∥p
′

Lp′ (Q,v1)
=

∫
Q
|Bkw(z)|p

′
v1dz =

∫
Q
|Kk(z,∇w)|p

′
v1dz

≤
∫
Q

(
τ1 + h1|∇w|p−1

)p′

v1dz

≤ Mp

∫
Q

(
τp

′

1 + hp
′

1 |∇w|p
)
v1dz

≤ Mp

[
∥τ1∥p

′

Lp′ (Q,v1)
+ ∥h1∥p

′

L∞(Q)∥∇w∥
p
Lp(Q,v1)

]
≤ Mp

[
∥τ1∥p

′

Lp′ (Q,v1)
+ ∥h1∥p

′

L∞(Q)∥w∥
p
H

]
,

where the constant Mp depends only on p.

• Let wn −→ w in H as n −→ ∞. By (II) and (4.2), we obtain

∥Bkwnm −Bkw∥p
′

Lp′ (Q,v1)
=

∫
Q
|Bkwnm(z)−Bkw(z)|p

′
v1dz

≤
∫
Q

(
|Kk(z,∇wnm

)|+ |Kk(z,∇w)|
)p′

v1dz

≤ Mp

∫
Q

(
|Kk(z,∇wnm)|p

′
+ |Kk(z,∇w)|p

′
)
v1dz

≤ Mp

∫
Q
[
(
τ1 + h1|∇wnm

|p−1
)p′

+
(
τ1 + h1|∇w|p−1

)p′

]v1dz

≤ Mp

∫
Q

[(
τ1 + h1ψ

p−1
)p′

+
(
τ1 + h1ψ

p−1
)p′]

v1dz

≤ 2MpM
′

p

∫
Q

(
τp

′

1 + hp
′

1 ψ
p
)
v1dz

≤ 2MpM
′

p

[
∥τ1∥p

′

Lp′ (Q,v1)
+ ∥h1∥p

′

L∞(Q)∥ψ∥
p
Lp(Q,v1)

]
.

Hence, thanks to (I), we get, as n −→ ∞

Bkwnm(z) = Kk(z,∇wnm(z)) −→ Kk(z,∇w(z)) = Bkw(z), a.e. z ∈ Q.

Therefore, by Lebesgue’s theorem, we obtain

∥Bkwnm
−Bkw∥Lp′ (Q,v1)

−→ 0,

that is,

Bkwnm −→ Bkw in Lp′
(Q, v1).

Finally, in view to convergence principle in Banach spaces, we have

Bkwn −→ Bkw in Lp′
(Q, v1). (4.3)
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Note 2:
For k = 1, ..., n, we define the operator

Ok : H −→ Lq′(Q, v2),

(Okw)(z) = Lk(z, w(z),∇w(z)).

We will prove that Okwn −→ Okw in Lq′(Q, v2).
• Let w ∈ H. Using (II), Remark 3.1 (i) and Theorem 2.2(with ν = 1), we
obtain

∥Okw∥q
′

Lq′ (Q,v2)

=

∫
Q
|Lk(z, w,∇w)|q

′
v2 dz

≤
∫
Q

(
τ2 + h2|w|q−1 + h3|∇w|q−1)q′ v2 dz

≤Mq

∫
Q

[
τ q′

2 + hq′

2 |w|q + hq′

3 |∇w|q
]
v2 dz

≤Mq

[
∥τ2∥q

′

Lq′ (Q,v2)
+ ∥h2∥q

′

L∞(Q)∥w∥qLq(Q,v2)
+ ∥h3∥q

′

L∞(Q)∥∇w∥qLq(Q,v2)

]
≤Mq

[
∥τ2∥q

′

Lq′ (Q,v2)
+ ∥h2∥q

′

L∞(Q)C
q
p,q∥w∥qLp(Q,v1)

+ ∥h3∥q
′

L∞(Q)C
q
p,q∥∇w∥qLp(Q,v1)

]
≤Mq

[
∥τ2∥q

′

Lq′ (Q,v2)
+ Cq

p,q

(
Mq

Q∥h2∥q
′

L∞(Q) + ∥h3∥q
′

L∞(Q)

)
∥w∥qH

]
,

where the constant Mq depends only on q.

• Let wn −→ w in H as n −→ ∞. According to (II), Remark 3.1 (i) and the
same arguments used in Note 1 (ii), we obtain analogously,

Okwn −→ Okw in Lq′(Q, v2). (4.4)

Note 3:
We define the operator

N : H −→ Ls′(Q, v3),

(Nw)(z) = b(z, w(z)).

In this note, we will show that Nwn −→ Nw in Ls′(Q, v3).

• Let w ∈ H. Using (II) and Remark 3.1 (2i), we obtain

∥Nw∥s′
Ls′ (Q,v3)

=

∫
Q
|b(z, w)|s

′
v3dz

≤
∫
Q

(
τ3 + h4|w|s−1

)s′
v3dz

≤ Ms

∫
Q

(
τs

′

3 + hs
′

4 |w|s
)
v3dz

≤ Ms

[
∥τ3∥s

′

Ls′ (Q,v3)
+ ∥h4∥p

′

L∞(Q)∥w∥
s
Ls(Q,v3)

]
≤ Ms

[
∥τ3∥s

′

Ls′ (Q,v3)
+Ms

p,s∥h4∥
p′

L∞(Q)∥w∥
s
Lp(Q,v1)

]
≤ Ms

[
∥τ3∥Ls′ (Q,v1)

+Ms
p,sM

s
Q∥h4∥s

′

L∞(Q)∥w∥
s
H

]
,

where the constant Ms depends only on s.
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• Let wn −→ w in H as n −→ ∞. By (II) and Remark 3.1 (2i), we get

∥Nwnm
−Nw∥s′

Ls′ (Q,v3)
=

∫
Q

∣∣∣Nwnm
(z)−Nw(z)

∣∣∣p′

v3dz

≤
∫
Q

(
|b(z, wnm

)|+ |b(z, w)|
)s′
v3dz

≤Ms

∫
Q

(
|b(z, wnm)|s

′
+ |b(z, w)|s

′
)
v3dz

≤Ms

∫
Q

[(
τ3 + h4|wnm

|s−1
)s′

+
(
τ3 + h4|w|s−1

)s′]
v3dz

≤Ms

∫
Q

[(
τ3 + h4|ψ|s−1

)s′
+
(
τ3 + h4ψ

s−1
)s′]

v3dz

≤ 2MsM
′
s

[
∥τ3∥s

′

Ls′ (Q,v3)
+ ∥h4∥s

′

L∞(Q)∥ψ∥
s
Ls(Q,v3)

]
≤ 2MsM

′
s

[
∥τ3∥s

′

Ls′ (Q,v3)
+Ms

p,s∥h4∥s
′

L∞(Q)∥ψ∥
s
Lp(Q,v1)

]
.

Next using condition A∞, we deduce, as n −→ ∞

Nwnm
(z) = b(z, wnm

(z)) −→ b(z, w(z)) = Nw(z), a.e. z ∈ Q.

Therefore, by the Lebesgue’s theorem, we obtain

∥Nwnm −Nw∥Ls′ (Q,v3)
−→ 0,

that is,

Nwnm
−→ Nw in Ls′(Q, v3).

We conclude, from the convergence principle in Banach spaces, that

Nwn −→ Nw in Ls′(Q, v3). (4.5)

Note 4:
We define the operator

J : H −→ Lp′
(Q, v4),

(Jw)(z) = |w(z)|p−2w(z).

In this note, we will demonstrate that Jwn −→ Jw in Lp′
(Q, v4).

• Let w ∈ H. We have

∥Jw∥p
′

Lp′ (Q,v4)
=

∫
Q
|Jw|p

′
v4dz

=

∫
Q
|w|(p−1)p′

v4dz

=

∫
Q
|w|pv4dz

≤ Mp
QM

p
p,p′∥w∥pH.

• Let wn −→ w in H as n −→ ∞. Then wn −→ w in Lp(Q, v4). Hence, thanks
to Theorem 2.1, there exists a subsequence (wnm

) and φ ∈ Lp(Q, v4) such
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that

wnm
(z) −→ w(z), a.e. in Q,

|wnm
(z)| ≤ φ(z), a.e. in Q.

Next, we get

∥Jwnm
− Jw∥p

′

Lp′ (Q,v4)
=

∫
Q

∣∣∣Jwnm
(z)− Jw(z)

∣∣∣p′

v4dz

≤
∫
Q

(
|Jwnm

(z)|+ |Jw(z)|
)p′

v4dz

≤Mp

∫
Q

(
|Jwnm(z)|p

′
+ |Jw(z)|p

′
)
v4dz

≤Mp

∫
Q

(
||wnm

|p−2wnm
|p

′
+ ||w|p−2w|p

′
)
v4dz

≤Mp

∫
Q

(
|wnm

|(p−1)p′
+ |w|(p−1)p′

)
v4dz

≤Mp

∫
Q

(
|wnm

|p + |w|p
)
v4dz

≤Mp

∫
Q

(
|φ|p + |φ|p

)
v4dz

≤ 2Mp

∫
Q
|φ|pv4dz

≤ 2Mp∥φ∥pLp(Q,v4)
.

Therefore, by Lebesgue’s theorem, we obtain

∥Jwnm
− Jw∥Lp′ (Q,v4)

−→ 0,

that is,
Jwnm −→ Jw in Lp′

(Q, v4).
We conclude, in view of the convergence principle in Banach spaces, that

Jwn −→ Jw in Lp′
(Q, v4). (4.6)

Note 5:
We define the operator K : H → Lt′ (Q, ϕ1) by

(Kw)(z) = |∆w(z)|t−2∆w(z).

We now show that, the operator K is bounded and continuous.
• We have

∥Kw∥t
′

Lt′ (Q,ϕ1)
=

∫
Q
|F5w(z)|t

′
ϕ1dz

=

∫
Q

∣∣∣∣ |∆w|t−2∆w

∣∣∣∣t′ ϕ1dz
=

∫
Q
|∆w|tϕ1dz

= ∥∆w∥tLt(Q,ϕ1)

≤ ∥w∥tH.
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Therefore, we obtain

∥Kw∥Lt′ (Q,ϕ1)
≤ ∥w∥t−1

H

and hence the boundedness.

• Let wm → w in H asm→ 0. We need to show thatKwm → Kw in Lt′ (Q, ϕ1).
If wm → w in H then ∆wm → ∆w in Lt (Q, ϕ1). Using Theorem 2 , there exists a
subsequence {wmk

} and a function Φ ∈ Lt (Q, ϕ1) such that

∆wmk
(z) → ∆w(z) a.e. in Q,

|∆wmk
(z)| ≤ Φ(z) a.e. in Q.

(4.7)

Now, since t > 2, using (4.7), a = t/t′ = t − 1 and a′ = (t − 1)/(t − 2), there
exists a constant αt > 0 (by Proposition 2.3(i) ) such that

∥Kwmk
−Kw∥t

′

Lt′ (Q,ϕ1)
=

∫
Q
|Kwmk

−Kw|t
′
ϕ1dz

=

∫
Q

∣∣∣∣ |∆wmk
|t−2∆wmk

− |∆w|t−2∆w
∣∣t′ ϕ1dz

≤
∫
Q

[
αt |∆wmk

−∆w| (|∆wmk
|+ |∆w|)t−2

]t′
ϕ1dz

≤ αt′

t

∫
Q
|∆wmk

−∆w|t
′
(2Φ)

(t−2)t′
ϕ1dz

= 2(t−2)t′αt′

t

∫
Q
|∆wmk

−∆w|t
′
Φ(t−2)t′ϕ1dz

≤ 2(t−2)t′αt′

t

(∫
Q
|∆wmk

−∆w|t
′a
ϕ1dz

)1/a(∫
Q
Φ(t−2)t′a′

ϕ1dz

)1/aa′

= 2(t−2)t′αt′

t

(∫
Q
|∆wmk

−∆w|t ϕ1dz
)t′/t(∫

Q
Φtϕ1dz

)(t−2)/(t−1)

= 2(t−2)t′αt′

t ∥∆wmk
−∆w∥t

′

Lt(Q,ϕ1)
∥Φ∥t

′(t−2)
Lt(Q,ϕ1)

≤ 2(t−2)t′αt′

t ∥wmk
− w∥t

′

X ∥Φ∥t
′(t−2)
Lt(Q,ϕ1)

.

Therefore (since 2 < t <∞ ), we obtain ∥Kwmk
−Kw∥Lt′ (Q,ϕ1 ) → 0, that is,

Kwmk
→ Kw in Lt′ (Q, ϕ1)

By the convergence principle in Banach spaces (see Proposition 10.13 in [22]),
we have

Kwm → Kw in , Lt′ (Q, ϕ1) . (4.8)

Note 6:
Define the operator G : H → Lq′ (Q, ϕ2) , (Gw)(z) = |∆w(z)|q−2∆w(z). We also
have that the operator G is continuous and bounded. In fact:

• If q > 2, we have by Remark 3.1 (i), that
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∥Gw∥q
′

Lq′ (Q,ϕ2)
=

∫
Q

∣∣∣∣ |∆w|q−2∆w

∣∣∣∣q′ ϕ2dz = ∫
Q
|∆w|qϕ2dz

= ∥∆w∥qLq(Q,ϕ2)

≤Mq
t,q∥∆w∥

q
Lt(Q,ϕ1)

≤Mq
t,q∥w∥

q
H.

Hence,
∥Gw∥Lq′ (Q,ϕ2)

≤Mq−1
t,q ∥w∥q−1

H .

• Now using (4.7), Remark 3.1 (i), b = q/q′ = q − 1 and b′ = (q − 1)/(q − 2) (if
q > 2 ), there exists a constant αq > 0 (by Lemma 4(a)) such that

∥Gwmk
−Gw∥q

′

Lq′ (Q,ϕ2)
=

∫
Q
|Gwmk

−Gw|q
′
ϕ2dz

=

∫
Q

∣∣∣∣ |∆wmk
|q−2∆wmk

− |∆w|q−2∆w
∣∣q′ ϕ2dz

≤
∫
Q

[
αq |∆wmk

−∆w| (|∆wmk
|+ |∆w|)(q−2)

]q′
ϕ2dz

≤ αq′

q

∫
Q
|∆wmk

−∆w|q
′
(2Φ)

(q−2)q′
ϕ2dz

≤ 2(q−2)q′αq′

q

(∫
Q
|∆wmk

−∆w|q
′b
ϕ2dz

)1/b(∫
Q
Φ(q−2)q′b′ϕ2dz

)1/b′

= αq′

q 2(q−2)q′
(∫

Q
|∆wmk

−∆w|q ϕ2dz
)q′/q (∫

Q
Φqϕ2dz

)(q−2)/(q−1)

= αq′

q 2(q−2)q′ ∥∆wmk
−∆w∥q

′

Lq(Q,ϕ2)
∥Φ∥q

′(q−2)
Lq(Q,ϕ2)

≤ αq′

q 2(q−2)q′Mq′

t,q ∥∆wmk
−∆w∥q

′

Lt(Q,ϕ1)
M

q′(q−2)
t,q ∥Φ∥q

′(q−2)
Lt(Q,ϕ1)

≤ αq′

q 2(q−2)q′Mq
t,q ∥wmk

− w∥q
′

H ∥Φ∥q
′(q−2)

Lt(Q,ϕ1)
.

Hence

∥Gwmk
−Gw∥Lq′ (Q,ϕ2)

≤ 2q−2αqM
q−1
t,q ∥Φ∥q−2

Lt(Q,ϕ1)
∥wmk

− w∥H .

In the case q = 2 we have (Gw)(z) = ∆w(z). Hence,

∥Gw∥L2(Q,ϕ2) = ∥∆w∥L2(Q,ϕ2) ≤Mt,q∥∆w∥Lt(Q,ϕ1) ≤Mt,q∥w∥H,
∥Gwmk

−Gw∥L2(Q,ϕ2)
≤Mt,q ∥∆wmk

−∆w∥Lt(Q,ϕ1)
≤Mt,q ∥wmk

− w∥H .

Therefore (for 2 ≤ q < ∞ ), we obtain ∥Gwmk
−Gw∥Lq′ (Q,ϕ2)

→ 0, that is,

Gwmk
→ Gw in Lq′ (Q, ϕ2). By the convergence principle in Banach spaces (see

Proposition 10.13 in [22] ), we have

Gwm → Gw in Lq′ (Q, ϕ2) . (4.9)
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Finally, letting v ∈ H and using Hölder inequality, we obtain

|F1(wn, v)−F1(w, v)| = |
∫
Q
⟨K(z,∇wn)−K(z,∇w),∇v⟩v1dz|

≤
n∑

k=1

∫
Q
|Kk(z,∇wn)−Kk(z,∇w)||Dkv|v1dz

=

n∑
k=1

∫
Q
|Bkwn −Bkw||Dkv|v1dz

≤
n∑

k=1

∥Bkwn −Bkw∥Lp′ (Q,v1)
∥Dkv∥Lp(Q,v1)

≤

(
n∑

k=1

∥Bkwn −Bkw∥Lp′ (Q,v1)

)
∥v∥H ,

and by Remark 3.1 (2i), we get

|F2(wn, v)−F2(w, v)| = |
∫
Q
⟨L(z, wn,∇wn)− L(z, w,∇w),∇v⟩Q2dz|

≤
n∑

k=1

∫
Q
|Lk(z, wn,∇wn)− Lk(z, w,∇w)||Dkv|v2dz

=

n∑
k=1

∫
Q
|Okwn −Okw||Dkv|v2dz

≤

(
n∑

k=1

∥Okwn −Okw∥Lq′ (Q,v2)

)
∥∇v∥Lq(Q,v2)

≤ Mp,q

(
n∑

k=1

∥Okwn −Okw∥Lq′ (Q,v2)

)
∥∇v∥Lp(Q,v1)

≤ Mp,q

(
n∑

k=1

∥Okwn −Okw∥Lq′ (Q,v2)

)
∥v∥H.

By Remark 3.1 (3i), we obtain

|F3(wn, v)−F3(w, v)| ≤
∫
Q
|b(z, wn)− b(z, w)||v|v3dz

=

∫
Q
|Nwn −Nw||v|v3dz

≤ ∥Nwn −Nw∥Ls′ (Q,v3)
∥v∥Ls(Q,v3)

≤ Mp,s∥Nwn −Nw∥Ls′ (Q,v3)
∥v∥Lp(Q,v1)

≤ Mp,sMQ∥Nwn −Nw∥Ls′ (Q,v3)
∥v∥H.

And by Note 4, we get

|F4(wn, v)−F4(w, v)| ≤
∫
Q

∣∣∣|wi|p−2wi − |w|p−2w
∣∣∣|v|v4dz

=

∫
Q
|Jwn − Jw||v|v4dz

≤ MQMp,p′∥Jwn − Jw∥Lp′ (Q,v4)
∥v∥H.
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We also have

|F5 (wm, φ)−F5(w, v)| ≤
∫
Q

∣∣∣∣ |∆wm|t−2∆wm − |∆w|t−2∆w||∆v | ϕ1dz

=

∫
Q
|Kwm −Kw| |∆v|ϕ1dz

≤ ∥Kwm −Kw∥Lt′ (Q,ϕ1)
∥∆v∥Lt(Q,ϕ1)

≤ ∥Kwm −Kw∥Lt′ (Q,ϕ1)
∥v∥H,

and by Remark 3.1 (i), we get

|F6(wm, v)−F6(w, v)| ≤
∫
Q

∣∣∣|∆wm|q−2∆wm − |∆w|q−2∆w
∣∣∣|∆v|ϕ2dz

=

∫
Q
|Gwm −Gw∥∆v|ϕ2dz

≤ ∥Gwm −Gw∥Lq′ (Q,ϕ2)
∥∆v∥Lq(Q,ϕ2)

≤Mt,q ∥Gwm −Gw∥Lq′ (Q,ϕ2)
∥∆v∥Lt(Q,ϕ1)

≤Mt,q∥Gwm −Gw∥Lq′ (Q,ϕ2)
∥v∥H.

Hence, for all v ∈ H, we have

|F(wn, v)−F(w, v)|

≤
6∑

j=1

∣∣∣Fj(wn, v)−Fj(w, v)
∣∣∣

≤
[ n∑
k=1

(
∥Bkwn −Bkw∥Lp′ (Q,v1)

+Mp,q∥Okwn −Okw∥Lq′ (Q,v2)

)
+Mp,sMQ∥Hwn −Hw∥Ls′ (Q,v3)

+MQMp,p′∥Jwn − Jw∥Lp′ (Q,v4)

+ ∥Kwm −Kw∥Lt′ (Q,ϕ1)
+M ∥Gwm −Gw∥Lq′ (Q,ϕ2)

]
∥v∥H.

Then, we get

∥Awn −Aw∥∗ ≤
n∑

k=1

(
∥Bkwn −Bkw∥Lp′ (Q,v1)

+Mp,q∥Okwn −Okw∥Lq′ (Q,v2)

)
+Mp,sMQ∥Hwn −Hw∥Ls′ (Q,v3)

+MQMp,p′∥Jwn − Jw∥Lp′ (Q,v4)

+ ∥Kwm −Kw∥Lt′ (Q,ϕ1)
+M ∥Gwm −Gw∥Lq′ (Q,ϕ2)

.

Combining (4.3), (4.4), (4.5), (4.6), (4.8) and (4.9), we deduce that

∥Awn −Aw∥∗ −→ 0 as n −→ ∞,

that is, Awn −→ Aw in H∗. Hence, A is continuous and this implies that A is
hemicontinuous.

Therefore, by Theorem 2.3, the operator equation Aw = G has exactly one
solution w ∈ H and it is the unique solution for problem (1.1).

Finally, the proof of Theorem 4.1 is completed.
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