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Study of Certain Navier Problems in Sobolev
Space with Weights

Y. Fadilf, M. El Ouaarabi? and M. Oukessou'

Abstract In this paper, we study the following Navier problem

—div |v1K(z, Vw) + v2 L(z, w, Vw)] +A [q&l\Aw\t*zAw + ¢2|Aw|q72Aw] +

v3b(z, w) + va|w|” 2w = h(z),

Here, h € ¥ (Q, v%fp,), K, £ and b are Carathéodory functions and ¢1,¢p2,v1,
v2, v3 and vy are A,-weights functions. By using the theory of monotone opera-
tors (Browder—Minty Theorem), we demonstrate the existence and uniqueness
of weak solution to the above problem.
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1. Introduction

Nonlinear elliptic equations with perturbation in the sense of singularity and decay
are useful problems arising from these differential equations in various applica-
tions, including non-Newtonian fluid mechanics, reaction-diffusion difficulties, flows
in porous media and hydrology, (we refer to [3,6,19] where it is possible to find
some examples of applications of degenerate elliptic equations).

In the so-called degenerate partial differential equations, which have different
types of singularities in the coefficients, it is natural to find solutions in weighted
Sobolev spaces [8-10,13]. The weightless Sobolev spaces W*!(Q), in general, ap-
pear as solution spaces for parabolic and elliptic partial differential equations. In
particular when ¢t = ¢ =2 and ¢1 = ¢p2 = 1,v1 = v3 = v4 = 0 and vy = 1 we have
the equation

Ay — Z D;L;(z,w,Vw) = h,
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where A2w is the biharmonic operator. Many real phenomena, such as radar imag-
ing or incompressible flows, are the subject of mathematical models in which bihar-
monic equations are found.

There are a lot of examples of weight (see [13] ). A well-established class of
weights, introduced by B. Muckenhoupt [16] , is the class of Ap,-weights (or Muck-
enhoupt class) . These weights have found many useful applications in harmonic
analysis [17].

Our goal in this paper is to show the uniqueness and existence of a weak solution
in the weighted Sobolev space. Consider W, (Q,v) (see Definition 2.2) for the
Navier problem associated with the degenerate elliptic equation

A [¢1|Aw|t_2Aw + d)g\Aw\q_QAw} — div [’UlK:(Z, Vw) + va Lz, w, Vw)}
+v3b(z, w) + va|w|P72w = h in Q,
w(z) = Aw(z) =0 on 09,
(1.1)

where, Q is a bounded open set in R%,¢1,d2, v1, v2, v3 and vy are a weight functions,
and the functions £: @ x RxR? — R? K: O xR —R%andb: 9 xR — R
are Caratéodory functions that satisfy the growth assumptions, monotonicity and
ellipticity conditions. Problems like (1.1) have been studied by many authors in the
unweighted and weighted case (see [2,4,22]).

The structure of this work is as follows: in Section 2, we give some basic results
and some technical lemmas. In Section 3, we specify all the assumptions on K, L,
b and we present the notion of weak solution for Problem (1.1). The main results
will be proved in Section 4.

2. Preliminaries

To understand our findings, we must first review certain definitions and fundamental
aspects which are used during this paper. Full presentations can be found in the
monographs by A. Torchinsky [17] and J. Garcia-Cuerva et al. [11].

We will call a locally integrable function v by a weight on R? such that v(z) > 0
for a.e. z € R%. Each weight v gives rise to a measure on the measurable subsets of
R? by integration. This measure will be denoted v. Thus,

v(E) = /v(z)dz for measurable subset E C R
E

For 0 < t < 0o, we denote by L{(Q,v) the space of measurable functions v on Q

such that
1
Il = (| Iro(e)iz) < .

where h is a weight, and Q, is open in R?. It is a widely known fact that the space
L'(Q,v), endowed with this norm is a Banach space. We also have that the dual
space of L!(Q,v) is the space L' (Q,v*~").

Let us now specify the conditions on the weight v that ensure that the functions
in L!*(Q,v) are locally integrable on Q.



1334 Y. Fadil, M. El Ouaarabi & M. Oukessou

Proposition 2.1. ([14,15]). Let 1 <t < co. If the weight v is such that

vt € LL (Q) if > 1,
1 .
ess sup — < +oo  if t=1,
zeB ’U(Z)

for every ball B C Q, then

L'(Q,v) C Lip(Q).

As a result, under the conditions of the Proposition 2.1, the convergence in
L*(Q,v) implies convergence in L}, .(Q). In addition, every function in L!(Q,v) has
distributional derivatives. So it makes sense to talk about distributional derivatives
of functions in L*(Q,v).

Definition 2.1. Let 1 <t < co. A weight v is said to be an As;-weight, or v belongs
to the Muckenhoupt class, if there exists a positive constant ¢ = ((¢,v) such that,
for every ball B c R?

(|;|/Bv(z)dz> <|;|/B(v(z))f_—11 dz)t_l <¢ i >,

1 1
— d — < itot—1,
<|B|/B'”(Z) ) ess Sup Ty < ¢ 1

where |.| denotes the n-dimensional Lebesgue measure in R

The infimum over all such constants ( is called the A; constant of v. We denote
by A;, 1 <t < oo, the set of all A; weights.

If 1 <g<t<oo,then Ay C A; C A; and the A, constant of f equals the A;
constant of f (we refer to [12,13,18] for more informations about A,-weights).

Proposition 2.2. ( [19]). Let f € A; with 1 <t < oo and let E be a measurable
subset of a ball B C R?. Then
¢
(Y cor®)
Bl v(B)

where C' is the A; constant of v.

The weighted Sobolev space W' (Q,v) is defined as follows.

Definition 2.2. Let Q C R? be open, and let f be A;,-weights, 1 < t < co. We
define the weighted Sobolev space W*!(Q, v) as the set of functions w € LY(Q, )
with Dyw € L*(Q,v), for k = 1,...,n. The norm of w in W**(Q,v) is given by

w00 = </Q |w(z)tvdz+/Q|Vw(z)|tvdz> . (2.1)

We also define W' (Q, v) as the closure of Cg°(Q) in Wh(Q, v) with respect to the
norm (2.1).
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Equipped with this norm, W1!(Q,v) and WO1 (Q,v) are reflexive and separa-
ble Banach spaces (see [14, Proposition 2.1.2]). For more detail about the spaces
WLt(Q,v) see [13,15]. The dual of space W' (Q,v) is defined as

[WOM(Q, v)r = {h - iDihi/a% € Lt/(Qa”)ai =1, ’”}
=1

To show the main reasoning of this paper, we rely on the following results .

Definition 2.3. We denote H = W,"? (Q,v1) N W2 (Q, ¢1) with the norm

lwlle = lAwlLe(g,g0) + IVWllize(g,e)-

Theorem 2.1. ( [10]). Let v € A¢, 1 <t < 00, and let Q be a bounded open
set in R If w, — w in L'(Q,v), then there ewists a subsequence (w,, ) and
¢ € LY(Q,v) such that

(1) wn,, (2) — w(2), Ny — 00, v-a.e. on Q.
(ii) |wn,, (2)] < ¥(2), v-a.e. on Q.

Theorem 2.2. ( [7]). Letv € A, 1 <t < o0, and let Q be a bounded open set in
R?. There exist constants Mg and & positive such that for all ¢ € Wol’t(Q,U) and
all v satisfying 1 <v < 2= + 6,

n—1

[l

Lvt(Qu) S MQHVSOHU(Q,U)a
where Mg depends only on n, t, the Ay constant of v and the diameter of Q.
Proposition 2.3. ( [5]). Let 1 < p < co.

(i) There exists a positive constant M, such that for all n,u € R?, we have

p—2
’|M|p_2ﬂ - In\p‘%‘ < My|p =1l (Iul + In\) :

(ii) There exist two positive constants B, and 7, such that for every z,y € R%, it
holds that

p—2 9 _9 _92 p—2 2
B (121 +1y1)" e —ul < (2P 2= o2y 2 =) <7 (Jal+1nl) 12—yl

Theorem 2.3. ([21]). LetS :H — H* be a coercive, hemi-continuous and mono-
tone operator on the real, separable, reflexive Banach space H. Then the following
statements are valid:

1- The equation Sw =T has a solution w in H, for oll T € H* .

2- If the operator S is strictly monotone, then equation Sw = T has a unique
solution w € H .

3. Basic assumptions and concept of solutions

3.1. Basic assumptions

Let us give the specific conditions of Problem (1.1). We assume the following
assumptions: Q is a bounded open subset of R%( d >2); 1 < ¢,s < p < oc;
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let v1, v2, v3 and vy be a weights functions, and let K : @ x R — R,
L: OxRxR? — R with L(z,n, u) = (Ll(z,n,,u)7 ey Lo (2,1, ,u)) and K(z,p) =
(lCl(z, Wy K (2, u)) and b: QxR — R, satisfying the following assumptions:
(I) L, K (for k =1,...,n), and b are Caratéodory functions.
(IT) There are positive functions hy, hy, hs, hy € L=(Q) and 7 € L' (Q,v;)

(with 1yl =1 ) e Lq’(Q,vQ)(with Li1l= 1) and 75 € LS’(Q,Ug)(with

% + ﬁ = 1) such that :

Kz )| < ma() (]l
1L(2,m, )| < To(2) + ha(2) 097 + ha(2)|p|*,

and
b(z,m)| < 73(2) + ha(2)|n*~".

(III) There exists a constant o > 0 such that :
<’C(z7/¢) —K(zop )y — > > alp—p P

<£(z,n,u) — Lz, 1)y — u'> >0,
and

(b(z,n) - b(z,n’)) (n - n/) >0,
whenever (9, 1), (17, 1//) € RxR" withn # 7 and p # p' (where (.,.) denotes

here the usual inner product in R”).

(IV) There are constants 81, B2, B3 > 0 such that :
<’C(Z,u),u> z Bulpl?,

(zm, 1), 1) > Balul? + Balnl?,

and
b(z,m)-n = 0.

3.2. Concept of solutions
The definition of a weak solution for Problem (1.1) is as follows

Definition 3.1. One says w € H is a weak solution to Problem (1.1), provided
that

/ |Aw|t_2AwAv¢1dz+/ |Aw|q_2AwAv¢2dz+/(lC(z,Vw%Vv) vy dz
Q Q Q
+fQ<£(z,w7Vw)7Vv)v2dz+/ b(z,w)vv3d2+/ lw|P~ 2w v vy dz

Q

Q
= / hvdz,
Q

for all v € H.
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Remark 3.1. We aim to establish a relationship between v, vo and wvg, in order
to guarantee the existence and uniqueness of the solution to the problem (1.1). At
first we notice, for all vy, vo, v3 € Ay :

(i) It % € L™ (Q,¢1) where rg = ﬁ and (2 < ¢ <t < o0) then there exists a
constant M > 0 such that

[wllLa(Q.¢s) < MegllwllLe(.en)

where M; , = ”‘252/91’1”%%@,@)' In fact, by Holder’s inequality

P2
w4, :/ wq¢dz=/ w|T=¢1dz
1o = [ lulontz = [ jur o,

q/t t/(t—q)
() ([, (2" o)

= ||w||th(Q7¢1) H¢2/¢1HU0(Q,¢1) .

(t—q)/t

(2i) If % € L™ (Q,v;) where r; = p’%q and 1 < ¢ < p < oo, then, by Holder
inequality we obtain

HwHL‘?(Q,Uz) < Mp,quHLP(Q,m)v

1
where M, 4 = ||%HL/£(Q,U1)‘

(3i) Analogously, if 72 € L™(Q, v1) where r; = 2~ and 1 < s < p < 00, then

||w|

Ls(Qus) < Mpsl|lwl|Lr(0v),

1
where M), , = ||%|‘L/"‘S2(Q,v1)'

(4i) Analogously, if Z—‘l‘ € L™ (Q,v1) where r3 = and 1 < p’ < p < oo, then

p
p—p’

||w| L3(Q,v4) < MP’P’Hw”LP(Q,vl)?

1/p'

where M), ,y = H%HLW(QM)‘

4. Main result

4.1. Result on the existence and uniqueness

The main result of this article is given in the following theorem.

Theorem 4.1. Let v; € Ay(i = 1,2,3,4) and ¢1,¢02 € Ay , 1 < q,s < p,t < >0
and assume that the assumptions (I) — (IV) hold. If % € LVt=9(Q ¢y), L €

EH
Lpl(Q,m), 5—? € Lp/(p_Q)(Q,vl) and Z—i’ € Lp/(p_s)(Q,vl), then Problem (1.1) has
exactly one solution w € H.
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4.2. Proof of Theorem 4.1

The essence of our demonstration is to transform Problem (1.1) to an operator
problem Aw = G and apply Theorem 2.3.
We define

F:HxH-—R

and
G:H— R,

where F and G are defined below.
Then w € H is a weak solution of (1.1) if and only if

F(w,v) = G(v), for all v € HL.

The proof of Theorem 4.1 is divided into several notes.

4.2.1. Equivalent operator equation

In this subsection, we prove that Problem (1.1) is equivalent to an operator equation
Aw =G.
Using Holder inequality and Theorem 2.2, we obtain

o)< | P ooy dz
ol

< h/vill Lo (@up vl Le(0,0n)
< Mol|h/v1|l g (@0l IV] |-

Since h/v; € L¥' (Q,v1), then G € H*.
The operator F is broken down into the from

F(w,v) = Fr(w,v) + Fa(w,v) + Fa(w,v) + Fy(w,v) + Fs(w, v) + Fg(w,v),

where F; : H x H — R, for i = 1,2, 3,4, 5,6, are defined as

fl(w,v)=/<K(Z,Vw),Vv>v1dz , ]-"g(w,v):/<£(z,w,Vw),Vv>vgdz,
Q Q
fg(w,v):/ b(z, w)vvsdz , ]:4(w,v):/ |w|P~ 2w v vy dz,

Q Q

]-'5(w,v):/ |Aw|' "2 AwAvgdz and .7:6(w,v):/ |Aw|T 2 AwAvpadz.
Q Q
Then, we have

[ F(w,v)] < [Fi(w, v)| + [Fo(w, v)| + | F3(w, v)]
+Fa(w, v)| + [Fs(w, v)| + | Fo(w, v)].



Study of Certain Navier Problems 1339

On the other hand, we get by using (II), Hélder inequality, Remark 3.1 (i) and
Theorem 2.2,

\Fy (w, 0)| g/ 1K (2, Vo) [V ooy dz
< (7’1 + h1|Vw|p_1)|Vv|vldz
Q

< Imllo (@ IV Pl Lo(@mn) + 1Ballzo () IV 7 (g o IV o (@ .00)
< (Il (o) + 1Bl el ) 1ol
and
| F2(w,v)]|
< Jo l£(z,w, Vw)||Vvlvadz
< Jo (7’2 + ho|w|?7t + hg\Vw\q_l) |Voulvadz
<172l o (0 IV 2l La(@.00) + [1hall e (@) |01 52 @ | V0l [ L0(0.0)
+ 113l () IV 52 0.0y VPl Lo (10)
< 1721l 1 (0,0 Ml IV 0l Lo (@.0) + Il2l | oo (@) M M 0|50 (0.0
+ 13| (@) M IVl 5o 0 oy Ml V0l Lo (0.00)
< [nag, (MEhalle o + l1hsll= o) ) 1wl
+ Myl [72ll 2 (0,0 | 101

Mp7q| |Vl |LP(Q7v1)

Analogously, using (IT) and remark 3.1 (2i)

| Fa(w, v)] < / bz, w)|[v]vsdz
Q
= [MQMP»SHTSHLS’(f,vs) + sz,sMé\|h4|\L°°(Q)||w||fﬂ_1} [|v]|m-
Next, by using Remark 3.1 (4i), we get

| Fy(w,v)| </ |w[P~ 1|v|v4dz

/|w|pv4dz /|v|pv4dz "

= ||wl[}7 (g 1Vl o (200)
1 -1
,Mg MQHVWHZ;:J(QM)HVUHLP(Q,W)
-1
< MMy lwllg [ [v]]e.

, we obtain

We have

1/t 1/t
|]-'5(w,v)|§/ |Aw| 7 Av|prdz < (/ | Ag|(F— 1 d)ldz) (/ |Av|t¢1dz)
Q Q Q

= | Awl (0.0 18] Le(0,01)

< Jwllg™ ol
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By Remark 3.1 (i), we get

1/q' 1/q
|]-"6(w,v)|§/ | Aw|T=1| Av|podz < (/ | Aw|(a=e ¢2dz> </ |Av|qq§2dz>
Q Q Q

-1
= HAw”%q(Q,¢2) ”AUHL‘I(Q7¢'2)

-1 —1
< MM AWl o, 1y Meg | Al e0,00)

-1
< M llwllg vl
Hence, in (4.1) we obtain, for all w,v € H

| F(w, )]
—1
< Imllee @y + 1l @ llwlls ™ + Mo M, s

|7] L% (Q,vs)
—1 —1
+ Mpgllmellpe (0,0, + My 4 (Mé [[h2l[Le(0) + Hh3||L°°(Q)> [Jw||g
_ —1 — —1
+ My My ||ha|| Ll lwllft + Mollwllf + lwlift + M, lw]|f }||U||H-

Then for each w € H, F(w,.) is linear and continuous . Thus, there exists a linear
and continuous operator on H denoted by A such that

(Aw,v) = F(w,v), for all w,v € H.
Moreover, we have
[ Aw]l.
< 17l (o) + 1l Lo @y fwl B + Mo My | 173l o (@ 0

—1 —1
Mgl 1721 (0,0 + Mg (ME 1l (0) + IRl o) ) Il
G — —1 — —1
M3 Ml e ol + MEME el + oll™ + M7 ol

where
[l Aw]« := sup{|<Aw,v) = |F(w,v)|:veH,|v|g= 1}

is the norm in H*. This gives us the operator

A:H— H*

w — Aw.

It is therefore possible that the equation of Problem (1.1) is equivalent to the equa-
tion of the operator

Aw =G, we H.
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4.2.2. Monotonicity and Coercivity of the operator A

* Now, we show that A is strictly monotone.
Let vy, v9 € H with v # vo. We have

<.A’Ul — AUQ,Ul — U2>
= F(vi,v1 — v2) — F(va,v1 — v2)
= / (|A’U1|t_2 Avl — |A’U2‘p_2 Avg) A (’Ul — UQ) qbldz

+ (|A’U1|q72 Am — ‘A’Ug‘q72 A’Uz) A (’Ul — Ug) (bgdz

K(z, Vi), V(v — v2)>v1dz - /

o <IC(Z, Vvg), V(v; — v2)>v1dz

<£(z,vl,Vv1),V(v1 — v2)>v2dz

<E(z,v2, Vua), V(vy — UQ)>v2dz + / b(z,v1)(v1 — v2)vsdz
Q

b

(z,v9)(v1 — vg)vsdz

\v1|p_2v1(vl — vg)vadz —/ |v2|p_2v2(v1 — v9)vadz
Q

(|Av1|t_2 Avy — |Av, [P Avg) A (01 — v2) $1dz
" / (180112 Avy | A0s[72 A0y ) A (01— v2) =
+/g </C(z, Vu) — K(z,Vug), V(v — v2)>v1dz
+f <£(z,v1,Vv1) — L(z,v2, V), V(v1 — vg)>v2dz
+f (b(z,vl) - b(z,vg)) (vl —vg)vgdz
-2 —2
+/: (|Ul|p vy — |vafP ’Ug) (vl — v2>v4dz.

Thanks to (IIT) and Proposition 2.3 (ii), we obtain

<‘AU1 — Avg, vy — U2> > ﬁq/ (|A’U1| + |A'U2|)q72 |A’U1 — A’l)2|2 podz
Q
ta fg |V (v1 — )P vy dz
p—2
+ By Jo (lenllea])” lon = wal? v ds
2 a/ |V(’l}1 - 'U2)|p’l)1dZ -l-/ \Avl — A02|q¢2dz
Q Q

> a||V(v — U2)||ip(g,v1)'

Therefore, A is strictly monotone .

* In this note, we prove that the operator A is coercive.
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Letting w € H, we have
(Aw, w) = F(w,w)
= Fi(w,w) + Fo(w,w) + Fz(w,w) + Fy(w, w) + Fs(w,w) + Fe(w, w)
Q Q

—|—/ <IC(Z,Vw),Vw>U1dz—|—/Q(E(z,w,Vw),Vngdz

+ /9 b(z, w)w vzdz —|—/ |w|Pvadz.
Q Q
Moreover, from (IV) and Theorem 2.2(with v = 1), we obtain

(Aw, w) 2/ |Aw|p¢1dz+61/ |Vw|pv1dz+,82/ |Vw|9vedz
Q Q Q

+B3/ |w|qv2dz+/ |w[Pvadz
Q Q

2/ |[Aw|P$1dz + min(B, 1) [/ |Vw|pv1dz+/ |w|pv4d2}
Q Q Q

+ min(B2, B3) {/ |Vw|qv2dz+/ w|qv2dz}
Q Q
>min(By, 1)||lwlg-

Hence, we obtain
(Aw, w)

[[w|[e

Therefore, since p > 1, we have
(Aw, w)

[w]lex

> min(By, 1)||wl|% .

— 400 as ||w|lg — +o0,
that is, A is coercive.

4.2.3. Continuity of the operator A
Let w,, — w in H as n —s co. Then Vw, — Vw in (LP(Q,v;))". Hence, thanks
to Theorem 2.1, there exists a sub sequence (w,, ) and ¥ € LP(Q, v1) such that
Vuwy, (z) — Vw(z), a.e.in Q,
(4.2)
[Vw,,, (2)] < ¥(z), a.e. in Q.

We will show that Aw, — Aw in H*.

The following notes are required to demonstrate this convergence.
Note 1:
For k =1, ...,n, we define the operator

By : H — L¥(Q,v;)
(Brw)(z) = Ki(z, Vw(z)).
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We need to show that Bpw, — Brw in Lpl(Q, v1).
In Banach spaces, we will use the convergence principle and the Lebesgue theo-
rem.

e Let w € H. Using (II) and Theorem 2.2(with v = 1), we obtain

1Brwll .0 :/ | Brw(z)[? Uld2=/Q’Ck(z,Vw)” vidz
< (T1+h1|Vw|p_1)p vidz
Q
< Mp/ (Tf/ + h€/|Vw|p) vdz
Q
< My (1m0 gy + 1 ) I V01 )
< My (1717 g0y + 11 gy 0]

where the constant M, depends only on p.

e Let w, — w in H as n — oo. By (II) and (4.2), we obtain
IButtn, = Bl = [ 1Bt (2) = B vz
pl
< / <|1Ck(z,anm)| + \/Ck(z,Vw)D vidz
Q
<M, / (SR
<M, [ (11 + 7|V, [P71)”
Q

’

+ (11 + P [Vw[P~1)? Jurdz
T
Q
< 2M, M, / (Tf' + h’f'w) vydz
Q

< 2MpMy (17111 0y + IRt ) 101 )

P 4Kz, Vw)|p/) v1dz

Hence, thanks to (I), we get, as n — 00

Biwy,, (2) = Ki (2, Vwy,, (7)) — Ki(z, Vw(2)) = Byw(z), ae. z€ Q.
Therefore, by Lebesgue’s theorem, we obtain
| Brwn,,, — Brw|l 1 (g,0,) — 0,

that is,
Byw,, — Bryw in Lp/(Q,vl).

Finally, in view to convergence principle in Banach spaces, we have

Byw, — Byw in LP(Q,vy). (4.3)
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Note 2:
For k =1, ...,n, we define the operator

Ok H— L7 (Q,v2),
(Orw)(2) = Li(z,w(2), Vw(z)).

We will prove that Opw, — Opw in Lq'(Q, vg).

e Let w € H. Using (II), Remark 3.1 (i) and Theorem 2.2(with v = 1), we
obtain

q/
[[O7 T
:/ |£k(z,w,Vw)|q,v2dz
Q
S/ (Tz+h2|w\q71 +h3|Vw|q71)q vo dz
Q

qu/ [Tg’ +hg'\w|q+hg'|Vw|4]v2 dz
Q

<My (172017 g+ 12l @y 1000 0 + 18]S () IV 0]
<My (17207 s+ T2 () ol o) + 1 e 0 Cha P 00

<My (1172l g ooy + Coa (MENR2N  0) + Ihsl1Foe 0) ) 0]
where the constant M, depends only on q.

e Let w, — w in H as n — oco. According to (IT), Remark 3.1 (i) and the
same arguments used in Note 1 (ii), we obtain analogously,

Oxwyn — Opw  in L7 (Q, ). (4.4)

Note 3:
We define the operator

N:H— LSI(Q,’Ug),
(Nw)(z) = b(z, w(2))-
In this note, we will show that Nw, — Nw in L% (Q, vs).
e Let w € H. Using (IT) and Remark 3.1 (2i), we obtain
NI gy = [ Izl vads

< (7‘3 + h4|w|571)S v3dz
Q

< MS/ (Tg‘f/ + hjl\w|s) v3dz

Q

< M, [lIr|

@y + 1l 105 (0,00
< My (173015 @y + Mpallhal gy 0l 0.0n)

< M, (Il (0m) + My M a0l

where the constant M, depends only on s.
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e Let w, — w in H as n — oo. By (II) and Remark 3.1 (2i), we get

/

INw,, — Nuw| v3dz

L@ = [ [N ) = Nut)
g/ (12 w,) + \b(z,w)\)S/vgdz
Q
< MS/Q (|b(z,wnm)|sl + |b(z,w)\s,)v3dz
< MS/Q KT?, + halwn,, S_l)Sl + (Tg + h4|w\3_1>s,]vgdz

< MS/Q {(Tg + h4|1/1|s_1)3/ + (7'3 + h41/)5_1)SI]v3dz
< 2M, M ||
< 2M, M ||

oy Il () 10115 00

sy F Mislhallf e 10150 .01y |
Next using condition Aco, we deduce, as n — oo

Nuwy,, (2) = b(z,wn,, (2)) — b(z,w(z)) = Nw(z), ae. z€ Q.
Therefore, by the Lebesgue’s theorem, we obtain

INw,, — Nuw|

Ls’ (Q,’Ug) — 0,

that is,
Nw,, — Nw in L°(Q,vs).

We conclude, from the convergence principle in Banach spaces, that
Nw, — Nw in L°(Q,uvs). (4.5)

Note 4:
We define the operator

J:H — LP'(Q,vs),
(Jw)(2) = [w(2)[P~*w(2).
In this note, we will demonstrate that Jw, — Jw in L¥' (Q,vy).

e Let w € H. We have

[RAT o :/ | Jw|? vadz

|w|(p_1)p/v4dz

|w|Pvsdz

A

Mg My, ||wl|g-

e Let w, — w in H as n — co. Then w,, — w in L?(Q,v4). Hence, thanks
to Theorem 2.1, there exists a subsequence (wy, ) and ¢ € LP(Q,v,) such
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that
Wp, (2) — w(z), a.e.in Q,
lwn,, (2)| < p(z), a.e. in Q.
Next, we get
/ p/
HJ’LUnm — J'w”ip/(g”%) = /Q ‘anm(z) — J’w(z)‘ q)4dz

< /Q (\anm(z)| + |Jw(z)|>p/v4dz
<M, (|anm(z)|1)’ n |Jw(z)|p’)v4dz

<M,

(i 2, 7+ =2

\m\@

<M,

(|wnm|(p DP 4 (o) P 1)p>v4dz
< M, (|wnm|p + |w|p)v4dz

<M, | (191" + liol? )01

< 2Mp/Q|g0pv4dz

< 2Mp||30||1[),p(g7v4)~
Therefore, by Lebesgue’s theorem, we obtain
||Jw’ﬂm - JwHLP,(Q,vQ — 0,

that is, /
Jw,, — Jw in LP (Q,vy).

We conclude, in view of the convergence principle in Banach spaces, that
Jw, — Jw in L”(Q,vy). (4.6)
Note 5:
We define the operator K : H — L' (Q, ¢1) by
(Kw)(2) = |Aw(2)|' 2 Aw(z).

We now show that, the operator K is bounded and continuous.
e We have

1Kl g0 :/Q|F5w(z)|t udz
t/

¢1dz

/ |Aw|' 2 Aw
Q

:/ |Aw|t¢1dz
Q

= HAw||tLt(Q,¢1)
< ]l
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Therefore, we obtain

1wl e (0., < Ilwllg™

and hence the boundedness.

e Let w,, — w in H as m — 0. We need to show that Kw,, — Kw in L (Q,¢1).
If w,, — w in H then Aw,, — Aw in L' (Q, ¢1). Using Theorem 2 , there exists a
subsequence {w,,, } and a function ® € L* (Q, ¢1) such that

Awp, (2) = Aw(z) a.e. in Q,

[Awp,, (2)] < &(2) a.e. in Q. (4.7)

Now, since t > 2, using (4.7), a =t/t' =t —1and o’ = (¢t — 1)/(t — 2), there
exists a constant oy > 0 (by Proposition 2.3(i) ) such that

1K Wi, — Kwlf (0.4, = /Q |Kwm, — Kuwl|® ¢1dz
= /Q‘ |Awmk|t*2Awmk — |Aw|t*2Aw|t/ ordz
< /Q (e | 8w, — o] (B, | + |Aw|)t’2r, brdz
<af /Q Awp, — Aw|’ (280D ¢1dz

= 2(t_2)t/a§/ [Awyy,, — Aw|t/ (I’(t_m/d)ldz
Q

, 1/a ., 1/aad’
< 2=t (/ | Awp,, — Aw|"® qbldz) (/ pt=2ta qbldz)
Q Q

t'/t (t—2)/(t—1)
= 2=yt ( / IAwmk—Aw|t¢1dZ> ( / <I>t¢>1dz>
o) Q

_ovy 4 t’ ¥ (t—2
= 20000t || Aw,,, — Awly g o 12117 (oo,

— ’ / t/ t/ t—2
< 20270 Ju,, — w557,

Therefore (since 2 <t < oo ), we obtain ||[Kwy,, — Kwl| v (g 4, ) — 0, that is,

Kwy,, — Kwin L' (Q, ¢1)

By the convergence principle in Banach spaces (see Proposition 10.13 in [22]),
we have

Kuwm, — Kwin , LY (Q, ¢1). (4.8)

Note 6:
Define the operator G : H — L7 (Q, ¢s), (Gw)(z) = |Aw(2)|72Aw(z). We also
have that the operator GG is continuous and bounded. In fact:

e If ¢ > 2, we have by Remark 3.1 (i), that
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|G|

q/
q—2 — q
Lo (Qua) = Q' |[Aw|T™* Aw ¢2dz/Q|Aw| padz

— q
= 1 AwlZo(0,6.)
< M| Awl|7,

(Q,91)

Hence,
||GwHLq (Q,¢2) < Mtqq ||wH

e Now using (4.7), Remark 3.1 (i), b =¢/¢’ =q—1and ¥ = (¢ —1)/(¢ —2) (if
g > 2 ), there exists a constant ag > 0 (by Lemma 4(a)) such that

|G, — Gl g ) = /Q (G, — G| oz
= / ‘ |Awmk_|q72Awmk — |Aw|q72Aw|q/ dodz
Q
< [ [anlBwm, — Aul (A + 180) )" 6ads
Q

<ot / Awp, — Aw|? (20)@D7 4,4
Q

) 1/b .
< 2(q—2)q'ag' (/ |Awp,, — Aw|? b¢2dz> </ Pla—2)a'b ¢2dz)
Q Q
, , a'/q (g—2)/(g—1)
= af 20074 (/ |Aw,,, Aw|qq§2dz> </ fl)qd)gdz)
Q

’ _ ’ ’ 2
0 20727 | Aw,, — Aw|[$y g o 111070,

/ _ / / 2 2
0y 207N | A, = Ao, M 1174067,

1/b

IA

A

’ _ 4 ' 2
o 260725 M [, — w9157

Hence
- 1
|Gwim, — Gw”Lq’(Q,@) <29 Qaqu H(I)HLt (Q,61) | wm,, — wH]HI‘

In the case ¢ = 2 we have (Gw)(z) = Aw(z). Hence,

GwllL2(0,45) = AW L2(0,65) < MiqllAw| Lt(0.61) < My gllwllm,

|G, — Gw”p’(g,@) < Mg [|Aw,, — Aw”[,t Q,¢1) < My g [|wm, —wlg-

Therefore (for 2 < g < 0o ), we obtain [|Gwp, — GwllLv (g4, — 0, that is,

Gwp,, — Gw in LY (Q, ¢2). By the convergence principle in Banach spaces (see
Proposition 10.13 in [22] ), we have

Gw,, — Gw in LY (Q,¢2). (4.9)
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Finally, letting v € H and using Holder inequality, we obtain
| F1(wp,v) — Fr(w,v)| = |/ (K(z, Vwy,) — K(z, Vw), Vu)vidz|
Q

< Z/ K (2, V) — K (2, Vw)| | Dyv|vidz
k=172

= Z/ | Bxywy, — Brw||Dyv|vidz
k=172

n
< 1Brwn = Brwl| o (0 0y 1 Dx | o (@,00)
k=1

< (Z | Brwn — Bkw||LP/(Q,v1)> [0l
k=1

and by Remark 3.1 (2i), we get
| Fo(wn, v) — Fa(w,v)| = |/ (L(z, Wy, Vwy,) — L(z,w, Vw), Vv)Qadz|
Q

< Z/ | L (2, wn, Vwy,) — Li(z,w, Vw)||Dgv|vedz
k=172

= Z/ |Oxw,, — Opw||Dyv|vedz
k=172

< (Z 0w, — Okw||L‘1/(Q,v2)> V]l La(0,v.)

k=1

< Mpg <Z [ Orwy, — Okw||Lq'(g,U2)> IVllze(0,un)
k=1

< Mpq <Z |Okwy, — Okw||m’(g,v2)> V]l

k=1

By Remark 3.1 (3i), we obtain

| F5(wn,v) — F(w,v)| < |b(z,wp,) — b(z,w)]||v|vsdz

— Nwl|v|vsdz

S
2
5

< INwn = Nwll o (g 4y l10]
< Mps||Nwp — Nuw| Ls’(Q,m)”U”LP(Q,vl)
< My sMo|[Nwn — Nwl| por (0,0, 0][1r-

L#(Q,v3)

And by Note 4, we get

| Fa(wp, v) — Fa(w,v)

IN

/ ‘|wi|p_2wi — w|P~%w||v|vydz
= /g | Jwy, — Jw||v|vadz
Q

< MQMp,p’”an - JwHLP'(Q,m)”v”H'
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We also have

| Fs (Wi, ) = Fs(w,v)] < / ‘ | Ay [~ Awp, — |Aw| ™ Aw||Av | ¢1dz
Q

:/ | Kw,, — K| |Av|éydz

Q

< Hme - KWHL#(Q’@) ”AUHL‘(Q,%)
< [|[Kwm = Kwll e g,y V]l

and by Remark 3.1 (i), we get

| F6 (Wi, v) — Fo(w,v)| < / ‘|Awm|q_2Awm — |Aw|T 2 Aw||Av|padz
Q

:/ |Gwy, — Gw||Av| ¢adz
Q

< [|Gwm = Gl Lo (g g, 1AV Le(0,62)
< Mig |Gwm — GwHLq’(Q,@) 1AV 2e(0,61)
< My g||Gwp — Gw||Lq’(Q,¢2)HU||H~

Hence, for all v € H, we have
| F(wn, v) = F(w, v)|

6
< Z ’fj(wn,v) — Fj(w,v)
i=1

< [Z (HBkwn - BkaLP’(Q,m) + Mpq||Orwy — OkaLq'(Q,vg))
k=1

+ My, s Mol||Hw, — Hw”Ls/(g,ua) + Mo My || Jwn — Jw”LP’(Q,m)
I Ktm = Kl o (g9, + M| Gm = Gl a0, | IV

Then, we get

[ Aw, — Awl|. < Z (”Bkwn - Bkw”LF’(Q,vl) + My || Orwn — OkaLq/(Q,Ug))
k=1

+ M, s Mol|[Hw, — Hw”Ls’(Q,vs) + Mo My || Jwn, — ‘]w”L”'(QM)
| Ewn — Kwlpe g4,y + M |Gwm — Gl (g,4,) -

Combining (4.3), (4.4), (4.5), (4.6), (4.8) and (4.9), we deduce that
[[Aw, — Aw||. — 0 as n — oo,

that is, Aw,, — Aw in H*. Hence, A is continuous and this implies that A is
hemicontinuous.

Therefore, by Theorem 2.3, the operator equation Aw = G has exactly one
solution w € H and it is the unique solution for problem (1.1).

Finally, the proof of Theorem 4.1 is completed.
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