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Abstract In this paper, we introduce a new inertial type algorithm with a
self-adaptive step size for approximating a common element of the set of so-
lutions of split common null point and pseudomonotone variational inequality
problem as well as the set of common fixed point of a finite family of quasi non-
expansive mappings in uniformly smooth and 2-uniformly convex real Banach
space. The proposed algorithm is constructed in such a way that its conver-
gence analysis does not require a prior estimate of the operator norm. We also
give numerical examples to illustrate the performance of our algorithm. Our
results generalize and improve many existing results in the literature.
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1. Introduction

Let E be a real Banach space and E∗ be its dual space. Let C be a nonempty,
closed and convex subset of E, and let F : C → E∗ be a mapping. The problem of
finding a point x∗ ∈ C such that

⟨y − x∗, Fx∗⟩ ≥ 0, ∀ y ∈ C, (1.1)

is called a variational inequality problem. The set of solutions of variational inequal-
ity problem (1.1) is denoted by V I(C,F ). The study of variational inequality prob-
lem originates from solving minimization problems involving infinite-dimensional
functions and calculus of variation (see, for example, [33] and reference therein).
The concept of variational inequality problem was initially introduced by Hart-
man and Stampacchia [18] as a generalization of boundary value problems in 1966.
Such problems are applicable in a wide range of applied sciences and mathematics.
Later in 1967 Lions and Stampacchia [28] studied the existence and uniqueness of
the solution. Since then, the theory of variational inequality problem has received
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much attention due to its wide applications in various areas of pure and applied
sciences, such as optimal control, image recovery, resource allocations, networking,
transportation, signal processing, game theory, operation research and so on (see, for
example, [3,23,39] and references therein). The constraints can clearly be expressed
as variational inequality problems and (or) as fixed point problems. Consequently,
the problem of finding common elements of the set of solutions of variational in-
equality problems and the set of fixed points of nonlinear operators has become an
interesting area of research for many researchers working in the area of nonlinear
operator theory (see, for example, [30,31] and the references contained in them). In
view of this, many researchers in their quest to find solutions of variational inequal-
ity problems have proposed and analyzed various iterative approximation methods
(see for example, [13, 20])in which most of them are based on projection methods.
The simplest and earliest form of projection method is due to Goldstein [17], which
is a natural extension of the gradient projected technique considered for solving
optimization problems. A number of results on iterative methods proposed for ap-
proximating solutions of variational inequality problems are studied such that the
operator F was often considered to be either strongly monotone or inverse strongly
monotone (see, for instance [17, 26] and references therein) for convergence to be
guaranteed. In order to relax the strong monotonicity condition imposed on the op-
erator F, Korpelevich [25] proposed the following extragradient method in a finite
dimensional Euclidean space Rn:


x1 = x ∈ C,

yn = PC(xn − λF (xn)),

xn+1 = PC(xn − λF (yn)) ∀n ≥ 0,

(1.2)

where λ ∈ (0, 1
L ), F is monotone and Lipschitz and PC is the metric projection

onto C. They proved that the sequence {xn} generated by algorithm (1.2) con-
verges weakly to a solution of problem (1.1). However, the extragradient method
requires the computation at each step of the iteration process two projections onto
an arbitrary closed and convex subset C of H. This might affect the efficiency of
the extragradient method if the feasible set is not simple enough which might also
increase the computational cost.

In order to overcome this barrier, several modifications of the extragradient
method were proposed (see, for example [12,19,44] and references therein) for solving
variational inequality problem (1.1). In particular, Tseng [44] proposed the following
Tseng’s extragradient method


x1 = x ∈ C,

yn = PC(xn − λF (xn)),

xn+1 = yn − λ(F (yn)− F (xn)) ∀n ≥ 0,

(1.3)

where λ ∈ (0, 1
L ), F is monotone and Lipschitz and PC is the metric projection

onto C. They proved that the sequence {xn} generated by algorithm (1.3) converges
weakly to a solution of problem (1.1) in a real Hilbert space. Another modification
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of the extragradient method was proposed by Censor et al. [12] as follows:
x0 ∈ H,

yn = PC(xn − λF (xn)),

Tn = {z ∈ H : ⟨z − yn, xn − λF (xn)− yn⟩ ≤ 0},
xn+1 = PTn

(xn − λF (yn)), ∀ n ≥ 0.

(1.4)

They modified the extragradient method (1.2) by replacing the second projection
onto a closed and convex subset C with a projection onto the half space Tn. Al-
gorithm (1.4) is therefore called subgradient extragradient method. Observe that,
the set Tn is a half space, making algorithm (1.4) simpler to implement than al-
gorithm (1.2). They proved that the sequence {xn} generated by algorithm (1.4)
converges weakly to a solution of problem (1.1) in a real Hilbert space under some
mild assumptions. Observe that all the methods mentioned above require a prior
knowledge of the Lipschitz constant of the operator F as an input parameter which
is very difficult to estimate when solving some practical problems.

Let C and Q be nonempty, closed and convex subsets of H1 and H2 respectively,
where H1 and H2 are two real Hilbert spaces, and T : H1 −→ H2 be a bounded
linear operator. The split feasibility problem (SFP) is defined as follows:

find x∗ ∈ C such that Tx∗ ∈ Q. (1.5)

The set of solutions of problem (1.5) is denoted by SFP(C,Q,T)={x∗∈C :Tx∗∈Q}.
The concept of SFP was first introduced in [10], in the setting of finite dimensional
space for modeling inverse problems arising from medical image reconstruction and
phase retrieval. Since its inception in 1994, the SFP has received much attention
due to its applications in various areas such as signal processing, image restoration,
data compression with particular progress in intensity modulated radiation therapy
and so on, (see, for example [7, 8, 11]). In order to solve problem (1.5), Byrne [8]
proposed the following iterative algorithm{

x0 ∈ C,

xn+1 = PC(xn − γT ∗(I − PQ)Txn),
(1.6)

where γ ∈ (0, 2
||T ||2 ), PC and PQ are the metric projections onto C and Q re-

spectively and T ∗ is the adjoint operator of T . They proved that the sequence
{xn} generated by algorithm (1.6) converges weakly to a solution of the SFP (1.5).
Later, Byrne et al. [6] introduced the concept of split common null point prob-
lem (SCNPP) in the setting of real Hilbert spaces, which is defined as follows: let
Ai : H1 −→ 2H1 , 1 ≤ i ≤ m and Bj : H2 −→ 2H2 , 1 ≤ j ≤ n be set valued map-
pings respectively, and Tj : H1 −→ H2, 1 ≤ j ≤ n be a bounded linear operator.
Then the SCNPP [6] is defined as follows:

Find x∗ ∈ H1 such that

x∗ ∈ (

m⋂
i=1

(A−1
i 0)

⋂
(

n⋂
j=1

T−1
j (B−1

j 0)), (1.7)

where (A−1
i 0) and (B−1

j 0) are the null point sets of Ai and Bj respectively and the

null points set of Ai is defined by A−1
i 0 = {x∗ ∈ H1 : 0 ∈ Aix

∗}. In solving problem
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(1.7), Byrne et al. [6] proposed the following algorithm{
x0 ∈ H1,

xn+1 = JA1

λ

(
xn − γT ∗(I − JB1

λ )Txn
)
,

(1.8)

where λ > 0, Jλ is the resolvent and γ ∈ (0, 2
||T ||2 ). They proved that the sequence

{xn} generated by algorithm (1.8) converges weakly to a solution of problem (1.7).
The split common null point problem generalizes the split feasibility problem [10],
and split variational inequality problem (see for example [6,9]). On the other hand,
Takahashi [42] extends these results on the concept of SCNPP (1.7) to uniformly
convex and smooth Banach spaces as follows: Let E and F be uniformly convex
and smooth Banach spaces respectively, and let JE and JF be the duality mappings
on E and F respectively. Let A and B be maximal monotone mappings of E into
2E

∗
and F into 2F

∗
such that A−10 ̸= ∅ and B−10 ̸= ∅ respectively. Let Qµ

be the metric resolvent of B for µ ≥ 0. Let T : E −→ F be a bounded linear
operator such that T ̸= 0, and let T ∗ be the adjoint operator of T . Suppose that
(A−10)

⋂
T−1(B−10) ̸= ∅. Let x1 ∈ E, and let {xn} be a sequence generated by

zn = xn − µnJ
−1
E T ∗JF (Txn −Qµn

Txn),

Cn = {z ∈ A−10 : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Qn = {z ∈ A−10 : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PCn∩Qn

x1, n≥ 0,

(1.9)

where {µn} ⊂ (0,∞) satisfies that for some a, b ∈ R, 0 < a ≤ µn ≤ b < 1
||T ||2 , n ≥

0.
They proved that the sequence {xn} generated by algorithm (1.9) converges

strongly to a point z0 ∈ (A−10)
⋂
T−1(B−10), where z0 = P(A−10)

⋂
T−1(B−10)x1.

However, the strongly convergent algorithms mentioned above share a common fea-
ture, that is, their stepsize depends on a prior estimate of the norm of the bounded
linear operator which, in general is very difficult to estimate. Thus, the following
questions arises naturally:

1. Can we provide a new self-adaptive iterative scheme for solving SCNPP (1.7)
in a real Banach space more general than Hilbert space such that its conver-
gence analysis does not require a prior estimate of the operator norm?

2. Can we also approximate such a solution as mentioned above which happens to
be a common fixed point of a finite family of quasi-ϕ-nonexpansive mappings?

In order to answer these questions and related issues, the construction of self-
adaptive stepsize iterative algorithms has aroused the interest of many researchers.
Lopez et al. [29] suggested the use of a self-adaptive stepsize sequence {γn} in place
of γ in algorithm (1.6) which does not depend on the norm of the bounded linear
operator T . The stepsize is given as follows:

γn :=
ρn||(I − PQ)Txn||2

||T ∗(I − PQ)Txn||2
, T ∗(I − PQ)Txn ̸= 0, (1.10)

where ρn ∈ (0, 4).
They proved that the sequence {xn} generated by algorithm (1.6) converges

weakly to a solution of the SFP (1.5). The authors in [29] noted that for T with
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large data sets it may be difficult to compute the operator norm and this may
have effect on the iteration process. However, in 1964 Polyak [37] introduced the
technique of inertial extrapolation process as a means of speeding up the rate of
convergence of iterative methods. Many researchers have proposed and analyzed
a large number of inertial type iterative schemes (see, for example [33, 39] and
references therein).

Recently, new methods have been proposed to improve the efficiency and conver-
gence properties of algorithms for solving variational inequality problems. For ex-
ample, Yao, Adamu, and Shehu [47] introduced forward-reflected-backward splitting
algorithms with momentum, demonstrating weak, linear, and strong convergence
results. Their approach enhances the convergence rates and stability of iterative
methods. Additionally, Jolaoso, Shehu, and Yao [21] proposed a strongly conver-
gent inertial proximal point algorithm without the need for an on-line rule. This
method provides strong convergence guarantees and is particularly effective in deal-
ing with non-monotone operators, further broadening the applicability of variational
inequality problem-solving techniques. These recent advancements underscore the
ongoing efforts to refine and optimize methods for solving variational inequality
problems, highlighting the dynamic and evolving nature of research in this area.

Motivated by the above works, in this paper, we introduce a new inertial Tseng’s
extragradient algorithm with self-adaptive step-size technique for approximating
common element in the set of solutions of split common null point and pseudomono-
tone variational inequality problem and the set of common fixed point of a finite
family of quasi nonexpansive mappings in uniformly smooth and 2 - uniformly con-
vex Banach space.

Again, we prove a strong convergence theorem of our algorithm to a solution
of the stated problem without prior knowledge of Lipschitz constant of the oper-
ator under some mild assumptions. we give some numerical examples in order to
illustrate the performance of our algorithm and compare it with some existing ones
in the literature. Our results generalize and extend many existing results in the
literature.

2. Preliminaries

A Banach space E is called smooth if the limit

lim
t→0

||x+ ty|| − ||x||
t

exists for all x, y ∈ SE and for any λ ∈ (0, 1), if ||λx+(1−λ)y|| < 1 for all x, y ∈ SE

with x ̸= y, then E is said to be strictly convex. Furthermore, E is said to be
uniformly convex if for any ϵ ∈ (0, 2], there exists δ = δ(ϵ) > 0 such that if x, y ∈ E

with ||x|| = 1, ||y|| = 1 and ||x− y|| ≥ ϵ, then ||x+y||
2 ≤ 1− δ, for all x, y ∈ SE , and

SE(x) = {x ∈ E : ||x|| = 1} is the unit sphere of E.
The modulus of smoothness of E is the function ρE : [0,∞) −→ [0,∞) defined

by

ρE(τ) = sup{ ||x+ τy|| − ||x− τy||
2

− 1 : x, y ∈ SE}.

E is called uniformly smooth if the lim
τ→0

ρE(τ)
τ = 0 ; q - uniformly smooth if there

exists a positive constant Cq such that ρE(τ) ≤ Cq(τ)
q for any τ > 0.
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Observe that every q - uniformly smooth Banach space is uniformly smooth.
Also, every uniformly convex Banach space is strictly convex and reflexive. Typical
examples of such spaces, (see, for example Chidume [15], pp. 34, 54) are Lp, lp
and Wm

p which are q - uniformly smooth for 1 ≤ q < 2; 2 - uniformly smooth and
uniformly convex (see, for instance [45]). The normalized duality mapping J from
E into 2E

∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ||x||.||x∗||, ||x∗|| = ||x||}

for all x ∈ E.

Remark 2.1. Observe that the normalized duality mapping J has the following
basic properties (see, for more details [16, 38]):

(T1) If E is smooth Banach space, then J is single - valued mapping from E into
E∗;

(T2) If E is strictly convex Banach space, then J is one to one;

(T3) If E is uniformly smooth Banach space, then J is uniformly norm to norm
continuous on each bounded subset of E;

(T4) If E is reflexive Banach space, then J is surjective;

(T5) If E is reflexive, smooth and strictly convex Banach space with dual E∗ and
J∗ : E∗ −→ E is the normalized duality mapping in E∗, then J∗ = J−1;

(T6) If E is reflexive, smooth and strictly convex Banach space, then the normalized
duality mapping J is single - valued, one to one and onto.

Let E be a reflexive, smooth and strictly convex Banach space and C be a
nonempty, closed and convex subset of E (see, for more details [2]).

A mapping ϕ : E × E −→ [0,∞) denotes the Lyapunov functional defined by

ϕ(x, y) = ||x||2 − 2⟨x, Jy⟩+ ||y||2, ∀ x, y ∈ E. (2.1)

Observe that in a Hilbert space H, ϕ(x, y) = ||x− y||2, ∀ x, y ∈ H.
Obviously, the functional ϕ satisfies the following properties (see, for more details

[2]).
(||x|| − ||y||)2 ≤ ϕ(x, y) ≤ (||x||+ ||y||)2, ∀ x, y ∈ E;

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩, ∀ x, y, z ∈ E; (2.2)

ϕ(x, y) + ϕ(y, x) = 2⟨x− y, Jx− Jy⟩, ∀ x, y, z ∈ E; (2.3)

ϕ(x, y) = ⟨x, Jx−Jy⟩+⟨y−x, Jy⟩ ≤ ||x||||Jx−Jy||+ ||y−x||||y||,∀x, y ∈ E; (2.4)

ϕ(z, J−1(αJx+(1−α)Jy)) ≤ αϕ(z, x)+(1−α)ϕ(z, y), ∀ x, y ∈ E, and α ∈ (0, 1).
(2.5)

Define a functional V : E × E∗ −→ [0,∞) (see for example [2]) by

V (x, x∗) = ||x||2 − 2⟨x, x∗⟩+ ||y||2, ∀ x ∈ E, and x∗ ∈ E∗. (2.6)

The following relation is easily verified,

V (x, x∗) = ϕ(x, J−1(x∗)), ∀ x ∈ E, and x∗ ∈ E∗. (2.7)

Observe that the mapping g defined by fixing x ∈ E, and g(x∗) = V (x, x∗) for all
x∗ ∈ E∗ is a continuous, convex function from E∗ into R.
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Lemma 2.1. [2] Let E be a strictly convex, reflexive and smooth Banach space,
and let V be as defined in (2.6). Then

V (x, x∗) + 2⟨J−1x∗ − x, y∗⟩ ≤ V (x, x∗ + y∗) ∀ x ∈ E, and x∗, y∗ ∈ E∗. (2.8)

Let E be a reflexive, strictly convex and smooth Banach space and C be a nonempty,
closed and convex subset of E.

It is shown that, see Alber [2] for each x ∈ E, there exists a unique element
k ∈ C ( written as ΠCx) such that

ϕ(k, x) = inf
y∈C

ϕ(y, x).

The mapping ΠC : E −→ C defined by ΠCx = k, is called generalized projection
(see, for example [2]).

Note that if E is a Hilbert space, then ΠC is a metric projection onto C.

Lemma 2.2. (see for more details [1,2,22]) Let E be a smooth, reflexive and strictly
convex Banach space and C be a nonempty, closed and convex subset of E. Then
the following inequalities hold:

ϕ(x,ΠCy) + ϕ(ΠCy, y) ≤ ϕ(x, y), ∀ x ∈ C and y ∈ E; (2.9)

If x ∈ E and z ∈ C, then z = ΠCx⇐⇒ ⟨z−y, Jx−Jz⟩ ≥ 0, ∀ y ∈ C;
(2.10)

Lemma 2.3. [14] Let E be a uniformly smooth Banach space, r > 0 a positive
number, and Br(0) a closed ball of E. Then, for any given sequence {xi}∞i=1 ⊂ Br(0)
and for any sequence of positive real numbers {λi}∞i=1 with

∑∞
i=1 λi = 1, there exists

a continuous, strictly increasing and convex function g : [0, 2r) −→ [0,∞) with
g(0) = 0 such that for any positive integers i, j with i < j, the following inequality
hold,

||
∞∑

n=1

λnxn||2 ≤
∞∑

n=1

λn||xn||2 − λiλjg(||xi − xj ||). (2.11)

Lemma 2.4. [35] Let E be a uniformly convex and smooth Banach space and {µn}
and {λn} be two sequences in E. If lim

n→∞
ϕ(µn, λn) = 0 and either {µn} or {λn} is

bounded, then lim
n→∞

||µn − λn|| = 0.

Lemma 2.5. [4] Let E be a 2-uniformly convex Banach space. Then, there exists
τ > 0 such that

1

τ
||x− y||2 ≤ ϕ(x, y), ∀ x, y ∈ E. (2.12)

Lemma 2.6. [45] Let E be a 2-uniformly smooth Banach space with the smoothness
constants κ > 0 and for all x, y ∈ E. Then the following inequality holds:

||x+ y||2 ≤ ||x||2 + 2⟨y, Jx⟩+ 2κ2||y||2. (2.13)

Definition 2.1. Let T : C → C be a mapping.

1. A point x ∈ C is called a fixed point of T if Tx = x, where F (T ) := {x ∈ C :
Tx = x} is the set of the fixed point of T .
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2. A point x ∈ C is said to be an asymptotic fixed point of T , if there exists a
sequence {xn} ⊆ C such that xn ⇀ x and lim

n→∞
||xn − Txn|| = 0. We denote

the set of all asymptotic fixed points of T by F̂ (T ).

3. T is said to be quasi - ϕ - nonexpansive if F (T ) ̸= ∅, and

ϕ(p, Tx) ≤ ϕ(p, x), ∀ x ∈ C and p ∈ F (T ). (2.14)

4. T is called demiclosed at zero if for any sequence {xn} ⊂ C with xn ⇀ x ∈ C
and

||xn − Txn|| −→ 0 as n −→ ∞, then Tx = x.

5. A multi - valued mapping M : E → 2E
∗
is called monotone if ∀ x, y ∈ E,

with

u∗ ∈Mx and v∗ ∈My, then ⟨x− y, u∗ − v∗⟩ ≥ 0 holds.

6. A monotone mapping M : E → 2E
∗
is said to be maximal if M is monotone

and the graph of M , G(M) := {(x, u) ∈ E × E∗ : u ∈ Mx}, is not properly
contained in the graph of any other monotone mapping defined on E.

Clearly, when M is a maximal monotone operator and λ > 0, then the resolvent of
M is defined as:

ℑλx = (J + λM)−1Jx, ∀ x ∈ E.

The following lemma is due to Browder [5].

Lemma 2.7. [5] Let E be a uniformly convex and smooth Banach space, and let
J be the normalized duality mapping of E into E∗. Let M be a monotone operator
of E into 2E

∗
. Then A is maximal if and only if for any λ > 0,

R(J + λM) = E∗,

where R(J + λM) is the range of J + λM.
Let E be a uniformly convex Banach space with a Gateaux differentiable norm,

and M be a maximal monotone operator of E into 2E
∗
. For all x ∈ E and λ > 0,

we consider the following inclusion (see, for more details [5, 42])

0 ∈ J(xλ − x) + λMxλ.

This inclusion has a unique solution xλ. We define QM
λ by xλ = QM

λ x. Such
QM

λ = (I + λJ−1M)−1, λ > 0 is called the metric resolvent of M. The set of null
points of M is defined by M−10 = {z ∈ E : 0 ∈Mz}. We know that M−10 is closed
and convex; and F (JM

λ ) =M−10.
Note that in Hilbert space, the metric resolvent Qλ of M is called the resolvent

of M.

Lemma 2.8. [22] Let E be a reflexive, strictly convex and smooth Banach space
and C be a nonempty, closed and convex subset of E. Let λ > 0 and M ⊂ E × E∗

be a monotone mapping such that D(M) ⊂ J−1R(J + λM). Then, the resolvent of
M which is defined by ℑλx = (J +λM)−1Jx for all x ∈ C is a firmly nonexpansive
type mapping.
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Lemma 2.9. [24] Let E be a reflexive, strictly convex and smooth Banach space
and M : E −→ 2E

∗
be a maximal monotone mapping such that M−10 ̸= ∅ and

ℑλ = (J + λM)−1J for all λ > 0, then

ϕ(x∗,ℑλy) + ϕ(ℑλy, y) ≤ ϕ(x∗, y), ∀ x∗ ∈ F (ℑλ), and y ∈ E. (2.15)

Definition 2.2. Let F : C → E∗ be a mapping. Then F is said to be

1. monotone if the following inequality holds

⟨x− y, Fx− Fy⟩ ≥ 0, ∀ x, y ∈ C;

2. pseudomonotone if

⟨x− y, F (x)⟩ ≥ 0 ⇒ ⟨x− y, F (y)⟩ ≥ 0, ∀ x, y ∈ C;

3. Lipschitz continuous if there exists a constant L > 0 such that

||Fx− Fy|| ≤ L||x− y||, ∀ x, y ∈ C;

4. weakly sequentially continuous if for any {xn} ⊂ C such that xn ⇀ x implies
Axn ⇀ Ax.

Lemma 2.10. [34] Consider the variational inequality problem VIP. Suppose that
the mapping h : [0, 1] −→ E∗ defined by h(t) = F (tx + (1 − t)y) and t ∈ [0, 1] is
continuous for all x, y ∈ C (i.e, h is hemicontinuous). Then M(C,F ) ⊂ V I(C,F ).
Moreover, if F is pseudomonotone, then V I(C,F ) is closed, convex and V I(C,F ) =
M(C,F ). Note that for some existing results for Minty variational inequality prob-
lem (MV IP ), see [27,41] for more details.

Lemma 2.11. [46] If {bn} is a sequence of nonnegative real numbers satisfying
the following inequality:

bn+1 ≤ (1− ψn)bn + ψnσn + γn, n ≥ 0,

where (i) {ψn} ⊂ [0, 1],
∑∞

n=1 ψn = ∞; (ii) lim supσn ≤ 0; (iii) γn ≥ 0 and∑∞
n=1 γn <∞, then, bn −→ 0 as n −→ ∞.

Lemma 2.12. [32] Let {bn} be a sequence of real numbers such that there exists a
subsequence {bni

} of {bn} such that bni
< bni+1 for all i ∈ N. Then, there exists a

nondecreasing sequence {mk} ⊂ N such that mk −→ ∞ and the following properties
are satisfied for all k ∈ N:

bmk
≤ bmk+1 and bk ≤ bmk+1,

In fact, mk = max{j ≤ k : bj < bj+1}.
Lemma 2.13. [42] Let E and F be strictly convex, reflexive, and smooth Banach
spaces respectively, and let JE and JF be the normalized duality mappings on E and
F respectively. Let A and B be maximal monotone mappings of E into 2E

∗
and

F into 2F
∗
such that A−10 ̸= ∅ and B−10 ̸= ∅ respectively. Let Jλ and Qµ be the

metric resolvents of A for λ > 0 and B for µ > 0, respectively. Let T : E −→ F
be a bounded linear operator such that T ̸= 0, and let T ∗ be the adjoint operator of
T . Suppose that (A−10)

⋂
T−1(B−10) ̸= ∅. Let λ, µ, r > 0, and z ∈ E. Then, the

following are equivalent:

1. z = Jλ(J
−1
E∗ (JE(z)− rT ∗JF (Tz −QµTz)));

2. z ∈ (A−10)
⋂
T−1(B−10);
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3. Main results

In this section, we first establish two important lemmas and then prove a strong
convergence theorem for finding a common element of the set of solutions of split
common null point and pseudomonotone variational inequality problem and com-
mon fixed point of a finite family of quasi nonexpansive mappings in uniformly
smooth and 2 - uniformly convex real Banach space. Furthermore, to obtain a
strong convergence of our algorithm, we make the following assumptions:

Assumption A

(A1) Let E1 and E2 be uniformly smooth and 2 - uniformly convex real Banach
spaces and C and D be nonempty, closed and convex subsets of E1 and E2

respectively. Let {Ai}Ni=1, {Bi}Ni=1 be finite families of maximal monotone
mappings of E1 into 2

E∗
1 and E2 into 2

E∗
2 such that A−1

i 0 ̸= ∅ andB−1
i 0 ̸= ∅ for

each i ∈ {1, 2, ..., N}. LetQBi

λi,n
and ΨAi

µi,n be metric and generalized resolvents
of Bi for {λi,n} > 0 and Ai for {µi,n} > 0 respectively. Let L : E1 −→ E2 be
a bounded linear operator with its adjoint L∗ : E∗

2 −→ E∗
1 such that L ̸= 0.

(A2) The operator F : E1 −→ E∗
1 is pseudomonotone, L - Lipschitz continuous and

weakly sequentially continuous on E1.

(A3) For i ∈ {1, 2, ...,M}, {Ti} is a finite family of quasi nonexpansive mappings of
E into itself.

(A4) The solution set Γ = V I(C,F )
⋂

Ω ̸= ∅,
where Ω = {x̄ ∈ (

⋂M
i=1 F (Ti)

⋂
(
⋂N

i=1(A
−1
i 0)) such that Lx̄ ∈

(
⋂N

i=1(B
−1
i 0))}.

Condition B we assume that the control sequences satisfy:

(B1) {βn,i} ⊂ (0, 1),
∑∞

i=0 βn,i = 1 and lim inf
n→∞

βn,0βn,i > 0 for all i = 1, 2, ...,M ;

(B2) {αn} ⊂ (0, 1) satisfies lim
n→∞

αn = 0 and
∑∞

n=1 αn = ∞.

In order to prove the strong convergence result of Algorithm 3, we first prove the
following lemma which plays an important role in the proof of the main result.

Lemma 3.1. Suppose that {un}, {tn}, {yn}, {zn}, {wn}, {λn} are sequences gen-
erated by Algorithm 3 and assumptions (A1)-(A4) and conditions (B1)-(B2) hold:
Then

1. If tn = yn for some n ≥ 1, then tn ∈ V I(C,F ).

2. The sequence {λn} generated by (3.2) is a nonincreasing sequence and lim
n→∞

λn =

λ ≥ min{ µ
L , λ1}.

Proof. (1) Suppose that tn = yn for some n ≥ 1. Then from Algorithm 3, we have

tn = ΠCJ
−1
E1

(JE1tn − λnF (tn)).

Thus, tn ∈ C. Using the definition of {yn} in Algorithm 3 and the property of
generalized projection ΠC onto C in equation (2.10) of Lemma 2.2, we have

⟨tn − y, JE1
tn − λnF (tn)− JE1

tn⟩ ≥ 0, ∀ y ∈ C.
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Initialization: Take λ0 > 0, γ > 0, µ ∈ (0, 1
κ
√
2τ
), θ > 0. Select initial data x0, x1, u ∈

E1, and set n = 1. Choose a positive sequence {ρn} such that lim
n→∞

ρn

αn
= 0.

Step 1: Given xn−1, xn and θn for each n ≥ 1, choose θn such that θn ∈ [0, θ̂n] with

θ̂n defined by

θ̂n =

{
min{ ρn

||xn−xn−1|| , θ}, if xn ̸= xn−1,

θ, otherwise.
(3.1)

Step 2: Compute

un = J−1
E1

(JE1xn + θn(JE1xn−1 − JE1xn)).

Step 3: Compute

tn = ΨAi
µi,n

(J−1
E1

(JE1
un − γnL

∗JE2
(I −QBi

λi,n
)Lun)).

Step 4: Compute
yn = ΠCJ

−1
E1

(JE1
tn − λnF (tn))

If yn = tn, then set zn = tn and go to step 6. Else go to step 5.
Step 5: Compute

zn = J−1
E1

(JE1
yn − λn(Fyn − Ftn)).

Step 6: Compute

wn = J−1
E1

(βn,0JE1
zn +

M∑
i=1

βn,iJE1
(Tizn)).

Step 7: Compute

xn+1 = J−1
E1

(αnJE1(u) + (1− αn)JE1wn)

where λn+1 and γn are updated as follows:

λn+1 =

{
min{ µ||yn−tn||

||F (yn)−F (tn)|| , λn}, if F (yn)− F (tn) ̸= 0,

λn, otherwise.
(3.2)

For ϵ > 0 small enough, ϵ = 1
3κ2||L∗||2 , the step-size γn is chosen as follows:

0 < ϵ ≤ γn ≤
||JE2

(I −QBi

λi,n
)Lun||2

κ2||L∗JE2
(I −QBi

λi,n
)Lun||2

− ϵ, if Lun ̸= QBi

λi,n
Lun, (3.3)

otherwise, γn = γ(γ ≥ 0). Set n := n+ 1 and return to step 1.
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Thus,
⟨tn − y,−λnF (tn)⟩ = λn⟨y − tn, F (tn)⟩ ≥ 0, ∀ y ∈ C.

Since λn ≥ 0, we obtain that ⟨y − tn, F (tn)⟩ ≥ 0. Hence, tn ∈ V I(C,F ).
(2) It follows from (3.2) that λn+1 ≤ λn, for all n ∈ N. Furthermore, since A
is a Lipschitz continuous mapping with a positive constant L, in a case where
F (tn)− F (yn) ̸= 0, we obtain

µ||tn − yn||
||F (tn)− F (yn)||

≥ µ||tn − yn||
L||tn − yn||

=
µ

L
.

Since {λn} is a nonincreasing sequence which bounded below by min{ µ
L , λ1}, we

conclude that
lim
n→∞

λn = λ ≥ min{µ
L
, λ1}.

Remark 3.1. From Definition 3.1, we have that

lim
n→∞

θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn)) = 0.

Proof. We have that θn||xn − xn−1|| ≤ ρn for each n ≥ 1, which together with
lim
n→∞

ρn

αn
= 0 implies

lim
n→∞

θn
αn

||xn − xn−1|| ≤ lim
n→∞

ρn
αn

= 0. (3.4)

Hence,

ϕ(x∗, xn−1)− ϕ(x∗, xn) = ||x∗||2 − 2⟨x∗, JE1xn−1⟩+ ||xn−1||2

−(||x∗||2 − 2⟨x∗, JE1xn⟩+ ||xn||2)
= ||xn−1||2 − ||xn||2 + 2⟨x∗, JE1xn − JE1xn−1⟩
≤ ||xn−1 − xn||(||xn||+ ||xn−1||)

+2||x∗||||JE1xn−1 − JE1xn||. (3.5)

Since E1 is uniformly smooth, then JE1
is norm to norm uniformly continuous on

a bounded subset of E1, and we obtain from (3.4) that

lim
n→∞

αn.
θn
αn

||JE1xn − JE1xn−1|| = 0. (3.6)

Thus,

lim
n→∞

αn(
θn
αn

||xn−1−xn||(||xn||+||xn−1||)+2
θn
αn

||x∗||||JE1
xn−1−JE1

xn||) = 0. (3.7)

lim
n→∞

θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn)) = 0. (3.8)

We know that, the following lemma, which was carefully proved in [33], plays
an important role in the proof of our main result.
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Lemma 3.2. ( [33],Lemma 9). Suppose that assumptions (A1)-(A4) and con-
ditions (B1)-(B2) hold, and let {un} and {yn} be sequences generated by Algo-
rithm 3 and {unk

} be a subsequence of {un} which converges weakly to x̄ ∈ E and
lim
k→∞

||unk
− ynk

|| = 0. Then x̄ ∈ V I(C,F ).

Lemma 3.3. Let {xn}, {yn}, {un}, {zn} be sequences defined iteratively by Algo-
rithm 3, and let x∗ ∈ Γ which satisfies the following inequality

ϕ(x∗, zn) ≤ ϕ(x∗, tn)− (1− 2τµ2κ2λ2n
λ2n+1

)ϕ(yn, tn). (3.9)

Proof. Let x∗ ∈ Γ. Then from Algorithm 3, we have

ϕ(x∗, zn) = ϕ(x∗, J−1
E1

(JE1yn − λn(Fyn − Ftn))

= ||x∗||2 − 2⟨x∗, J−1
E1

(JE1
yn − λn(Fyn − Ftn))⟩

+||J−1
E1

(JE1
yn − λn(Fyn − Ftn))||2

= ||x∗||2 − 2⟨x∗, JE1
yn − λn(Fyn − Ftn)⟩

+||JE1
yn − λn(Fyn − Ftn)||2

= ||x∗||2 − 2⟨x∗, JE1
yn⟩+ 2λn⟨x∗, Fyn − Ftn⟩

+||JE1
yn − λn(Fyn − Ftn)||2. (3.10)

Using Lemma 2.6 and since E∗
1 is 2-uniformly smooth, we have from (3.10) that

||JE1
yn − λn(Fyn − Ftn)||2 ≤ ||JE1

yn||2 − 2λn⟨yn, Fyn − Ftn⟩
+2κ2λ2n||Fyn − Ftn||2. (3.11)

Substituting (3.11) into (3.10) and applying equation (2.2), we obtain

ϕ(x∗, zn) ≤ ||x∗||2 − 2⟨x∗, JE1
yn⟩+ 2λn⟨x∗, Fyn − Ftn⟩+ ||JE1

yn||2

−2λn⟨yn, Fyn − Ftn⟩+ 2κ2λ2n||Fyn − Ftn||2

= ϕ(x∗, yn) + 2λn⟨x∗, Fyn − Ftn⟩ − 2λn⟨yn, Fyn − Ftn⟩
+2κ2λ2n||Fyn − Ftn||2

= ϕ(x∗, yn) + 2λn⟨x∗ − yn, Fyn − Ftn⟩+ 2κ2λ2n||Fyn − Ftn||2

= ϕ(x∗, tn) + ϕ(tn, yn) + 2⟨x∗ − tn, JE1tn − JE1yn⟩
+2λn⟨x∗ − yn, Fyn − Ftn⟩+ 2κ2λ2n||Fyn − Ftn||2. (3.12)

Applying equation (2.3), we have

ϕ(tn, yn) = −ϕ(yn, tn) + 2⟨yn − tn, JE1
yn − JE1

tn⟩. (3.13)

Substituting equation (3.13) into (3.12), we obtain

ϕ(x∗, zn) ≤ ϕ(x∗, tn)− ϕ(yn, tn) + 2⟨tn − yn, JE1tn − JE1yn⟩
+2⟨x∗ − tn, JE1tn − JE1yn⟩+ 2λn⟨x∗ − yn, F (yn)− F (tn)⟩
+2κ2λ2n||Fyn − Ftn||2

= ϕ(x∗, tn)− ϕ(yn, tn) + 2⟨tn − yn, JE1tn − JE1yn⟩
+2⟨x∗ − yn, JE1tn − JE1yn⟩ − 2⟨tn − yn, JE1tn − JE1yn⟩
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+2λn⟨x∗ − yn, F (yn)− F (tn)⟩+ 2κ2λ2n||Fyn − Ftn||2

= ϕ(x∗, tn)− ϕ(yn, tn) + 2⟨x∗ − yn, JE1
tn − JE1

yn⟩
+2λn⟨x∗ − yn, F (yn)− F (tn)⟩+ 2κ2λ2n||Fyn − Ftn||2. (3.14)

Using the definition of {yn} and Lemma 2.2, we have

⟨x∗ − yn, JE1
tn − λnF (tn)− JE1

yn⟩ ≤ 0

⟨x∗ − yn, JE1
tn − JE1

yn⟩ − λn⟨x∗ − yn, F (tn)⟩ ≤ 0

⟨x∗ − yn, JE1
tn − JE1

yn⟩ ≤ λn⟨x∗ − yn, F (tn)⟩. (3.15)

Substituting (3.15) into (3.14),we have

ϕ(x∗, zn) ≤ ϕ(x∗, tn)− ϕ(yn, tn) + 2λn⟨x∗ − yn, F (tn)⟩
+2λn⟨x∗ − yn, F (yn)− F (tn)⟩+ 2κ2λ2n||Fyn − Ftn||2

= ϕ(x∗, tn)− ϕ(yn, tn) + 2λn⟨x∗ − yn, F (tn) + F (yn)− F (tn)⟩
+2κ2λ2n||Fyn − Ftn||2

= ϕ(x∗, tn)− ϕ(yn, tn) + 2λn⟨x∗ − yn, F (yn)⟩
+2κ2λ2n||Fyn − Ftn||2

= ϕ(x∗, tn)− ϕ(yn, tn)− 2λn⟨yn − x∗, F (yn)⟩
+2κ2λ2n||Fyn − Ftn||2. (3.16)

Observe that x∗ ∈ V I(C,F ) and ⟨yn − x∗, F (x∗)⟩ ≥ 0. Thus, ⟨yn − x∗, F (x∗)⟩ ≥ 0
implies ⟨yn − x∗, F (yn)⟩ ≥ 0, since F is pseudomonotone.

Furthermore, we have from (3.16) that

ϕ(x∗, zn) ≤ ϕ(x∗, tn)− ϕ(yn, tn) + 2κ2λ2n||Fyn − Ftn||2

= ϕ(x∗, tn)− ϕ(yn, tn) + 2κ2λ2n
λ2n+1

λ2n+1

||Fyn − Ftn||2

≤ ϕ(x∗, tn)− ϕ(yn, tn) +
2κ2µ2λ2n
λ2n+1

||yn − tn||2

||Fyn − Ftn||2
||Fyn − Ftn||2

= ϕ(x∗, tn)− ϕ(yn, tn) +
2κ2µ2λ2n
λ2n+1

||yn − tn||2. (3.17)

Using Lemma 2.5, we obtain from (3.17)

ϕ(x∗, zn) ≤ ϕ(x∗, tn)− ϕ(yn, tn) +
2τµ2κ2λ2n
λ2n+1

ϕ(yn, tn)

= ϕ(x∗, tn)− (1− 2τµ2κ2λ2n
λ2n+1

)ϕ(yn, tn)

= ϕ(x∗, tn). (3.18)

We obtain from Lemma 2.6, Lemma 2.13 (1) and (3.3) the following

ϕ(x∗, tn) = ϕ(x∗,ΨAi
µi,n

(J−1
E1

(JE1un − γnL
∗JE2(I −QBi

λi,n
)Lun)))
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≤ ϕ(x∗, J−1
E1

(JE1un − γnL
∗JE2(I −QBi

λi,n
)Lun))

= ||x∗||2 − 2⟨x∗, JE1(J
−1
E1

(JE1un − γnL
∗JE2(I −QBi

λi,n
)Lun))⟩

+||J−1
E1

(JE1un − γnL
∗JE2(I −QBi

λi,n
)Lun)||2

= ||x∗||2 − 2⟨x∗, JE1un − γnL
∗JE2(I −QBi

λi,n
)Lun⟩

+||JE1un − γnL
∗JE2(I −QBi

λi,n
)Lun||2

≤ ||x∗||2 − 2⟨x∗, JE1un⟩+ 2γn⟨x∗, L∗JE2(I −QBi
λi,n

)Lun⟩+ ||un||2

−2γn⟨un, L
∗JE2(I −QBi

λi,n
)Lun⟩+ κ2γ2

n||L∗JE2(I −QBi
λi,n

)Lun||2

= ||x∗||2 − 2⟨x∗, JE1un⟩+ 2γn⟨Lx∗, JE2(I −QBi
λi,n

)Lun⟩+ ||un||2

−2γn⟨Lun, JE2(I −QBi
λi,n

)Lun⟩+ 2κ2γ2
n||L∗JE2(I −QBi

λi,n
)Lun||2

= ϕ(x∗, un) + 2γn⟨Lx∗, JE2(I −QBi
λi,n

)Lun⟩

−2γn⟨Lun, JE2(I −QBi
λi,n

)Lun⟩+ 2κ2γ2
n||L∗JE2(I −QBi

λi,n
)Lun||2

= ϕ(x∗, un)− 2γn⟨Lun − Lx∗, JE2(I −QBi
λi,n

)Lun⟩

+2κ2γ2
n||L∗JE2(I −QBi

λi,n
)Lun||2

= ϕ(x∗, un)− 2γn⟨Lun−QBi
λi,n

Lun+QBi
λi,n

Lun − Lx∗, JE2(I −QBi
λi,n

)Lun⟩

+2κ2γ2
n||L∗JE2(I −QBi

λi,n
)Lun||2

= ϕ(x∗, un)− 2γn⟨Lun −QBi
λi,n

Lun, JE2(I −QBi
λi,n

)Lun⟩

−2γn⟨QBi
λi,n

Lun − Lx∗, JE2(I −QBi
λi,n

)Lun⟩

+2κ2γ2
n||L∗JE2(I −QBi

λi,n
)Lun||2

= ϕ(x∗, un)− 2γn||JE2(I −QBi
λi,n

)Lun||2 + 2κ2γ2
n||L∗JE2(I −QBi

λi,n
)Lun||2

−2γn⟨QBi
λi,n

Lun − Lx∗, JE2(I −QBi
λi,n

)Lun⟩

= ϕ(x∗, un)− 2γn||JE2(I −QBi
λi,n

)Lun||2 + 2κ2γ2
n||L∗JE2(I −QBi

λi,n
)Lun||2

= ϕ(x∗, un)− 2γn[||JE2(I −QBi
λi,n

)Lun||2 − κ2γn||L∗JE2(I −QBi
λi,n

)Lun||2]

≤ ϕ(x∗, un)− γn[||JE2(I −QBi
λi,n

)Lun||2 − κ2γn||L∗JE2(I −QBi
λi,n

)Lun||2]

= ϕ(x∗, un)− γn[||JE2(I −QBi
λi,n

)Lun||2 −
||JE2(I −QBi

λi,n
)Lun||2

κ2||L∗JE2(I −QBi
λi,n

)Lun||2

×κ2||L∗JE2(I −QBi
λi,n

)Lun||2]. (3.19)

ϕ(x∗, tn) ≤ ϕ(x∗, un). (3.20)

Using the definition of {un} in Algorithm 3, we obtain

ϕ(x∗, un) = ϕ(x∗, J−1
E1

((1− θn)JE1
xn + θnJE1

xn−1))

= ||x∗||2 − 2⟨x∗, JE1
(J−1

E1
((1− θn)JE1

xn + θnJE1
xn−1)⟩

+||J−1
E1

((1− θn)JE1
xn + θnJE1

xn−1)||2

≤ ||x∗||2 − 2(1− θn)⟨x∗, JE1
xn⟩ − 2θn⟨x∗, JE1

xn−1⟩
+(1− θn)||JE1

xn||2 + θn||JE1
xn−1||2
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≤ (1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1). (3.21)

Let x∗ ∈ Γ. Since Ti is quasi nonexpansive, we have

ϕ(x∗, wn) = ϕ(x∗, (J−1
E1

(βn,0JE1zn +

M∑
i=1

βn,iJE1Tizn)))

= ||x∗||2 − 2⟨x∗, JE1(J
−1
E1

(βn,0JE1zn +

M∑
i=1

βn,iJE1Tizn))⟩

+||J−1
E1

(βn,0JE1zn +

M∑
i=1

βn,iJE1Tizn)||2

≤ ||x∗||2 − 2βn,0⟨x∗, JE1zn⟩ − 2

M∑
i=1

βn,i⟨x∗, JE1Tizn⟩+ βn,0||JE1zn||2

+

M∑
i=1

βn,i||JE1Tizn||2

= βn,0||x∗||2 − 2βn,0⟨x∗, JE1zn⟩+ βn,0||zn||2 +
M∑
i=1

βn,i||x∗||2

−2

M∑
i=1

βn,i⟨x∗, JE1Tizn⟩+
M∑
i=1

βn,i||Tizn||2

= βn,0ϕ(x
∗, zn) +

M∑
i=1

βn,iϕ(x
∗, Tizn)

≤ βn,oϕ(x
∗, zn) +

M∑
i=1

βn,iϕ(x
∗, zn)

= βn,0ϕ(x
∗, zn) + (1− βn,0)ϕ(x

∗, zn)

= ϕ(x∗, zn). (3.22)

This implies that

ϕ(x∗, wn) ≤ ϕ(x∗, zn). (3.23)

Using the definition of {xn+1} in Algorithm 3, (3.23) and (3.18), we have

ϕ(x∗, xn+1) = ϕ(x∗, J−1
E1

(αnJE1
u+ (1− αn)JE1

(wn)))

= ||x∗||2 − 2⟨x∗, JE1(J
−1
E1
αnJE1u+ (1− αn)JE1(wn))⟩

+||J−1
E1

(αnJE1
u+ (1− αn)JE1

(wn))||2

= ||x∗||2 − 2⟨x∗, αnJE1
u+ (1− αn)JE1

(wn)⟩
+||αnJE1

u+ (1− αn)JE1
(wn)||2

≤ ||x∗||2 − 2αn⟨x∗, JE1
u⟩ − 2(1− αn)⟨x∗, JE1

(wn)⟩
+αn||JE1

u||2 + (1− αn)||JE1
(wn)||2

= αn||x∗||2 − 2αn⟨x∗, JE1
u⟩ − 2(1− αn)⟨x∗, JE1

(wn)⟩
+αn||u||2 + (1− αn)||wn||2 + (1− αn)||x∗||2
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= αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, wn)

≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, zn)

≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, tn)

≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, un). (3.24)

Substituting (3.21) into (3.24), we have

ϕ(x∗, xn+1) ≤ αnϕ(x
∗, u) + (1− αn)[(1− θn)ϕ(x

∗, xn) + θnϕ(x
∗, xn−1)]

≤ max{ϕ(x∗, u),max{ϕ(x∗, xn), ϕ(x∗, xn−1)}}
...

≤ max{ϕ(x∗, u),max{ϕ(x∗, x1), ϕ(x∗, x0)}}. (3.25)

Hence, {ϕ(x∗, xn)} is bounded. Since 1
τ ||xn − x∗||2 ≤ ϕ(x∗, xn), we have that {xn}

is bounded. Consequently, {un}, {yn}, {zn} and {wn} are also bounded.

Theorem 3.1. Suppose that assumptions (A1)-(A4) hold, and the sequence {αn} ⊂
(0, 1) satisfies lim

n→∞
αn = 0 and

∑∞
n=1 αn = ∞. Let {xn} be the sequence generated

by Algorithm 3. Then {xn} converges strongly to a solution x̄ = ΠΓu.

Proof. Let x∗ ∈ Γ. We estimate ϕ(x∗, xn+1) using inequalities (3.18) and (3.21),
and we obtain

ϕ(x∗, xn+1) = ϕ(x∗, J−1
E1

(αnJE1
u+ (1− αn)JE1

(wn)))

≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, wn)

≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, zn)

= αnϕ(x
∗, u) + (1− αn)[ϕ(x

∗, tn)− (1− 2τµ2κ2λ2n
λ2n+1

)ϕ(yn, tn)]

= αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, tn)− (1− αn)(1−
2τµ2κ2λ2n
λ2n+1

)ϕ(yn, tn)

≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, un)− (1− αn)(1−
2τµ2κ2λ2n
λ2n+1

)ϕ(yn, tn)

= αnϕ(x
∗, u) + (1− αn)[(1− θn)ϕ(x

∗, xn) + θnϕ(x
∗, xn−1)]

−(1− αn)(1−
2τµ2κ2λ2n
λ2n+1

)ϕ(yn, tn)

= αnϕ(x
∗, u) + (1− αn)[ϕ(x

∗, xn) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))]

−(1− αn)(1−
2τµ2κ2λ2n
λ2n+1

)ϕ(yn, tn). (3.26)

The remaining part of the proof will be divided into two cases.
Case I. Suppose that the sequence {ϕ(x∗, xn)}∞n=1 is nonincreasing sequence of real
numbers. Since the sequence {ϕ(x∗, xn)}∞n=1 is bounded then it converges for all
n ≥ n0. That is

lim
n→∞

(ϕ(x∗, xn)− ϕ(x∗, xn+1)) = 0. (3.27)

This implies from (3.26) that

(1− αn)[(1−
2τµ2κ2λ2n
λ2n+1

)]ϕ(yn, tn) ≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, xn)
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+(1− αn)[θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))]− ϕ(x∗, xn+1)

= αn(ϕ(x
∗, u)− ϕ(x∗, xn)) + ϕ(x∗, xn)− ϕ(x∗, xn+1)

+(1− αn)[θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))]. (3.28)

Using (3.27), equation (3.8) of Remark 3.1 and the fact that (1 − 2τµ2κ2λ2
n

λ2
n+1

) >

0, (1− αn) > 0 together with condition (B2), we have from (3.28) that

(1− αn)[(1−
2τµ2κ2λ2n
λ2n+1

)]ϕ(yn, tn) ≤ αn(ϕ(x
∗, u)− ϕ(x∗, xn))

+ϕ(x∗, xn)− ϕ(x∗, xn+1) + (1− αn)[θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))] −→ 0

as n −→ ∞. Hence,

lim
n→∞

ϕ(yn, tn) = 0. (3.29)

Thus, from Lemma 2.4, we have that

lim
n→∞

||yn − tn|| = 0. (3.30)

Using the definition of {zn} in Algorithm 3, (3.30) and the fact that A is Lipschitz
continuous, we have

JE1
zn = JE1

yn − λn(Fyn − Ftn),

||JE1
yn − JE1

zn|| = ||λn(Fyn − Ftn)||
≤ λn||Fyn − Ftn||

≤ λnµ

λn+1
||yn − tn|| −→ 0, as n −→ ∞. (3.31)

This implies from (3.31) that

lim
n→∞

||JE1
yn − JE1

zn|| = 0. (3.32)

Since E∗
1 is uniformly smooth, then J−1

E1
is uniformly norm to norm continuous on

bounded subsets of E∗
1 . Hence, we have from (3.32) that

lim
n→∞

||JE1
yn − JE1

zn|| = lim
n→∞

||J−1
E1

(JE1
yn)− J−1

E1
(JE1

zn)||. (3.33)

Hence,

lim
n→∞

||yn − zn|| = 0. (3.34)

From Lemma 2.3 and the definitions of {xn+1}, {un}, {wn} in Algorithm 3, we
obtain

ϕ(x∗, wn) = ϕ(x∗, (J−1
E1

(βn,0JE1zn +

M∑
i=1

βn,iJE1Tizn)))

= ||x∗||2 − 2⟨x∗, JE1(J
−1
E1

(βn,0JE1zn +

M∑
i=1

βn,iJE1Tizn))⟩
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+||J−1
E1

(βn,0JE1zn +

M∑
i=1

βn,iJE1Tizn)||2

= ||x∗||2 − 2⟨x∗, βn,0JE1zn +

M∑
i=1

βn,iTizn⟩

+||βn,0JE1zn +

M∑
i=1

βn,iJE1Tizn||2

≤ ||x∗||2 − 2βn,0⟨x∗, JE1zn⟩ −
M∑
i=1

2βn,0⟨x∗, JE1Tizn⟩+ βn,0||JE1zn||
2

+

M∑
i=1

βn,i||JE1Tizn||2 − βn,0βn,ig(||JE1zn − JE1Tizn||)

= βn,0||x∗||2 − 2βn,0⟨x∗, JE1zn⟩+ βn,0||zn||2 +
M∑
i=1

βn,i||x∗||2

−
M∑
i=1

2βn,i⟨x∗, JE1Tizn⟩+
M∑
i=1

βn,i||Tizn||2 − βn,0βn,0g(||JE1zn − JE1Tizn||)

= βn,0ϕ(x
∗, zn) +

M∑
i=1

βn,0ϕ(x
∗, Tizn)− βn,0βn,ig(||JE1zn − JE1Tizn||)

≤ βn,0ϕ(x
∗, zn) +

M∑
i=1

βn,iϕ(x
∗, zn)− βn,0βn,ig(||JE1zn − JE1Tizn||)

= βn,0ϕ(x
∗, zn) + (1− βn,0)ϕ(x

∗, zn)− βn,0βn,ig(||JE1zn − JE1Tizn||)
= ϕ(x∗, zn)− βn,0βn,ig(||JE1zn − JE1Tizn||). (3.35)

From (3.35), we have

ϕ(x∗, xn+1) = ϕ(x∗, J−1
E1

(αnJE1
u+ (1− αn)JE1

(wn)))

≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, wn)

≤ αnϕ(x
∗, u) + (1− αn)[ϕ(x

∗, zn)− βn,0βn,ig(||JE1
zn − JE1

Tizn||)]
≤ αnϕ(x

∗, u) + (1− αn)[ϕ(x
∗, tn)− βn,0βn,ig(||JE1

zn − JE1
Tizn||)]

≤ αnϕ(x
∗, u) + (1− αn)[ϕ(x

∗, un)− βn,0βn,ig(||JE1
zn − JE1

Tizn||)]
= αnϕ(x

∗, u) + (1− αn)[(1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)

−βn,0βn,ig(||JE1
zn − JE1

Tizn||)]
= αnϕ(x

∗, u) + (1− αn)[(1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)]

−(1− αn)[βn,0βn,ig(||JE1
zn − JE1

Tizn||)]
= αnϕ(x

∗, u) + (1− αn)ϕ(x
∗, xn)

+(1− αn)[θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))]

−(1− αn)[βn,0βn,ig(||JE1zn − JE1Tizn||)]
= αn(ϕ(x

∗, u)− ϕ(x∗, xn)) + ϕ(x∗, xn)

+(1− αn)[θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))]

−(1− αn)[βn,0βn,ig(||JE1zn − JE1Tizn||)]. (3.36)

From (3.27), equation (3.8) of Remark 3.1 together with condition (B2), we have
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from (3.36) that

(1− αn)βn,0βn,ig(||JE1
zn − JE1

Tizn||) ≤ αn(ϕ(x
∗, u)− ϕ(x∗, xn)) + ϕ(x∗, xn)

−ϕ(x∗, xn+1) + (1− αn)[θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))] −→ 0, as n −→ ∞.

Hence,

lim
n→∞

βn,0βn,ig(||JE1zn − JE1Tizn||) = 0. (3.37)

Thus, using the property of g in Lemma 2.3 and since lim inf
n→∞

βn,0βn,i > 0, we have

from (3.37) that

lim
n→∞

||JE1
zn − JE1

Tizn|| = 0. (3.38)

Since E∗
1 is uniformly smooth, then J−1

E1
is uniformly norm to norm continuous on

bounded subsets of E∗
1 . Hence, we have from (3.38) that

lim
n→∞

||JE1zn − JE1Tizn|| = lim
n→∞

||J−1
E1

(JE1zn)− J−1
E1

(JE1Tizn)||

= lim
n→∞

||zn − Tizn|| = 0. (3.39)

Using the definition of {wn} in Algorithm 3 and (3.39), we have

||JE1wn − JE1zn|| = ||(βn,0JE1zn +

M∑
i=1

βn,iJE1Tizn)− JE1zn||

= ||βn,0(JE1zn − JE1zn) +

M∑
i=1

βn,i(JE1Tizn − JE1zn)||

= ||
M∑
i=1

βn,iJE1Tizn − JE1zn||

≤
M∑
i=1

βn,i||JE1Tizn − JE1zn||.

Hence,

lim
n→∞

||JE1wn − JE1zn|| = 0. (3.40)

Since E∗
1 is uniformly smooth, we have that

lim
n→∞

||J−1
E1

(JE1
wn)− J−1

E1
(JE1

zn)|| = lim
s→∞

||wn − zn|| = 0. (3.41)

From the definition of {xn+1} in Algorithm 3, we have

xn+1 = J−1
E1

(αnJE1
u+ (1− αn)JE1

wn),

JE1
xn+1 − JE1

wn = (αnJE1
u+ (1− αn)JE1

wn)− JE1
wn,

||JE1xn+1 − JE1wn|| = ||αnJE1u+ (1− αn)JE1wn−(αnJE1wn + (1− αn)JE1wn)||
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= ||αnJE1
u− αnJE1

wn + (1− αn)JE1
wn − (1− αn)JE1

wn)||
= αn||JE1

u− JE1
wn||.

Now, using condition (B2), we obtain

lim
n→∞

||JE1xn+1 − JE1wn|| = 0. (3.42)

Since E∗
1 is uniformly smooth, we have from (3.42) that

lim
n→∞

||xn+1 − wn|| = 0. (3.43)

From the definition of {un} in Algorithm 3 and equation (3.6) of Remark 3.1, we
obtain

un = J−1
E1

(JE1
xn + θn(JE1

xn−1 − JE1
xn),

||JE1
un − JE1

xn|| = ||θn(JE1
xn−1 − JE1

xn)||

= αn.
θn
αn

||JE1
xn−1 − JE1

xn|| −→ 0, as n −→ ∞. (3.44)

Hence,

lim
n→∞

||JE1
un − JE1

xn|| = 0. (3.45)

Since E∗
1 is uniformly smooth, then J−1

E1
is uniformly norm to norm continuous on

bounded subsets of E∗
1 , we have

lim
n→∞

||JE1un − JE1xn|| = lim
n→∞

||un − xn|| = 0. (3.46)

From (3.19), we obtain

ϕ(x∗, tn)

≤ϕ(x∗, un)− γn[||JE2
(I −QBi

λi,n
)Lun||2 − κ2γn||L∗JE2

(I −QBi

λi,n
)Lun||2]. (3.47)

γn[||JE2(I −QBi

λi,n
)Lun||2 − κ2γn||L∗JE2(I −QBi

λi,n
)Lun||2] ≤ ϕ(x∗, un)

−ϕ(x∗, tn)
= ϕ(x∗, un)− ϕ(x∗, xn+1) + ϕ(x∗, xn+1)− ϕ(x∗, tn)

= [(1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)]− ϕ(x∗, xn+1) + (αnϕ(x
∗, u)

+(1− αn)ϕ(x
∗, wn))− ϕ(x∗, tn)

= ϕ(x∗, xn) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))− ϕ(x∗, xn+1) + αn[ϕ(x

∗, u)− ϕ(x∗, wn)]

+ϕ(x∗, wn)− ϕ(x∗, tn)

≤ ϕ(x∗, xn)− ϕ(x∗, xn+1) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn)) + αn[ϕ(x

∗, u)− ϕ(x∗, wn)]

+ϕ(x∗, zn)− ϕ(x∗, tn)

≤ ϕ(x∗, xn)− ϕ(x∗, xn+1) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn)) + αn[ϕ(x

∗, u)− ϕ(x∗, wn)]

+ϕ(x∗, tn)− ϕ(x∗, tn)

= αn[ϕ(x
∗, u)− ϕ(x∗, wn)] + θn(ϕ(x

∗, xn−1)− ϕ(x∗, xn))
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+ϕ(x∗, xn)− ϕ(x∗, xn+1) −→ 0, as n −→ ∞.

Hence, we have

lim
n→∞

[||JE2
(I −QBi

λi,n
)Lun||2 − κ2γn||L∗JE2

(I −QBi

λi,n
)Lun||2] = 0. (3.48)

Next, we have from the definition of γn in (3.3) that, there exists a very small
number ϵ > 0 such that

0 < γn ≤
||JE2

(I −QBi

λi,n
)Lun)||2

κ2||L∗JE2
(I −QBi

λi,n
)Lun)||2

− ϵ. (3.49)

This implies that

γnκ
2||L∗JE2(I −QBi

λi,n
)Lun||2 ≤ ||JE2(I −QBi

λi,n
)Lun||2

−ϵκ2||L∗JE2
(I −QBi

λi,n
)Lun||2. (3.50)

Thus, we have from (3.50) that

ϵκ2||L∗JE2
(I −QBi

λi,n
)Lun||2 ≤ ||JE2

(I −QBi

λi,n
)Lun||2

−γnκ2||L∗JE2
(I −QBi

λi,n
)Lun||2. (3.51)

Hence, from (3.48), we have

lim
n→∞

ϵκ2||L∗JE2
(I −QBi

λi,n
)Lun||2 = 0.

Thus, we have

lim
n→∞

||L∗JE2(I −QBi

λi,n
)Lun||2 = 0. (3.52)

Now, we have from (3.19) and (3.52) that

0 ≤ γn||JE2(I −QBi

λi,n
)Lun||2

≤ ϕ(x∗, un)− ϕ(x∗, tn) + γ2nκ
2||L∗JE2

(I −QBi

λi,n
)Lun||2

= ϕ(x∗, un)−ϕ(x∗, xn+1)+ϕ(x
∗, xn+1)−ϕ(x∗, tn)+γ2nκ2||L∗JE2(I −QBi

λi,n
)Lun||2

= [(1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)]− ϕ(x∗, xn+1) + (αnϕ(x
∗, u)

+(1− αn)ϕ(x
∗, wn))− ϕ(x∗, tn) + γ2nκ

2||L∗JE2(I −QBi

λi,n
)Lun||2

= ϕ(x∗, xn) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))− ϕ(x∗, xn+1)− ϕ(x∗, tn)

+αn[ϕ(x
∗, u)− ϕ(x∗, wn)] + ϕ(x∗, wn) + γ2nκ

2||L∗JE2
(I −QBi

λi,n
)Lun||2

≤ ϕ(x∗, xn)− ϕ(x∗, xn+1) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))− ϕ(x∗, tn)

+αn[ϕ(x
∗, u)− ϕ(x∗, wn)] + ϕ(x∗, zn) + γ2nκ

2||L∗JE2
(I −QBi

λi,n
)Lun||2

≤ ϕ(x∗, xn)− ϕ(x∗, xn+1) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))

+αn[ϕ(x
∗, u)− ϕ(x∗, wn)] + γ2nκ

2||L∗JE2
(I −QBi

λi,n
)Lun||2

+ϕ(x∗, tn)− ϕ(x∗, tn)

= ϕ(x∗, xn)− ϕ(x∗, xn+1) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))
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+αn[ϕ(x
∗, u)− ϕ(x∗, wn)] + γ2nκ

2||L∗JE2
(I −QBi

λi,n
)Lun||2 −→ 0, (3.53)

as n −→ ∞.

Hence, we obtain

lim
n→∞

||JE2
(I −QBi

λi,n
)Lun||2 = 0. (3.54)

Since E2 is uniformly smooth, then we have from (3.54) that

lim
n→∞

||Lun −QBi

λi,n
Lun||2 = 0. (3.55)

Let vn = J−1
E1

(JE1un−γnL∗JE2(I−Q
Bi

λi,n
)Lun). Following the same approach as in

(3.19), we obtain

ϕ(x∗, vn) ≤ ϕ(x∗, un). (3.56)

From the definition of vn, we have

JE1vn = JE1un − γnL
∗JE2(I −QBi

λi,n
)Lun. (3.57)

Then from (3.57) we get

0 ≤ ||JE1un − JE1vn|| ≤ γn||L||||JE2(I −QBi

λi,n
)Lun|| −→ 0, as n −→ ∞.

This implies

lim
n→∞

||JE1
un − JE1

vn|| = 0. (3.58)

Considering the fact that E∗
1 is uniformly smooth, then we have

lim
n→∞

||un − vn|| = 0. (3.59)

Also, from the definition of {vn}, (3.56), Lemma 2.9, (3.27), equation (3.8) of Re-
mark 3.1 together with condition (B2), we obtain

ϕ(vn, tn) = ϕ(vn,Ψ
Ai
µi,n

vn)

≤ ϕ(x∗, vn)− ϕ(x∗,ΨAi
µi,n

vn)

≤ ϕ(x∗, un)− ϕ(x∗,ΨAi
µi,n

vn)

= ϕ(x∗, un)− ϕ(x∗, xn+1) + ϕ(x∗, xn+1)− ϕ(x∗,ΨAi
µi,n

vn)

= [(1− θn)ϕ(x
∗, xn) + θnϕ(x

∗, xn−1)]− ϕ(x∗, xn+1)− ϕ(x∗,ΨAi
µi,n

vn)

+(αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, wn))

= ϕ(x∗, xn) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))− ϕ(x∗, xn+1)− ϕ(x∗,ΨAi

µi,n
vn)

+αn[ϕ(x
∗, u)− ϕ(x∗, wn)] + ϕ(x∗, wn)

≤ ϕ(x∗, xn) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))− ϕ(x∗, xn+1)

+αn[ϕ(x
∗, u)− ϕ(x∗, wn)] + ϕ(x∗, zn)− ϕ(x∗,ΨAi

µi,n
vn)

≤ ϕ(x∗, xn)− ϕ(x∗, xn+1) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))

+αn[ϕ(x
∗, u)− ϕ(x∗, wn)] + ϕ(x∗, tn)− ϕ(x∗,ΨAi

µi,n
vn)
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= ϕ(x∗, xn)− ϕ(x∗, xn+1) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))

+αn[ϕ(x
∗, u)− ϕ(x∗, wn)] + ϕ(x∗, tn)− ϕ(x∗, tn)

= ϕ(x∗, xn)− ϕ(x∗, xn+1) + θn(ϕ(x
∗, xn−1)− ϕ(x∗, xn))

+αn[ϕ(x
∗, u)− ϕ(x∗, wn)] −→ 0, as n −→ ∞. (3.60)

Hence,

lim
n→∞

ϕ(vn, tn) = 0. (3.61)

Thus, from Lemma 2.4, we have

lim
n→∞

||vn − tn|| = 0. (3.62)

Again, we have from (3.59) and (3.62) that

||tn − un|| = ||tn − vn + vn − un||
≤ ||tn − vn||+ ||vn − un|| −→ 0, as n −→ ∞. (3.63)

Hence,

lim
n→∞

||tn − un|| = 0. (3.64)

From (3.64) and (3.46), we obtain

||tn − xn|| = ||tn − un + un − xn||
≤ ||tn − un||+ ||un − xn|| −→ 0, as n −→ ∞.

Hence,

lim
n→∞

||tn − xn|| = 0. (3.65)

Also we have from (3.30) and (3.64) that

||yn − un|| = ||yn − tn + tn − un||
≤ ||yn − tn||+ ||tn − un|| −→ 0, as n −→ ∞. (3.66)

Thus,

lim
n→∞

||yn − un|| = 0. (3.67)

Furthermore, we have from (3.46) and (3.67) that

||yn − xn|| = ||yn − un + un − xn||
≤ ||yn − un||+ ||un − xn|| −→ 0, as n −→ ∞. (3.68)

Thus,

lim
n→∞

||yn − xn|| = 0. (3.69)

From (3.69), (3.43), (3.41) and (3.34), we obtain

||xn+1 − xn|| = ||xn+1 − wn + wn − zn + zn − yn + yn − xn||
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≤ ||xn+1 − wn||+ ||wn − zn||+ ||zn − yn||+ ||yn − xn|| −→ 0,

as n −→ ∞. Hence,

lim
n→∞

||xn+1 − xn|| = 0. (3.70)

Furthermore, from (3.70) and (3.43), we have

||xn − wn|| = ||xn − xn+1 + xn+1 − wn||
≤ ||xn − xn+1||+ ||xn+1 − wn|| −→ 0, as n −→ ∞. (3.71)

This implies from (3.71) that

lim
n→∞

||xn − wn|| = 0. (3.72)

Thus, from (3.34) and (3.69), we obtain

||zn − xn|| = ||zn − yn + yn − xn||
≤ ||zn − yn||+ ||yn − xn|| −→ 0, as n −→ ∞. (3.73)

Hence, from (3.73), we have

lim
n→∞

||zn − xn|| = 0. (3.74)

Furthermore, since {xn} is bounded, there exists a subsequence {xnk
} of {xn}

such that {xnk
} converges weakly to u∗ ∈ E1. Also, we know that L is linear and

bounded, then we have that {Lunk
} converges weakly to Lu∗. Also, from (3.55) we

have that {QBi

λi,nk
Lunk

} converges weakly to Lu∗. Since QBi

λi,n
is the metric resolvent

of Bi for λi,n ≥ 0, we have

QBi

λi,n
Lun = (I + λi,nJ

−1
E2
Bi)

−1Lun,

JE2
(Lun −QBi

λi,n
Lun)

λi,n
∈ BiQ

Bi

λi,n
Lun, ∀ n ∈ N and i ∈ N.

From the monotonicity of Bi, we obtain

0 ≤ ⟨u−QBi

λi,nk
Lunk

, v∗ −
JE2

(Lunk
−QBi

λi,nk
Lunk

)

λi,nk

⟩, for all (u, v∗) ∈ Bi.

Taking the limit as k −→ ∞ we obtain from (3.54) that

||JE2(Lunk
−QBi

λi,nk
Lunk

)|| = ||Lunk
−QBi

λi,nk
Lunk

|| −→ 0, as k −→ ∞

and λi,nk
> 0 for all k > 1, it follows that 0 ≤ ⟨u−Lu∗, v∗ − 0⟩ for all (u, v∗) ∈ Bi.

Thus, since Bi is maximal monotone, we have Lu∗ ∈
⋂N

i=1(B
−1
i 0).

We also have from (3.65) that there exists a subsequence {tnk
} of {tn} such that

{tnk
} converges weakly to u∗. Since ΨAi

µi,n
is the generalized resolvent of Ai, we

have
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Let vn = J−1
E1

(JE1
un − γnL

∗JE2
(I −QBi

λi,n
)Lun). Then

tn = ΨAi
µi,n

vn,

JE1
vn − JE1

tn
µi,n

∈ Aitn, ∀ n ∈ N and i ∈ N.

From the monotonicity of Ai, it follows that

0 ≤ ⟨s− tnk
, w∗ − JE1

vnk
− JE1

tnk

µi,nk

⟩, for all (s, w∗) ∈ Ai.

Hence, from (3.62), ||JE1
vnk

−JE1
tnk

|| −→ 0 as k −→ ∞ and µi,n > 0 for all k > 1,
we have that 0 ≤ ⟨s−u∗, w∗−0⟩ for all (s, w∗) ∈ Ai. Since Ai is maximal monotone,
we obtain u∗ ∈ (A−1

i 0).
Since {xn} is bounded, there exists a subsequence {xnk

} ⊂ {xn} such that
xnk

⇀ u∗, which implies that znk
⇀ u∗ as k −→ ∞. Hence, by demiclosedness of

(I − Ti) at zero for each i ∈ N together with lim
k→∞

||Tiznk
− znk

|| = 0, it follows that

u∗ ∈
⋂M

i=1 F (Ti).
Next, we show that {xn} converges strongly to a point x̄ = ΠΓu. By Lemma 3.2,

it follows that lim
k→∞

||unk
− ynk

|| = 0, then u∗ ∈ V I(C,F ). Since {xn} is bounded,

then, there exists a subsequence {xnk
} ⊂ {xn} such that xnk

⇀ u∗ and

lim sup
n→∞

⟨xn+1 − x̄, JE1
u− JE1

x̄⟩ = lim
k→∞

⟨xnk+1 − x̄, JE1
u− JE1

x̄⟩

= ⟨u∗ − x̄, JE1
u− JE1

x̄⟩. (3.75)

Thus, from equation (2.10) of Lemma 2.2 and (3.75), we have

lim sup
n→∞

⟨xn+1 − x̄, JE1
u− JE1

x̄⟩ = ⟨u∗ − x̄, JE1
u− JE1

x̄⟩ ≤ 0. (3.76)

Hence, it follows from (3.76) that

lim sup
n→∞

⟨xn+1 − x̄, JE1u− JE1 x̄⟩ ≤ 0. (3.77)

Furthermore, from the definition of ϕ(x̄, xn+1) in Algorithm 3 and Lemma 2.1, we
obtain

ϕ(x̄, xn+1) = ϕ(x̄, J−1
E1

(αnJE1(u) + (1− αn)JE1wn))

= V (x̄, αnJE1(u) + (1− αn)JE1wn)

≤ V (x̄, αnJE1(u) + (1− αn)JE1wn − αn(JE1(u)− JE1 x̄))

−2⟨J−1
E1

(αnJE1(u) + (1− αn)JE1wn)− x̄,−αn(JE1(u)− JE1 x̄)⟩
= V (x̄, αnJE1(u) + (1− αn)JE1wn − αn(JE1(u)− JE1 x̄))

+2αn⟨xn+1 − x̄, JE1(u)− JE1 x̄⟩
= ϕ(x̄, J−1

E1
[(1− αn)JE1wn + αnJE1 x̄]) + 2αn⟨xn+1 − x̄, JE1(u)− JE1 x̄⟩

≤ (1− αn)ϕ(x̄, wn) + αnϕ(x̄, x̄) + 2αn⟨xn+1 − x̄, JE1(u)− JE1 x̄⟩
≤ (1− αn)ϕ(x̄, zn) + 2αn⟨xn+1 − x̄, JE1(u)− JE1 x̄⟩
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≤ (1− αn)ϕ(x̄, un) + 2αn⟨xn+1 − x̄, JE1
(u)− JE1

x̄⟩
= (1− αn)[(1− θn)ϕ(x̄, xn) + θnϕ(x̄, xn−1)]

+2αn⟨xn+1 − x̄, JE1
(u)− JE1

x̄⟩
= (1− αn)[ϕ(x̄, xn) + θn(ϕ(x̄, xn−1)− ϕ(x̄, xn))]

+2αn⟨xn+1 − x̄, JE1
(u)− JE1

x̄⟩
= (1− αn)ϕ(x̄, xn) + (1− αn)[θn(ϕ(x̄, xn−1)− ϕ(x̄, xn))]

+2αn⟨xn+1 − x̄, JE1
(u)− JE1

x̄⟩. (3.78)

Setting γn = [1−αn]θn(ϕ(x̄, xn−1)−ϕ(x̄, xn)) and σn = 2⟨xn+1− x̄, JE1
(u)−JE1

x̄⟩
Now, applying Lemma 2.11, (3.77), (3.78) and condition (B2), we obtain

lim
n→∞

ϕ(x̄, xn) = 0. (3.79)

Thus, from Lemma 2.4, we have

lim
n→∞

||x̄− xn|| = 0. (3.80)

Hence, xn −→ x̄ where x̄ = ΠΓu.
Case II. Suppose that the sequence {ϕ(p, xn)}∞n=1 is not a nonincreasing sequence.
Then, let {xnk

} be a subsequence of {xn} such that

ϕ(p, xnk
) < ϕ(p, xnk+1), for all k ∈ N.

Then, using Lemma 2.12, there exists a nondecreasing sequence {ms} ⊆ N such
that ms −→ ∞ as s −→ ∞. Then,

ϕ(p, xms) ≤ ϕ(p, xms+1) and ϕ(p, xs) ≤ ϕ(p, xms+1).

Since {ϕ(p, xms
)} is bounded, then lim

s→∞
ϕ(p, xms

) exists.

Therefore, using the same approach as in Case I, we have the following

(i) lim
s→∞

||xms
− wms

|| = 0,

(ii) lim
s→∞

||ums − yms || = 0,

(iii) lim
s→∞

||zms − yms || = 0,

(iv) lim
s→∞

||xms+1 − xms || = 0.

Now, following the same steps as in the proof of Case I, we obtain

lim sup
s→∞

⟨xms+1 − x̄, JE1
u− JE1

x̄⟩ ≤ 0. (3.81)

Furthermore, from (3.78) and ϕ(x̄, xms
) ≤ ϕ(x̄, xms+1), we have

ϕ(x̄, xms+1) ≤ (1− αms)ϕ(x̄, xms) + (1− αms)[θms(ϕ(x̄, xms−1)− ϕ(x̄, xms))]

+2αms⟨xms+1 − x̄, JE1u− JE1 x̄⟩
≤ (1− αms)ϕ(x̄, xms+1) + (1− αms)[θms(ϕ(x̄, xms−1)− ϕ(x̄, xms))]

+2αms⟨xms+1 − x̄, JE1u− JE1 x̄⟩.
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Since αms
> 0 for all s ≥ 0 and ϕ(x̄, xms

) ≤ ϕ(x̄, xms+1), we have

ϕ(x̄, xms) ≤ ϕ(x̄, xms+1) ≤ 2⟨xms+1 − x̄, JE1u− JE1 x̄⟩.

This implies

lim sup
s→∞

ϕ(x̄, xms
) ≤ lim sup

s→∞
2 ⟨xms+1 − x̄, JE1

u− JE1
x̄⟩ ≤ 0.

Thus,
lim sup
s→∞

ϕ(x̄, xms
) = 0,

which by Lemma 2.4, we have lim
s→∞

||x̄− xms
|| = 0.

However, we know that ϕ(x̄, xs) ≤ ϕ(x̄, xms+1) for all s ∈ N, hence, lim
s→∞

ϕ(x̄, xs)

= 0, by Lemma 2.4, implies

lim
s→∞

||x̄− xs|| = 0.

Hence, xs −→ x̄ where x̄ = ΠΓu.

Corollary 3.1. Let E be uniformly smooth and 2 - uniformly convex real Banach
space, F : E −→ E∗ be a monotone and Lipschitz continuous operator, and {Ti}Mi=1

be a finite family of quasi nonexpansive mappings of E into itself. Let {un}, {tn},
{yn}, {wn}, and {zn} be sequences generated by Algorithm 3 and {αn} ⊂ (0, 1)
satisfy lim

n→∞
αn = 0 and let

∑∞
n=1 αn = ∞ be sequences satisfying assumptions

(A1) − (A4) and condition (B1) of Algorithm 3. Suppose Γ = V I(C,F )
⋂
Ω ̸= ∅,

where Ω = {x̄ ∈ (
⋂M

i=1 F (Ti)
⋂

(
⋂N

i=1(A
−1
i 0)) such that Lx̄ ∈ (

⋂N
i=1(B

−1
i 0))}.

Then the sequence {xn} generated by Algorithm 3 converges strongly to a solution
x̄ = ΠΓu.

Proof. Observe that in this case the weak sequential continuity of A in assumption
(A2) of Algorithm 3 has to be droped since it follows from the monotonicity of A
and Lemma 3.2 ( see, Lemma 9, equation (41) of [33] for more details) that

1

λnk

⟨z − ynk
, JE1unk

− JE1ynk
⟩+ ⟨ynk

− unk
, F (unk

)⟩ ≤ ⟨z − unk
, F (unk

)⟩

≤ ⟨z − unk
, F (z)⟩.(3.82)

Furthermore, passing the limit as k −→ ∞ in inequality (3.82) and applying the
fact that ||unk

− ynk
|| −→ 0, as k −→ ∞, we obtain

⟨z − u∗, F (z)⟩ ≥ 0, ∀ z ∈ C.

Hence, it follows from Theorem (3.1) that the sequence {xn} converges strongly to
a solution x̄ = ΠΓu.

Corollary 3.2. Let H be a real Hilbert space, F : H −→ H be pseudomono-
tone and Lipschitz continuous operator, and {Ti}Mi=1 be a finite family of quasi
nonexpansive mappings of H into itself. Let {un}, {tn}, {yn}, {wn}, and {zn}
be sequences generated by Algorithm 3 and {αn} ⊂ (0, 1) satisfy lim

n→∞
αn = 0

and let
∑∞

n=1 αn = ∞ be sequences satisfying assumptions (A1)-(A4) and con-
dition (B1) of Algorithm 3. Suppose Γ = V I(C,F )

⋂
Ω ̸= ∅, where Ω = {x̄ ∈

(
⋂M

i=1 F (Ti)
⋂

(
⋂N

i=1(A
−1
i 0)) such that Lx̄ ∈ (

⋂N
i=1(B

−1
i 0))}. Then the sequence

{xn} generated by Algorithm 3 converges strongly to a solution x̄ = ΠΓu.
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Proof. Let E = H, thus by Theorem (3.1), we have that the sequence {xn}
generated by Algorithm 3 converges strongly to a solution x̄ = ΠΓu.

4. Numerical illustration

In this section, we provide numerical experiments to demonstrate the advantages
of the suggested method and compare with some known strongly convergent algo-
rithms, including the Algorithm 3.1 introduced by Tang and Gibali [43]] (shortly,
AlgAvi), and Algorithms 3.3 presented by Okeke et al. [36](shortly, AlgOke). All
the programs are implemented in MATLAB R2023b on a personal computer.

Example 4.1. Let E1 = E2 = L2([0, 1]), C = D = {x ∈ L2[0, 1] : ⟨a, x⟩ ≤ b},
where a = t2 + 1 and b = 1, with norm ||x|| =

√∫ 1

0
|x(t)|2dt and inner product

⟨x, y⟩ =
∫ t

0
x(t)y(t)dt, for all x, y ∈ L2([0, 1]), t ∈ [0, 1]. Define metric projection

PC as follows:

PC(x) =


x, if x ∈ C,

b−⟨a,x⟩
||a||L2

a+ x, otherwise.

(4.1)

Let F : L2[0, 1] → L2[0, 1] be defined by F (x(t)) = e−||x|| ∫ t

0
x(s)ds, for all

x ∈ L2[0, 1], t, s ∈ [0, 1]. Then, F is a pseudomonotone and uniformly continuous
mapping. Let A,B,L : L2([0, 1]) → L2([0, 1]) be operators defined as follows:

Lx(t) =

∫ 1

0

x(t)dt, Ax(t) = 5x(t), and Bx(t) = 4x(t)

for all x ∈ L2([0, 1]) and t ∈ [0, 1]. Then A is bounded and linear, A and B

are maximal monotone operators with resolvents QA
µx(t) = x(t)

1+5µ and ΨB
µ x(t) =

x(t)
1+4µ , µ > 0, respectively. Furthermore, we define the mappings T : L2([0, 1]) →
L2([0, 1]) by T (x(t)) =

∫ 1

0
x(t)
2 dt, T (x(t)) = x(t) is relatively nonexpansive mapping.

We assume also that αn = 1
5n+1 , βn = 0.5 − αn and in addition for Algorithm 3.1

introduced by Tang and Gibali [43]] (shortly, AlgAvi), Algorithms 3.3 presented
by Okeke et al. [36] (shortly, AlgOke), we take βn = 1

5n+1 , θn = 0.5 − βn, ρn =
5n−1
2n and D(x(t)) = 3x(t). Then, we let the iteration terminate when ||xn+1 −
xn|| ≤ ϵ where ϵ = 10−8. The numerical experiments are listed in Table 1. Also,
we illustrate the efficiency of strong convergence of the proposed Algorithm 3 in
comparison with convergence of Algorithm [43, Algorithm 3.1](shortly, AlgAvi) and
[36, Algorithm](shortly, AlgOke) in Figure 1.
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Table 1. Comparison of Algorithm 3, [43, Algorithm 3.1] (shortly, AlgAvi) and [36, Algorithm] (shortly,
AlgOke).

Algorithm 3 AlgOke [36] AlgAvi [43]

x0 = 3t, x1 = t6 Iterations 18 24 73

CPU Time (s) 1.1707 1.3586 2.7914

x0 = t3, x1 = t2 + 1 Iterations 17 23 72

CPU Time (s) 0.8441 1.2749 2.7630

x0 = 2t, x1 = t4 + t2 Iterations 17 23 71

CPU Time (s) 0.9420 1.4623 3.0487

x0 = t4, x1 = t8 + 4t5 + 2t Iterations 18 24 74

CPU Time (s) 0.9658 1.4264 3.5148
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Figure 1. The error plotting of Comparison of Algorithm 3, [43, Algorithm 3.1](shortly, AlgAvi) and [36,
Algorithm](shortly, AlgOke) for Example 4.1.



Method for Solving Variational Inequalities 1413

5. Conclusion

This paper introduces a new inertial Tseng’s extragradient algorithm with a self
adaptive step size for approximating common element of the set of solutions of split
common null point and pseudomonotone variational inequality problem as well as
common fixed point of a finite family of quasi nonexpansive mappings in uniformly
smooth and 2 - uniformly convex Banach space. Furthermore, we prove a strong
convergence theorem of our algorithm without prior knowledge of Lipschitz constant
of the operator under some mild assumptions. we presented some numerical exam-
ples in order to illustrates the performance of our proposed algorithm and compare
it with some existing ones in the literature. Our result generalize and improve many
existing result in the literature.
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