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Abstract The differential t ransformation method (DTM) and Adomian de-
composition method (ADM) are two numerical methods that can be used to 
solve various differential e quations. I n t his w ork, we c ompare t he accuracy, 
convergence, and computational complexity of these two methods by using 
them to solve second-order nonlinear equations using a new differential op-
erator for the second-order equation. We also used both methods to solve 
second-order nonlinear differential equations.
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1. Introduction

Quantitative descriptions of many models in the physical, biological, and even social
sciences are provided through the use of differential equations. These descriptions
are usually made in terms of unknown functions of one, two, or more independent
variables and relationships between the derivatives of these variables. If two or
more independent variables are involved, the differential equation is called partial
differential equation(PDE). Otherwise, it is called an ordinary ordinary differential
equation(ODE) [28] . Modeling using differential equations is crucial as it provides
relevant insights into the dynamics of many engineering and technical equipment
and processes [20, 22]. However, many such models involve differential equations
that are inherently nonlinear and difficult to solve. Many numerical methods have
been developed to solve various differential equations that cannot be solved ana-
lytically [3]. But most numerical methods require discrimination, militarization.
The rapid advancement of technology in today’s ear has created an increasing need
for scientific computing when processing and analyzing big date embodied in large
amounts of real-life modeling phenomena. Numerical methods for solving nonlinear
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(ODEs) and (PDEs) are at the heart of many scientific calculations [21,30]. Differ-
ential equations have become a useful tool for describing these natural phenomena
in scientific and engineering models. Therefore, it becomes important to be familiar
with all traditional and recently developed methods for solving differential equa-
tions and their implementation. Although many standard methods exist for solving
differential equations, more efficient methods still need to be developed or investi-
gated [14]. In 2023 H. Chen and others studied a two-grid temporal second-order
scheme for the two-dimensional nonlinear Voltmeter integro-differential equation
with weakly singular kernel [13]. This year a study was conducted a computational
technique for computing second-type mixed integral equations with singular kernels
by A. M. S. Mahdy et al [18]. While AMR. Mahdy and others solved the fractional
integro-differential equations using least squares and shifted Legender methods [19].
The main question of this research is which is better, the ADM or the DTM for
solving second-order equations?

2. Adomian method

The Adomian decomposition method demonstrates rapid convergence of the solu-
tion and provides several significant advantages. This method was introduced and
developed by George Adomian form the 1970s to the 1990s [2], as noted by Wen
Jin and Yani [17].
Advantages of ADM: It is easy to understand and can be used ot solve many
types of linear and nonlinear systems, such as algebraic equations, ordinary and
partial differential equations, linear and nonlinear integral equations, differential
equations, integral nonlinear stochastic operator equations, etc [10].

3. Analysis of Adomian decomposition method

From [23], we consider of second-order ordinary differential equations with constant
coefficients of the form,

u′′ + (m− 2n)u′ − n(m− n)u = q(x, u), (3.1)

u(0) = A, u′(0) = B,

where q(x, u) is a nonlinear function, A, B, n, m are constants. The differential
operator, is as follows,

L(.) = enx
d

dx
e−mx d

dx
e(m−n)x(.). (3.2)

The inverse operator L−1 is therefore considered a quadratic integral operator as
demonstrated below,

L−1(.) = e−(m−n)x

∫ x

0

emx

∫ x

0

e−nx(.). (3.3)

The Adomian decomposition method introduces the solution u(x) and the non-
linear function q(x, u) as infinite series,

u(x) =

∞∑
n=0

un(x), (3.4)
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and

q(x, u) =

∞∑
n=0

An, (3.5)

where an are the formulate Adomian polynomials. The Adomian polynomials are
formulated as follows:

A0 = F (u),

A1 = F ′(u0)u1,

....

Now we get
∞∑
0

un(x) = ϕ(x) + L−1
∞∑
0

An(x),

and the components un can be found as follows:

u0 = ϕ(x) + L−1q(x, u),

un+1 = L−1An, n ≥ 0,

then

u0 = ϕ(x) + L−1q(x, u),

u1 = L−1A0,

u2 = L−1A1,

u3 = L−1A2.

4. Differential transformation method

Differential transformation method was first proposed by Zhou in 1986 [16]. So far,
DTM has been developed in the literature to solve various differential and integral
equations. For example Chen 1999 developed the DTM for solving partial differen-
tial equations [15], and Ayaz 2004 applied the method to differential algebraic equa-
tions [7]. In [4] Arikglu and Ozkol used DTM to solve integro-differential equations
with boundary value conditions. Odibat used the DTM to solve volterra integral
equations with separable kernels [5]. Cetinkaya and Kimaz used the generalized dif-
ferential transform method for solving the time-fractional diffusion equations [11].
F. Ziyaee and A. Tari studied DTM for tow-dimensional Fredholm integral equa-
tions [29]. More recently, Farhana et al. Used DTM to solve third-order ordinary
differential equations [8].

5. Analysis differential transformation method

The K-th derivative of a function with one variable is transformed into

U(k) =
1

k!
(
dku(x)

dxk
)atx = x0, (5.1)
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where u(x) is the original function, U(K) is the transformation function , and the
inverse differential transformation u(K) is defined as,

u(x) =

∞∑
k=0

u(k)(x− xk
0), (5.2)

where x0 = 0, and the function u(x) defined in (5.2) is expressed as follows,

u(x) =

∞∑
k=0

u(k)xk. (5.3)

Equation(5.3) shows the similarity between one-dimensional differential transfor-
mations and one-dimensional Taylor series expansions [1].

6. Fundamental operation performed by differential
transformation method

The following table shows some of the basic performed using the DTM in [15].

Original functions Transformed functions

u(x) = g(x)± h(x) U(k) = G(k)±H(k)

u(x) = cg(x) U(k) = cG(k) where c is a constant

u(x) = u′(x) U(k) = (k + 1)U(k)

u(x) = u′′(x) U(k) = (k + 1)(k + 2)U(k + 2)

u(x) = xm) U(k) = δ(k −m) = 1ifk = m, 0ifk ̸= m

u(x) = um(x) U(k) = (k + 1)(k + 2)..(k +m)U(k +m)

u(x) = eau U(k) = ak

k!

7. Comparison of two methods

In 2015, a comparison between the two methods was conducted to find the numerical
solution of multi-pantograph delay differential equations [9], in 2019 R.B.Ogunrinde
made a comparison between the ADM and DTM for solving first order ordinary dif-
ferential equations [24]. N.H.Sekgothe made a comparison between two methods for
solving ordinary and partial nonlinear differential equations [28]. In this paper we
compare the two methods for solving second-order nonlinear differential equations,
using a new differential operator. Through these studies we concluded that: the ac-
curacy of DTM and ADM depends on the order of the differential equation and the
number of terms used in the series. In general, DTM is more accurate than ADM
for higher order differential equations. However, for low-order differential equations,
ADM is more efficient than DTM [1]. The convergence of DTM and ADM depends
on the properties of the differential equations. Often DTM converges more slowly
than ADM [27].
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8. Examples

In this section, we will give some examples to demonstrate the efficiency and accu-
racy of the proposed methods, and the convergence of them.
Example 1:
For n = 3,m = 1, the equation (3.1) is rewritten as ,

u′′ − 5u′ + 6u = 2ex − e2x + u2, (8.1)

u(0) = u′(0) = u′′(0) = 1.

And give the exact solution,
u(x) = ex.

Solving the Eq.(8.1) by ADM. The Eq.(8.1) is rewritten as,

L(u) = 2ex − e2x + u2.

Writing the given differential equation in an operator form gives

L(.) = e3x
d

dx
e−x d

dx
e−2x(.).

With initial conditions,
u(0) = u′(0) = 1.

So L−1 is given by

L−1(.) = e2x
∫ x

0

ex
∫ x

0

e−3x(.).

We use L−1 for the Eq.(8.1) and get,

u(x) = ϕ(x) + L−1(2ex − e2x) + L−1(u2),

and
ϕ(x) = 2e2x − 2e3x.

Then value number one for u is

u0 = ϕ(x) + L−1(2ex − e2x),

u0 = 1 + x− x3 − 4x4

3
− 13x5

12
− 59x6

90
− 23x7

72
. (8.2)

And the nonlinear part is

un+1 = L−1(An), n ≥ 0,

u1 =
x2

2
+

7x3

6
+

31x4

24
+

101x5

120
+

23x6

80
− 151x7

5040
, (8.3)

u2 =
x4

12
+

x5

4
+

16x6

45
+

373x7

1260
. (8.4)

Then,
u(x) = u0 + u1 + u2,



1358 E. A. Al-Huwaisek, N. M. Dabwan & Y. Q. Hasan

——– Exact ——– ADM

Figure 1. The exact solution u = ex and the ADM solution u =
∑2

n=0 un(x).

u(x) = 1 + x+
x2

2
+

x3

24
+

x5

120
− x6

80
+

269x7

5054
. (8.5)

From the following figure, we notice the solution obtained using the Adomian De-
composition Method ADM closely approximates the exact solution.

Solving the equation(8.1) by DTM. From the initial condition and theorem,
we obtain,

U(0) = 1, U(1) = 1, (8.6)

U(k+2) =
k!

(k + 2)!
(5(k+1)U(k+1)−6U(k)+2

1

k!
− 2k!

k!
+

k∑
r=0

U(r)U(k−r)). (8.7)

Substituting Eq.(8.6) into Eq.(8.7) at k = 0, we have:

U(2) =
1

2
. (8.8)

Using the recurrence relation Eq.(8.1) at k=1,2...., we obtain:

U(3) =
1

6
.

We can write the solution as,

u(x) =

∞∑
k=0

U(k)xk. (8.9)

Hence,

u(x) = 1 + x+
1

2
x2 +

1

6
x3 + ... (8.10)

Here we notice a remarkable convergence between the DTM solution and the com-
plete solution.
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——– Exact ——– DTM

Figure 2. The exact solution u = ex and the DTM solution u =
∑∞

k=0 U(k)xk.

x DTM ADM Absolute error

0.0 1 1 0

0.1 1.10517 1.10517 0.00000

0.2 1022133 1.2214 0.00007

0.3 1.3495 1.34984 0.00034

0.4 1.49067 1.491613 0.00096

0.5 1.64583 1.64809 0.00226

0.6 1.8816 1.81997 0.00397

0.7 2.00217 2.00771 0.00554

0.8 2.20533 2.21066 0.00533

0.9 2.4265 2.42659 0.00009

From the table we notice the convergence of solutions between ADM and DTM.
From the figure, we notice that the solutions of the two methods are close to the
complete solution.

Example 2:
By comparing Eq(3.1). We get n = 0,m = 1 and rewritten as,

u′′ + u′ = 1 + 2ex − (x+ ex)2 + u2, (8.11)

u(0) = 1, u′(0) = 2.

The exact solution is,

u(x) = x+ ex.

And solving it by ADM. The Eq.(8.11) is rewritten as,

L(u) = 1 + 2ex − (x+ ex)2 + u2.
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——– Exact ——– DTM ——–ADM

Figure 3. The exact solution u = ex and the DTM solution u =
∑∞

k=0 U(k)xkand the ADM solution

u =
∑2

n=0 un(x).

Writing the given differential equation in an operator form gives,

L(.) =
d

dx
e−x d

dx
ex(.).

So L−1 is given by,

L−1(.) = e−x

∫ x

0

ex
∫ x

0

(.).

We use L−1 for the Eq.(8.11) and get,

u(x) = ϕ(x) + L−1(1 + 2ex − (x+ ex)2) + L−1(u2),

and,

ϕ(x) = 3− 2e−x.

Then value number one for u is

u0 = ϕ(x) + L−1(1 + 2ex − (x+ ex)2),

u0 = 1 + 2x+
x3

3
− x4

4
− x5

20
. (8.12)

And the nonlinear part is

un+1 = L−1(An), n ≥ 0,

u1 =
x2

2
+

x3

2
+

5x4

24
− 3x5

40
, (8.13)

u2 =
x4

12
+

2x5

15
+

7x6

120
− 53x8

3360
. (8.14)

Then,

u(x) = u0 + u1 + u2,

u(x) = 1 + 2x+
x2

2
+

x3

6
+

x4

24
− x5

120
+

7x6

120
− 53x8

3360
. (8.15)
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——– Exact ——– ADM

Figure 4. The exact solution u = x + ex and the ADM solution u =
∑∞

n=0 un(x).

Here we notice that the solution by ADM is close to the complete solution.

Solving Eq.(8.11) by DTM. Taking the DTM of Eq.(8.11) and the initial
condition respectively, we obtain

U(k + 2) =
k!

(k + 2)!
(−(k + 1)U(k + 1) + δ(k) + 2

1k

k!
− δ(k − 2)− 2

k∑
r=0

δ(k − 1)

k!

−2k

k!
+

k∑
r=0

U(r)U(k − r)). (8.16)

Using the initial condition, we have

U(0) = 1, U(1) = 2.

If k = 0 we have,

U(2) =
1

2
.

Using the recurrence relation Eq.(8.11) at k=1,2...., we obtain:

U(3) =
1

3
.

We can write the solution as,

u(x) =

∞∑
k=0

U(k)xk. (8.17)

Hence,

u(x) = 1 + 2x+
1

2
x2 +

1

3
x3 + ... (8.18)

This figure shows convergence of the solution by DTM and the complete solution.
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——– Exact ——– DTM

Figure 5. The exact solution u = x + ex and the DTM solution u =
∑∞

k=0 U(k)xk.

x DTM ADM Absolute error

0 1 1 0

0.1 1.20533 1.020517 0.00016

0.2 1.42267 1.42141 0.00126

0.3 1.654 1.6499 0.0041

0.4 1.90133 1.89205 0.00928

0.5 2.1667 2.14955 0.01715

0.6 2.452 2.4245 0.0275

0.7 2.75933 2.71952 0.03981

0.8 3.09067 3.03778 0.05289

0.9 3.448 3.38297 0.06503

This table shows the convergence between the solutions of the ADM and DTM.

This figure shows the convergence between the solutions of ADM and DTM.

Example 3:
By comparing Eq.(3.1), when n = 1,m = −1, it is rewritten as,

u′′ − 3u′ + 2u = 2x− 3− x2 + u2, (8.19)

u(0) = 0, u′(0) = 1.

And the exact solution is,

u(x) = x.

And solve it by AMA. The Eq.(8.19) is rewritten as,

L(u) = 2x− 3− x2 + u2.
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——– Exact ——– DTM ——–ADM

Figure 6. The exact solution u = ex and the DTM solution u =
∑∞

k=0 U(k)xkand the ADM solution

u =
∑2

n=0 un(x).

Writing the given differential equation in an operator form gives,

L(.) = ex
d

dx
ex

d

dx
e−2x(.).

So L−1 is given by,

L−1(.) = e2x
∫ x

0

e−x

∫ x

0

e−x(.).

We use L−1 for the Eq.(8.19) and get,

u(x) = ϕ(x) + L−1(2x− 3− x2 + u2),

and,

ϕ(x) = e2x − ex.

Then value number one for u is

u0 = ϕ(x) + L−1(2x− 3− x2),

u0 = x− x4

12
− x5

20
− 7x360

16
− x7

168
. (8.20)

And the nonlinear part is

un+1 = L−1(An), n ≥ 0,

u1 =
x4

1
2 +

x5

20
+

7x6

360
+

x7

504
, (8.21)

u2 =
x7

252
+

11x8

3360
+

23x9

15120
. (8.22)

Then,

u(x) = u0 + u1 + u2,

u(x) = x+
11x8

3360
+

23x9

15120
. (8.23)
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——– Exact ——– ADM

Figure 7. The exact solution u = x and the ADM solution u =
∑2

n=0 un(x).

The figure shows the convergence of the solution by ADM and the complete solution.

Solving Eq.(8.19) by DTM. Taking DTM of Eq.(8.19) and the initial condi-
tion respectively, we obtain

U(k + 2) =
k!

(k + 2)!
(3(k + 1)U(k + 1)− 2U(k) + 2δ(k − 1)− 3δ(k) (8.24)

−δ(k − 2) +

k∑
r=0

U(r)U(k − r) ).

Using the initial condition, we have

U(0) = 0, U(1) = 1.

If k = 0 we have,

U(2) =
1

2
.

Using recurrence relation Eq.(8.19) at k=1,2...., we obtain:

U(3) =
1

2
.

We can write the solution as,

u(x) =

∞∑
k=0

U(k)xk. (8.25)

Hence,

u(x) = x+
1

2
x2 +

1

2
x3 + ... (8.26)

The solution graph show the convergence of the (DTM) and the complete solution.
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——– Exact ——– DTM

Figure 8. The exact solution u = x and the DTM solution u =
∑∞

k=0 U(k)xk.

x DTM ADM Absolute error

0 0 0 0

0.1 0.1055 0.1 0.0055

0.2 0.224 0.2 0.024

0.3 0.35850 0.30585 0.0526

0.4 0.512 0.00003 0.111997

0.5 0.6875 0.500016 0.187484

0.6 0.888 0.60007 0.28793

0.7 1.1165 0.70025 0.41625

0.8 1.376 0.800753 0.424753

0.9 1.6695 0.901999 0.767501

The previous table shows the convergence of the solutions of the two methods.

The previous figure shows the convergence of the solutions of the two methods
with the complete solution.

9. Conclusion

In this work, we compare the accuracy and convergence of ADM and DTM for
solving second-order nonlinear differential equations to enhance the solution process,
we introduce a new differential operator and apply it within both methods. We also
present examples of second-order equations to demonstrate how both methods can
be used. ADM and DTM are powerful numerical methods that can be used to
solve a variety of differential equations. Both methods have proven their accuracy
in solving such equations.



1366 E. A. Al-Huwaisek, N. M. Dabwan & Y. Q. Hasan

——– Exact ——– DTM ——–ADM

Figure 9. The exact solution u = x and the DTM solution u =
∑∞

k=0 U(k)xkand the ADM solution

u =
∑2

n=0 un(x).

10. Results and recommendations

1- Both ADM and DTM are considered accurate for solving differential equations
of all types.
2- The ADM is more accurate in solving, while the DTM easier in finding the
solution.
3- The differential operator in this research can be used in many similar equations
with different values of constants.
4- Both methods have satisfactory results that closely approximate the complete
solution.
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cal approach for solving second order nonlinear singular functional differential
equation, Applied Mathematics and Computation, 2019, 363.

[26] Z. Sabir, M. Raja, M. Umar and M. Shoaib, Neuro-swarm intelligent computing
to solve the second-order singular functional differential model, The European
Physical Journal Plus, 2020, 135(474).

[27] S. S. Salh and Y. Q. Hasan, By Adomian decomposition method solving the
second order ordinary differential equations with singular points, Interntional
Journal of Recent Scintiffic Research, 2022, 13(5), 1247–1250.

[28] N. H. Sekgothe, Application of Adomian decomposition method to solving non-
linear differential equations, Thesis(M. Sc.(Applied Mathematics))-University
of Limpopo, 2021.

[29] F. Ziyaee and A. Tari, Differential transform method for solving the two-
dimensional freehold integral equations, Appl and Math, 2015, 10, 852–863.

[30] https://www.Uniprojectmaterials.com/mathematics/numerical-methods-for-
solving partial-differential-equation-project-materials-for-final-year-students.
Retrieved on 17 April 2019.


	Introduction
	Adomian method
	Analysis of Adomian decomposition method
	Differential transformation method
	Analysis differential transformation method
	Fundamental operation performed by differential transformation method
	Comparison of two methods
	Examples
	Conclusion
	Results and recommendations

