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Mild Solution for the Time Fractional
Hall-Magneto-Hydrodynamics Stochastic

Equations
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Abstract In this paper, we establish the existence and uniqueness of mild
solutions for the time fractional hall-magneto-hydrodynamics stochastic equa-
tions with a fractional derivative of Caputo. Initially, we focus on the existence
and uniqueness in the deterministe case. Using the Mittag-Leffler operators
{Qα(−tαJ) : t ≥ 0} and {Qα,α(−tαJ) : t ≥ 0} and applying the bilinear fixed-
point theorem, we will prove the frist result. Next, by Itô integral, and by
similair analogy we will establish the existence and uniqueness in the stochas-
tic case in ENµ

a ∩N2α
a,µ.
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gral, derivative of Caputo, stochastic
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1. Introduction

The hall-magneto-hydrodynamics equations (HMHD) describes the evolution of a
system consisting of charged particles that can be approximated as a conducting
fluid. The HMHD equation is given by:

vt + (v · ∇)v + µ(−∆)βv +∇π = (b · ∇)b in R3 × R+,

bt + (v · ∇)b+ ν(−∆)γb+∇× ((∇× b)× b) = (b · ∇)v in R3 × R+,

∇ · v = 0, ∇ · b = 0 in R3 × R+,

v|t=0 = v0, b|t=0 = b0 in R3,

(1.1)

where v = (v1, v2, v2) represents the velocity field of the flow, b = (b1, b2, b3) denotes
the magnetic field, π denotes the pressure function, µ > 0 denotes the viscosity
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coefficient, and ν represents the diffusivity coefficient, v0 and b0 are respectively the
initial velocity and the initial magnetic field with free divergence (i.e ∇· v0 = 0 and
∇ · b0 = 0). The operator (−∆)β is the Fourier multiplier of symbol |K|2β given by

F
(
(−∆)βv

)
= |K|2βF(v),

where F is the Fourier transform. To simplify and without loss of generality, we
consider only the case where µ = ν = 1.

The fractional calculus has a long history, going back to the early days of differ-
ential calculus. Many mathematicians like Abel, Liouville, Euler, Riemann, Leibniz,
l’Hôpital, and Fourier have discussed and studied it. In the last forty years, several
rechearchers have studied it deeply and made amazing discoveries. At first, it was
seen as something abstract and not useful in the real world. But recently, scien-
tists have found that it can be applied to many different domains of science. This
new usefulness comes from the unique way fractional calculus deals with nonlocal
characteristics.

Much work has been done on fractional calculus, please refer to the complete
study [9] and associated references. For instance, regarding its applications in
physics, more specifically in electromaginetism, see [7, 21] and for viscoelasticity
see [1, 2, 5, 18, 26]. Yimin Xiao in [29] gives an important application to stochastic
processes induced by fractional Brownian motion. For further examples, see the
extensive survey [9, 27] and the references therein.

In this respect, and by the same reasoning as Shinbrot [20], we can show some
lemmas about the regularity of the fractional derivative of HMHD equations.

So it is not surprising to start studying this topic by proposing hall-magneto-
hydrodynamics equations with a time fractional differential operator in time:

cDα
t v + (v · ∇)v + µ(−∆)βv +∇π = (b · ∇)b in R3 × R+,

cDα
t b+ (v · ∇)b+ ν(−∆)γb+∇× ((∇× b)× b) = (b · ∇)v in R3 × R+,

∇ · v = 0, ∇ · b = 0 in R3 × R+,

v|t=0 = v0, b|t=0 = b0 in R3,

(1.2)

where cDα
t is the Caputo fractional derivative of order α ∈ (0, 1) defined by

cDα
t ω(t) :=

d

dt

{
W 1−α

t [ω(t)− ω(0)]
}
=
d

dt

{
1

Γ(1− α)

∫ t

0

(t− ρ)−α[ω(ρ)− ω(0)]ds

}
,

where Wα
t ω(t) is the Riemann-Liouville fractional integral of order α of a function

ω ∈ L1(0, T ;X) given by

Wα
t ω(t) := fα ∗ ω(t) = 1

Γ(α)

∫ t

0

(t− s)α−1ω(s)ds, t ∈ [0, T ],

and Γ(α) is the Euler’s Gamma function for any positive value of α while gα is
defined as follows:

gα(t) :=

{
1

Γ(α) t
α−1, t > 0,

0, t ≤ 0.
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Note that, replacing the classical time differential operator with the time frac-
tional differential operator gives a new description for the MHD equations.

In this paper, we will use the integral equation for the equations (1.2) which
contain a set of operators called Mittag-Leffler operators for proving the mild solu-
tion.

Therefore, we have a strong interest in the following equations:



cDα
t v + (v · ∇)v + µ(−∆)βv +∇π − (b · ∇)b = G1 (t, vt)

dW (t)
dt in R3 × R+,

cDα
t b+ (v · ∇)b+ ν(−∆)γb+∇× ((∇× b)× b)− (b · ∇)v

= G2 (t, bt)
dW (t)

dt in R3 × R+,

∇ · v = 0, ∇ · b = 0 in R3 × R+,

v|t=0 = v0, b|t=0 = b0 in R3.

(1.3)
Here Gi(i = 1, 2) is a random external force and W (t) is a standard Brownian mo-

tion/Wiener process on a complete filtered probability space
(
Ω,F , {Ft}t≥0,P

)
,

where P is a probability measure on Ω, F is a σ-algebra, {Ft}t≥0 is a right-
continuous filtration on (Ω,F) such that F0 contains all the P-negligible subsets and
W (t) =W (ω, t), ω ∈ Ω is a standard Brownian motion defined on

(
Ω,F , {Ft}t≥0,P

)
.

The remainder of the paper is organized as follows. In Section 2, we review some
fundamental preliminaries about the functional framework where we will treat our
problem. Section 3 is concerned with the first result of our paper, which concerns
the existence and uniqueness of mild solutions to the Eq. (1.2) (deterministic case).
Finally, in Section 4,we give our basic assumptions, and we will state and prove the
second result of this research cancerning the stochastic case.

2. Preliminaries

In the analysis of Eq. (1.2), we will use the theory of the Besov-Morrey spaces and
fractional derivation theory. For convenience, we only recall some basic facts which
will be used later. We refer to [4, 23,30] for more details.

We begin by recalling some properties of functional spaces Mµ
a .

Definition 2.1. Let 1 ≤ a ≤ ∞ and 0 ≤ µ < d. The homogeneous Morrey space
Mµ

a is defined by

Mµ
a(Rd) := {ϕ ∈ L1

loc(Rd), ∥ϕ∥Mµ
a
<∞}

with

∥ϕ∥Mµ
a
:= sup

x0∈Rd

sup
R>0

R−µ
a ∥ϕ∥La(B(x0,R)), (2.1)

where B(y,R) is the open ball in Rd centered at y and with radius R > 0.
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The space Mµ
a endowed with the norm ∥ϕ∥Mµ

a
is a Banach space and has the

following scaling property

∥ϕ(βx)∥Mµ
a
= β−n−µ

a ∥ϕ(x)∥Mµ
a

for µ > 0.

In the case of p = 1, the norm | · |L1 in equation (2.1) corresponds to the total
variation of the measure ϕ on the ball B(y,R), and the space Mµ

a is regarded as a
subset of Radon measures. When µ = 0, Mµ

a is equal to La.
Let ϕ ∈ C∞

0 with supp(ϕ) ⊆ D0 = {K ∈ Rn : 2−1 < |K| < 2} such that

∞∑
k=−∞

ϕ(2−kK) =

∞∑
k=−∞

ϕ̂k(K) = 1, for all K ̸= 0,

where ϕk is defined by means of Fourier transform as ϕ̂k(K) = ϕ(2−kK) for all
integer k. For f ∈ S′ we define the quantity

∥f∥N s
a,µ,b

:=


(∑

k∈Z

(2ks∥ϕk ∗ f∥Mµ
a
)b
) 1

b

1 ≤ a ≤ ∞, 1 ≤ b <∞, s ∈ R,

sup
k∈Z

(2ks∥ϕk ∗ f∥Mµ
a
) , 1 ≤ a ≤ ∞, b = ∞, s ∈ R.

It should be noted that the pair (N s
a,µ,b, ∥ · ∥N s

a,µ,b
) is a Banach space.

For 1 ≤ a <∞ and s > 0 we have the following equivalence [8]:

∥f∥N−s
a,µ

= sup
t>0

t
s
2 ∥T (t)f∥Mµ

a
, (2.2)

where {T (t)} is a fractional heat semigroup.

Definition 2.2. Let 1 ≤ a ≤ ∞ and 0 ≤ µ < 3, the function space EN µ
a(R3) is

defined as follows:
EN µ

a(R3) = {h ∈ S ′, ∥h∥ENµ
a
<∞},

∥h(t)∥ENµ
a
=

(
sup
t>0

E∥h(t)∥Mµ
a

) 1
2

.

We are now presenting the Hölder’s inequality.

Lemma 2.1. ( [16]) (Hölder’s inequality)
Let 0 ≤ µ1, µ2, µ3 < n and 1 ≤ r1, r2, r3 < ∞, such that 1

r3
= 1

r1
+ 1

r2
and

µ3

r3
= µ1

r1
+ µ2

r2
. Then we have

∥fg∥Mµ3
r3

≤ ∥f∥Mµ1
r1
∥g∥Mµ2

r2
. (2.3)

Lemma 2.2. ( [16]) Let 1 ≤ r1 ≤ r2 ≤ ∞ and d−µ1

r1
≤ d−µ2

r2
. Then

Mµ2
r2 (R

d) ↪→ Mµ1
r1 (R

d).

By combining [25, Lemma 3] with [8, Lemma 2.3], we can derive the subsequent
lemma.

Lemma 2.3. Let 1 ≤ q1 ≤ q2 ≤ ∞, 0 ≤ µ < d and γ = (γ1, γ2) ∈ (N ∪ {0})2. If
f ∈ S ′(Rd), then there exists a constant C depending only on d such that

∥e−t(−∆)βf ∥Mµ
a2

≤ Ct−
1
2β ( d−µ

q1
− d−µ

q2
)∥f∥Mµ

a1
.

∥∂γe−t(−∆)βf∥Mµ
a2

≤ Ct−
|γ|
2β − 1

2β ( d−µ
q1

− d−µ
q2

)∥f∥Mµ
a1
.
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2.1. The Mainardi function

Letting α ∈ (0, 1) , the Mainardi function Uα is a mapping from C to C given by

Uα(x) := G−α,1−α(−x) , x ∈ C, (2.4)

where Gθ,η(x) is the Wright function defined by the following convergent complex
series in the complex plane:

Gθ,η(x) :=

∞∑
n=0

xn

n!Γ(θn+ η)
∀θ > −1 , η ∈ C.

The Uα function is introduced by Mainardi in his book [6] as a specific instance of
Wright’s function.

The following proposition gives two important properties of the Mainardi func-
tion.

Proposition 2.1. For −1 < q <∞, we have:

• Uα(x) ≥ 0 for all x ≥ 0.

•
∫ ∞

0

xqUα(x)dx =
Γ(q + 1)

Γ(αq + 1)
.

2.2. The Mittag-Leffler operators

This subsection is devoted to introducing Mittag-Leffler operators. Let Y be a
Banach space and −J: D(J) ⊂ Y → Y be the infinitesimal generator of a semigroup
{T (t) : t ≥ 0}. For any α ∈ (0, 1), we define the Mittag-Leffler families {Qα(−tαJ) :
t ≥ 0} and {Qα,α(−tαJ) : t ≥ 0} as follows:

Qα(−tαJ) =
∫ ∞

0

Uα(τ)T (τtα)dτ, (2.5)

and

Qα,α(−tαJ) =
∫ ∞

0

ατUα(τ)T (τtα)dτ. (2.6)

It is remarkable that the Mainardi functions link the classical theories and the
abstract fractional. More detail can be found in [3].

Remark 2.1. • Note that in the definition of the Mittag-Leffler families, it is
important to specify that α < 1, because if not, it would lose its coherence.
Although [30, Theorem 5] provides sufficient information on these families for
our objective, it is essential to realize that they do not form semigroups.

• It is important to note that for every fixed x ∈ Y, the function t 7→ Qα,α(−tαJ)x
stays continuous (and analytical when {Q(t) : t ≥ 0} forms an analytical semi-
group) and fulfills:

cDα
t Qα(−tαJ)x = −JQα(−tαJ)x, t > 0.
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3. Deterministic case

This section is devoted to proving the existence and uniqueness of mild solutions to
the Eq. (1.2).

Put

X := Mµ
a ∩N

α
2β

(
1
α+ 3−µ

a −2β
)

a,µ ∩N
α
2β

(
3
α+ 3−µ

a −2β
)

a,µ .

Notation: Let X1 , X2 be Banach spaces. We denote ∥ ·∥X1∩X2
:= ∥ ·∥X1

+∥ ·∥X2
.

Theorem 3.1. Let β, µ, a satisfy 0 ≤ µ < 3 and 1
2 ≤ β < 1. Then, there exists

a positive constant δ = δ(α, µ, a), such that for the initial velocity (v0, b0) ∈ Mµ
a(R3)

satisfying div v0 = div b0 = 0 and

∥(v0, b0)∥Mµ
a
≤ δ.

The equations (1.2) have a unique mild solution (v, b) satisfying

∥v(t), b(t)∥X ≤ 2∥(v0, b0)∥Mµ
a
.

In order to solve the equations (1.2), we consider the following equivalent integral
equation coming from Duhamel’s principle

v = Qα(−tα(−∆)β)v0 −
∫ t

0

(t− s′)α−1P∇ · Qα,α

[
(t− s′)α(−∆)β

]
(v ⊗ v − b⊗ b)(·, s′)ds′

:= Aβ
1 (v, b),

b = Qα(−tα(−∆)β)b0 −
∫ t

0

(t− s′)α−1P∇ · Qα,α

[
(t− s′)α(−∆)β

]
(v ⊗ b− b⊗ v)(·, s′)ds′

−
∫ t

0

(t− s′)α−1∇ · Qα,α

[
(t− s′)α(−∆)β

]
((∇× b)× b)(·, s′)ds′ := Aβ

2 (v, b),

(3.1)

where P = Id−∇∆−1div is the Leray-Hopf projector, which is a pseudo differential
operator of order 0.

We will first estimate the Mittag-Leffler families.

Proposition 3.1. Let 1 < a ≤ p, α ∈ (0, 1) and 0 < β < 1 Then, there exists a
positive constant C1, C2 such that

∥∇Qα,α

(
τα(−∆)β

)
f∥Mµ

a
≤ C1τ

− α
2β ( 1

α+( 3−µ
q − 3−µ

a ))∥f∥Mµ
q

(3.2)

∥Qα

(
τα(−∆)β

)
f∥Mµ

a
≤ C2τ

− α
2β ( 3−µ

q − 3−µ
a )∥f∥Mµ

q
. (3.3)

Proof: Let us show the first estimation (3.2). By using the Lemma 2.3 we obtain

∥∇ · Qα,α

(
τα(−∆)β

)
f∥Mµ

a
≤

∫ ∞

0

∥∇αsUα(s)S(sτ
α)(−∆)β∥Mµ

a
ds

≤ Cτ−
1
2β− α

2β ( 3−µ
q − 3−µ

a )
(∫ ∞

0

sUα(s)s
− 1

2β− 1
2β ( 3−µ

q − 3−µ
a )ds

)
∥f∥Mµ

q

≤ Cτ−
α
2β ( 1

α+( 3−µ
q − 3−µ

a ))
(∫ ∞

0

Uα(s)s
1
2β

(
2β−1−( 3−µ

q − 3−µ
a )

)
ds
)
∥f∥Mµ

q
.



Mild Solution for the Time Fractional Hall-Magneto-Hydrodynamics Stochastic Equations 1375

Since 1
2β

(
2β − 1− ( 3−µ

q − 3−µ
a )

)
> −1, it follows from Proposition 2.1 that

∥Qα,α

(
τα(−∆)β

)
f∥Mµ

a

≤Cτ−
α
2β ( 1

α+( 3−µ
q − 3−µ

a ))
Γ
(
1 + 2β − 1− ( 3−µ

q − 3−µ
a )

)
Γ
[
1 + α

2β

(
2β − 1− ( 3−µ

q − 3−µ
a )

)]∥f∥Mµ
q

≤C1τ
− α

2β ( 1
α+( 3−µ

q − 3−µ
a ))∥f∥Mµ

a
.

We are now in the position to prove the estimation (3.3)

∥Qα

(
τα(−∆)β

)
f∥Mµ

a
≤

∫ ∞

0

∥Uα(τ)S(sτ
α)∥Mµ

a
ds

≤ Cτ−
α
2β ( 3−µ

q − 3−µ
a )

(∫ ∞

0

Uα(s)s
− 1

2β ( 3−µ
q − 3−µ

a )ds
)
∥f∥Mµ

q
.

Since − 1
2β (

3−µ
q − 3−µ

a ) > −1, it follows from Proposition 2.1 that

∥Qα

(
τα(−∆)β

)
f∥Mµ

a
≤ Cτ−

α
2β ( 3−µ

q − 3−µ
a )

Γ
(
1 +− 1

2β (
3−µ
q − 3−µ

a )
)

Γ
[
1− α

2β (
3−µ
q − 3−µ

a )
] ∥f∥Mµ

q

≤ C2τ
− α

2β ( 3−µ
q − 3−µ

a )∥f∥Mµ
a
.

Before proceeding to demonstrate Theorem 3.1, let’s initially establish the bilinear
estimate of equation (3.1) as presented in the following Lemma 3.1.

Lemma 3.1. Let β, µ, a satisfy a > 1, 0 ≤ µ < 3 and 0 < β < 1. Then, there
exists a positive constant C3 such that

∥B(v, b)∥
N

α
2β

(
1
α

+
3−µ
a

−2β

)
a,µ

≤ C3∥v∥Mµ
a
∥b∥Mµ

a
. (3.4)

where

B(v, b) :=
∫ t

0

(t− s′)α−1P∇Qα,α

[
(t− s′)α(−∆)β

]
(v ⊗ b)(s′, x)ds′.

Proof: Since P is bounded in Mµ
q (R3) [25], it follows from Proposition 3.1 and

Hölder’s inequality, we have

∥B(v, b)∥Mµ
a
≤

∫ t

0

(t− s′)α−1∥∇ · Qα,α

[
(t− s′)α(−∆)β

]
(v ⊗ b)) (s′, x)∥Mµ

a
ds′

≤ C

∫ t

0

(t− s′)α−1− α
2β

(
1
α+ 3−µ

a

)
∥(v ⊗ b)(s′, x)∥Mµ

a
2

ds′

≤ C∥v∥Mµ
a
∥b∥Mµ

a

∫ t

0

(t− s′)−
α
2β

(
1
α+ 3−µ

a −2β
)
−1ds′.

Multiplying t
α
2β

(
1
α+ 3−µ

a −2β
)
on both sides of the above two inequalities, we get

∥B(v, b)∥
N

α
2β

(
1
α

+
3−µ
a

−2β

)
a,µ

≤ C3∥v∥Mµ
a
∥b∥Mµ

a
.
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Remark 3.1. By following a similar argument used in Lemma 3.1 we can show

∥Qα

(
τα(−∆)β

)
a∥Mµ

a
≤ C4∥a0∥Mµ

a
. (3.5)

Lemma 3.2. Let β, µ, a satisfy a > 1, 0 ≤ µ < 3 and 0 < β < 1. Then, there
exists a positive constant C5 such that

∥∥∥∫ t

0

(t− s′)α−1∇ · Qα,α

[
(t− s′)α(−∆)β

]
((∇× b)× b)(s′, x)ds′

∥∥∥
Ns

a,µ

≤ C5∥b∥2Mµ
a
,

(3.6)

where s := α
2β

(
3
α + 3−µ

a − 2β
)
.

Proof: Using the Proposition 3.1 and Hölder’s inequality, we have∥∥∥∫ t

0

(t− s′)α−1∇ · Qα,α

[
(t− s′)α(−∆)β

]
((∇× b)× b)(s′, x)ds′

∥∥∥
Mµ

a

≤
∫ t

0

∥∥∥(t− s′)α−1∇ · Qα,α

[
(t− s′)α(−∆)β

]
((∇× b)× b)(s′, x)

∥∥∥
Mµ

a

ds′

≤ C

∫ t

0

(t− s′)α−1− 2
2β− α

2β

(
1
α+ 3−µ

a

)
∥(b⊗ b)(s′, x)∥Mµ

a
2

ds′

≤ C∥b∥Mµ
a
∥b∥Mµ

a

∫ t

0

(t− s′)−
α
2β

(
3
α+ 3−µ

a −2β
)
−1ds′.

Multiplying t
α
2β

(
3
α+ 3−µ

a −2β
)
on both sides of the above two inequalities, we get∥∥∥∫ t

0

(t− s′)α−1∇ · Qα,α

[
(t− s′)α(−∆)β

]
((∇× b)× b)(s′, x)ds′

∥∥∥
Ns

a,µ

≤ C5∥b∥2Mµ
a
.

Proof of Theorem 3.1. It is simple to verify that the indices β, µ and a provided
in Theorem 3.1 satisfy the assumptions of Lemma 3.1 and Lemma 2.3. Suppose
(v0, b0) ∈ Mµ

a(R3) with divergence free. Then, Let us introduce the map Φ and the
complete metric space (Y, d), defined as follows:

Y :=
{
(v, b) ∈ X (R3)3, ∥(v, b)∥X ≤ 2∥(v0, b0)∥Mµ

a

}
,

d(ϑ1, ϑ2) := ∥ϑ1 − ϑ2∥X ,
Θ(v, b) := (Aα

1 (v, b),Aα
2 (v, b)).

Applying the inequalities (3.5) and (3.6), then for all (v, b) ∈ Y, we have

∥Aβ
1 (v, b)∥X ≤ C4∥v0∥Mµ

a
+ C3(∥v∥2X + ∥b∥2X ).

Similary, we obtain

∥Aβ
2 (v, b)∥X ≤ C4∥b0∥Mµ

a
+ 2C3(∥v∥X + ∥b∥X ) + C5∥b∥2X .

Then, we can see

∥Θ(v, b)∥X ≤ C4∥(v0, b0)∥Mµ
a
+ C3∥(v, b)∥2X + C5∥(v, b)∥2X

≤ C4∥(v0, b0)∥Mµ
a
+ C6∥(v0, b0)∥Mµ

a
.
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Then, ther exists a constant ϵ1 = max(C4, C6) such that

∥Θ(v, b)∥X ≤ ϵ1∥(v0, b0)∥Mµ
a
. (3.7)

On the other hand, for any (v1, b1), (v2, b2) ∈ Y, ther exists a constant ϵ2 such
that

∥Aα
1 (v1, b1)−Aα

1 (v2, b2)∥X
≤∥B(v1, v1)− B(v2, v2)∥X + ∥B(b1, b1)− B(b2, b2)∥X + C5∥b1 − b2∥2X
≤∥B(v1, v1 − v2)−B(v1−v2, v2)∥X+∥B(b1 − b2, b2)− B(b1, b1 − b2)∥X + ∥b1 − b2∥2X
≤ϵ2

{
(∥v1∥X + ∥v2∥X )∥v1 − v2∥X + (∥b1∥X + ∥b2∥X + ∥b1 − b2∥X )∥b1 − b2∥X

}
≤ϵ2

{
(∥(v1, b1)∥X + ∥(v2, b2)∥X )(∥v1 − v2∥X + ∥b1 − b2∥X )

}
≤2ϵ2∥(v0, b0)∥Mµ

a

{
∥v1 − v2∥X + ∥b1 − b2∥X

}
.

Therefore,

∥Θ(v1, b1)−Θ(v2, b2)∥X ≤ 2ϵ2∥(v0, b0)∥Mµ
a

{
∥v1 − v2∥X + ∥b1 − b2∥X

}
. (3.8)

Now, let us assume that initial velocity (v0, b0) ∈ Ns
a,µ(R3) satisfies

∥(v0, b0)∥Mµ
a
≤ min{ 1

4ϵ2,
,
1

4ϵ1
},

we get from (3.7) and (3.8) that

∥Θ(v, b)∥X ≤ 2∥(v0, b0)∥Mµ
a
,

∥Θ(v1, b1)−Θ(v2, b2)∥X ≤ 1

2

{
∥v1 − v2∥X + ∥b1 − b2∥X

}
.

Thus, applying the contraction mapping principle, we can conclude that there
exists a unique solution (v, b) ∈ Y that satisfies (3.1) for all t > 0. This completes
the proof of Theorem 3.1.

4. Stochastic case

In this section, we show our main result concerning the mild solution for time-
fractional hall-magneto-hydrodynamics stochastic equations.

We begin by stating the assumptions imposed on the external forcing terms in
our equations (1.3). Let G : [0,+∞)×Mµ

p (R2) → Mµ
p (R2) and assume that :

(H1) For each ψ ∈ Mµ
a(R2), the mappings t ∈ [0,+∞) → G(t, ψ) are measurable.

(H2) G(·, 0) = 0 (for simplicity).

(H3) There exist positive constants AG, such that, for all t ∈ [0,∞) and ψ, ϕ ∈
Mµ

a(R2)
∥G(t, ψ)−G(t, ϕ)∥2Mµ

a(R2) ≤ AG∥ψ − ϕ∥2Mµ
a(R2).

We can now establish a mild solution to equations (1.3).
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Theorem 4.1. Under the conditions of Theorem 3.1, let (H1)-(H3) hold and(
Ω,F , {Ft}t≥0,P

)
be a filtered probability basis. Then there exists a positive con-

stant η that if (v0, b0) is F0 measurable and satisfies ∥(v0, b0)∥ENµ
a
≤ η, the equa-

tion (1.3) admits a unique global mild solution (v, b), such that ∥(v, b)∥ENµ
a∩N2α

a,µ
≤

∥(v0, b0)∥ENµ
a
.

To solve the equations (1.3), we consider the following equivalent integral equa-
tion coming from Duhamel’s principle

v = Qα(−tα(−∆)β)v0 −
∫ t

0

(t− s′)α−1P∇ · Qα,α

[
(t− s′)α(−∆)β

]
(v ⊗ v − b⊗ b)(·, s′)ds′

+

∫ t

0

(t− s′)α−1P∇ · Qα,α

[
(t− s′)α(−∆)β

]
G1(s, bs)dW (s) := Dβ

1 (v, b).

b = Qα(−tα(−∆)β)b0 −
∫ t

0

(t− s′)α−1P∇ · Qα,α

[
(t− s′)α(−∆)β

]
(v ⊗ b− b⊗ v)(·, s′)ds′

−
∫ t

0

(t− s′)α−1∇ · Qα,α

[
(t− s′)α(−∆)β

]
((∇× b)× b)(·, s′)ds′

+

∫ t

0

(t− s′)α−1P∇ · Qα,α

[
(t− s′)α(−∆)β

]
G2(s, bs)dW (s) := Dβ

2 (v, b).

(4.1)

Proof of Theorem 4.1. We begin by estimating the solution Dβ
1 (v, b) which is

defined in (4.1). For t > 0 we have

E∥Dβ
1 (v, b)∥2Mµ

a

≤ E∥Qα(−tα(−∆)β)v0∥2Mµ
a

+E∥
∫ t

0

(t− s′)α−1P∇ · Qα,α

[
(t− s′)α(−∆)β

]
(v ⊗ v − b⊗ b)(·, s′)ds′∥2Mµ

a

+E∥
∫ t

0

(t− s′)α−1P∇ · Qα,α

[
(t− s′)α(−∆)β

]
G1(s, bs)dW (s)∥2Mµ

a

≤ K1 +K2 +K3.

(4.2)

For estimate K1, by using Proposition 3.1 it is simple to see that

K1 ≤ C7E∥v0∥2Mµ
a

≤ C7 supt∈R+ E∥v0∥2Mµ
a

≤ C7∥v0∥ENµ
a
.

(4.3)

For K2, by Proposition 3.1, (H1)-(H3) and Fubini’s theorem, we obtain

K2 ≤ E
(∫ t

0

(t− s)2α−2∥P∇ · Qα,α

[
(t− s′)α(−∆)β

]
(v ⊗ v − b⊗ b)(s′, x)∥Mµ

a
ds′

)
≤ C8E

(∫ t

0

(t− s)2α−2− α
2β

(
1
α+ 3−µ

a

)
∥(v ⊗ v − b⊗ b)(s′, x)∥Mµ

a
2

ds′
)

≤ C ′
8t

2α(1− 1
2α− 1

4β ( 1
α+ 3−µ

a ))

∫ t

0

(
E∥(v ⊗ v − b⊗ b)(s′, x)∥Mµ

a
2

ds
)

≤ C ′
8t

2α(1− 1
2α− 1

4β ( 1
α+ 3−µ

a ))∥v∥2ENµ
a
∥b∥2ENµ

a
.

(4.4)
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For K3, by Proposition 3.1, Itô’s isometry and (H1)-(H3), we have

K3 = E∥
∫ t

0

(t− s′)α−1P∇ · Qα,α

[
(t− s′)α(−∆)β

]
G1(s, bs)dW (s)∥2Mµ

a

≤ C9E
∫ t

0

(t− s)2α−2∥∇Qα,α

[
(t− s)α(−∆)β

]
G1 (s, θs) ∥2Mµ

P
ds

≤ C9AG1

∫ t

0

(t− s)2α−2∥θs∥2Mµ
P
ds

≤ C9AG1 sup
t∈R+

t2α∥θs∥2Mµ
P

≤ C9AG1
∥θs∥2N2α

a,µ
.

(4.5)

In the ensuing part, our aim is to evaluate the solution Dβ
2 (v, b) as described in

equation (4.1). For t > 0 we have

E∥Dβ
2 (v, b)∥2Mµ

a

≤ E∥Qα(−tα(−∆)β)b0∥2Mµ
a

+E∥
∫ t

0

(t− s′)α−1P∇ · Qα,α

[
(t− s′)α(−∆)β

]
(v ⊗ b− b⊗ v)(·, s′)ds′∥2Mµ

a

E∥
∫ t

0

(t− s′)α−1∇ · Qα,α

[
(t− s′)α(−∆)β

]
((∇× b)× b)(·, s′)ds′∥2Mµ

a

+E∥
∫ t

0

(t− s′)α−1P∇ · Qα,α

[
(t− s′)α(−∆)β

]
G2(s, bs)dW (s)∥2Mµ

a

≤ K′
1 +K′

2 +K′
3 +K′

4.

(4.6)

The same approach used to illustrate K1,K2andK3 is applicable here.

K′
1 ≤ C10∥b0∥ENµ

a
.

K′
4 ≤ C11AG2

∥θs∥2N2α
a,µ
.

K′
2 ≤ C12t

2α(1− 1
2α− 1

4β ( 1
α+ 3−µ

a ))∥v∥2ENµ
a
∥b∥2ENµ

a
.

It remains to estimate K′
3. By Proposition 3.1, (H1)-(H3) and Fubini’s theorem,

we obtain

K3 ≤ E
(∫ t

0

(t− s)2α−2∥P∇ · Qα,α

[
(t− s′)α(−∆)β

]
((∇× b)× b)(s′, x)∥Mµ

a
ds′

)
≤ C13E

(∫ t

0

(t− s)2α−2− 2
2β− α

2β

(
1
α+ 3−µ

a

)
∥(b⊗ b)(s′, x)∥Mµ

a
2

ds′
)

≤ C ′
13t

2α(1− 1
2α− 1

4β ( 3
α+ 3−µ

a ))

∫ t

0

(
E∥(b⊗ b)(s′, x)∥Mµ

a
2

ds
)

≤ C ′
13t

2α(1− 1
2α− 1

4β ( 3
α+ 3−µ

a ))∥b∥2ENµ
a
.

Following the systematic steps detailed in the proof of Theorem 3.1,we successfully
conclude the proof for Theorem 4.1.
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