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An Inertial Tseng’s Extragradient Method for
Approximating Solution of Split Problems in
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Abstract In this paper, we introduce a new inertial type algorithm with a
self-adaptive step size for approximating a common element of the set of so-
lutions of split common null point and pseudomonotone variational inequality
problem as well as the set of common fixed point of a finite family of quasi non-
expansive mappings in uniformly smooth and 2-uniformly convex real Banach
space. The proposed algorithm is constructed in such a way that its conver-
gence analysis does not require a prior estimate of the operator norm. We also
give numerical examples to illustrate the performance of our algorithm. Our
results generalize and improve many existing results in the literature.
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1. Introduction

Let E be a real Banach space and E* be its dual space. Let C be a nonempty,
closed and convex subset of F, and let F': C'— E* be a mapping. The problem of
finding a point * € C such that

(y—a*, Fz*) >0, Vyel, (1.1)

is called a variational inequality problem. The set of solutions of variational inequal-
ity problem (1.1) is denoted by VI(C, F'). The study of variational inequality prob-
lem originates from solving minimization problems involving infinite-dimensional
functions and calculus of variation (see, for example, [33] and reference therein).
The concept of variational inequality problem was initially introduced by Hart-
man and Stampacchia [18] as a generalization of boundary value problems in 1966.
Such problems are applicable in a wide range of applied sciences and mathematics.
Later in 1967 Lions and Stampacchia [28] studied the existence and uniqueness of
the solution. Since then, the theory of variational inequality problem has received
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much attention due to its wide applications in various areas of pure and applied
sciences, such as optimal control, image recovery, resource allocations, networking,
transportation, signal processing, game theory, operation research and so on (see, for
example, [3,23,39] and references therein). The constraints can clearly be expressed
as variational inequality problems and (or) as fixed point problems. Consequently,
the problem of finding common elements of the set of solutions of variational in-
equality problems and the set of fixed points of nonlinear operators has become an
interesting area of research for many researchers working in the area of nonlinear
operator theory (see, for example, [30,31] and the references contained in them). In
view of this, many researchers in their quest to find solutions of variational inequal-
ity problems have proposed and analyzed various iterative approximation methods
(see for example, [13,20])in which most of them are based on projection methods.
The simplest and earliest form of projection method is due to Goldstein [17], which
is a natural extension of the gradient projected technique considered for solving
optimization problems. A number of results on iterative methods proposed for ap-
proximating solutions of variational inequality problems are studied such that the
operator F' was often considered to be either strongly monotone or inverse strongly
monotone (see, for instance [17,26] and references therein) for convergence to be
guaranteed. In order to relax the strong monotonicity condition imposed on the op-
erator F, Korpelevich [25] proposed the following extragradient method in a finite
dimensional Euclidean space R™:

r1=x€C,
Yn = Po(zn — AF(zy)), (1.2)
Tn+1 = Po(z, — AF(y,)) ¥Yn >0,

where A € (0, %), F' is monotone and Lipschitz and Pc is the metric projection
onto C. They proved that the sequence {z,} generated by algorithm (1.2) con-
verges weakly to a solution of problem (1.1). However, the extragradient method
requires the computation at each step of the iteration process two projections onto
an arbitrary closed and convex subset C' of H. This might affect the efficiency of
the extragradient method if the feasible set is not simple enough which might also

increase the computational cost.

In order to overcome this barrier, several modifications of the extragradient
method were proposed (see, for example [12,19,44] and references therein) for solving
variational inequality problem (1.1). In particular, Tseng [44] proposed the following
Tseng’s extragradient method

x1=x €C,
Tn+1 = Yn — /\(F(yn) - F(xn)) Vn > 0,

where A € (0, %), F' is monotone and Lipschitz and Pg is the metric projection
onto C. They proved that the sequence {z,} generated by algorithm (1.3) converges
weakly to a solution of problem (1.1) in a real Hilbert space. Another modification
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of the extragradient method was proposed by Censor et al. [12] as follows:

xo € H,

Yn = PC(xn - AF(xn))v
T,={2€H:{z—yn,xn— AF(xy) — yn) <0},
Tn+1l = PTn(xn - AF(yn))7 vV n>0.

(1.4)

They modified the extragradient method (1.2) by replacing the second projection
onto a closed and convex subset C' with a projection onto the half space T,,. Al-
gorithm (1.4) is therefore called subgradient extragradient method. Observe that,
the set T, is a half space, making algorithm (1.4) simpler to implement than al-
gorithm (1.2). They proved that the sequence {z,} generated by algorithm (1.4)
converges weakly to a solution of problem (1.1) in a real Hilbert space under some
mild assumptions. Observe that all the methods mentioned above require a prior
knowledge of the Lipschitz constant of the operator F' as an input parameter which
is very difficult to estimate when solving some practical problems.

Let C' and @ be nonempty, closed and convex subsets of H; and H» respectively,
where Hy and H, are two real Hilbert spaces, and T' : H; — Hy be a bounded
linear operator. The split feasibility problem (SFP) is defined as follows:

find z* € C  such that Tz* € Q. (1.5)

The set of solutions of problem (1.5) is denoted by SFP(C,Q,T)={2*€C: Tx* €Q}.
The concept of SFP was first introduced in [10], in the setting of finite dimensional
space for modeling inverse problems arising from medical image reconstruction and
phase retrieval. Since its inception in 1994, the SFP has received much attention
due to its applications in various areas such as signal processing, image restoration,
data compression with particular progress in intensity modulated radiation therapy
and so on, (see, for example [7,8,11]). In order to solve problem (1.5), Byrne [§]
proposed the following iterative algorithm

Xo € C, (1 6)
Tny1 = Po(zn —yT*(I — Pg)Tx,), ’

where v € (0, W), Pc and Py are the metric projections onto C' and @ re-
spectively and T™ is the adjoint operator of T. They proved that the sequence
{zn} generated by algorithm (1.6) converges weakly to a solution of the SFP (1.5).
Later, Byrne et al. [6] introduced the concept of split common null point prob-
lem (SCNPP) in the setting of real Hilbert spaces, which is defined as follows: let
A; Hy — 251 1 <i<mand Bj : Hy — 212 1 < j < n be set valued map-
pings respectively, and T} : H; — Ha, 1 < j < n be a bounded linear operator.
Then the SCNPP [6] is defined as follows:
Find z* € H; such that

z* e (470 N (ﬂ T (B;'0)), (1.7)

where (A;10) and (BIIO) are the null point sets of A; and Bj respectively and the
null points set of A; is defined by 4710 = {z* € Hy : 0 € A;z*}. In solving problem

K2
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(1.7), Byrne et al. [6] proposed the following algorithm

l’oEHl, (1 8)
xnﬂ:Jfl(mn—vT*(I—Jfl)Txn), '

where A > 0, J) is the resolvent and v € (0, ﬁ) They proved that the sequence
{zn} generated by algorithm (1.8) converges weakly to a solution of problem (1.7).
The split common null point problem generalizes the split feasibility problem [10],
and split variational inequality problem (see for example [6,9]). On the other hand,
Takahashi [42] extends these results on the concept of SCNPP (1.7) to uniformly
convex and smooth Banach spaces as follows: Let E and F' be uniformly convex
and smooth Banach spaces respectively, and let Jg and Jg be the duality mappings
on F and F respectively. Let A and B be maximal monotone mappings of E into
27" and F into 2" such that A7'0 # ( and B~'0 # 0 respectively. Let Q,
be the metric resolvent of B for 4 > 0. Let T : E — F be a bounded linear
operator such that T # 0, and let T* be the adjoint operator of T. Suppose that
(A710) N T-Y(B7'0) # 0. Let 71 € E, and let {z,,} be a sequence generated by

Zp = Ty — ,uan?lT*Jp(T;vn - Qu, Txy),
Cn={2€A710: (2, — 2, Jg(xp — 2,)) > 0},
Qn=1{2€A70: (z, — 2, Jp(z1 — x,)) > 0},
Tnt+1 = Po,n@, 71, n >0,

(1.9)

where {u,} C (0, 00) satisfies that for some a,0 € R, 0<a < p, <b < HTlHQ, n >
0.

They proved that the sequence {z,} generated by algorithm (1.9) converges
strongly to a point zg € (A710) () T~1(B~10), where 2y = Pia-10) 0 7-1(B-10)T1-
However, the strongly convergent algorithms mentioned above share a common fea-
ture, that is, their stepsize depends on a prior estimate of the norm of the bounded
linear operator which, in general is very difficult to estimate. Thus, the following
questions arises naturally:

1. Can we provide a new self-adaptive iterative scheme for solving SCNPP (1.7)
in a real Banach space more general than Hilbert space such that its conver-
gence analysis does not require a prior estimate of the operator norm?

2. Can we also approximate such a solution as mentioned above which happens to
be a common fixed point of a finite family of quasi-¢-nonexpansive mappings?

In order to answer these questions and related issues, the construction of self-
adaptive stepsize iterative algorithms has aroused the interest of many researchers.
Lopez et al. [29] suggested the use of a self-adaptive stepsize sequence {~,} in place
of 7 in algorithm (1.6) which does not depend on the norm of the bounded linear
operator T'. The stepsize is given as follows:

o pell = P) T |
[T(T — Po) TP

T*(I — Po)Tzn # 0, (1.10)

where p,, € (0,4).
They proved that the sequence {z,} generated by algorithm (1.6) converges
weakly to a solution of the SFP (1.5). The authors in [29] noted that for T with



Method for Solving Variational Inequalities 1387

large data sets it may be difficult to compute the operator norm and this may
have effect on the iteration process. However, in 1964 Polyak [37] introduced the
technique of inertial extrapolation process as a means of speeding up the rate of
convergence of iterative methods. Many researchers have proposed and analyzed
a large number of inertial type iterative schemes (see, for example [33,39] and
references therein).

Recently, new methods have been proposed to improve the efficiency and conver-
gence properties of algorithms for solving variational inequality problems. For ex-
ample, Yao, Adamu, and Shehu [47] introduced forward-reflected-backward splitting
algorithms with momentum, demonstrating weak, linear, and strong convergence
results. Their approach enhances the convergence rates and stability of iterative
methods. Additionally, Jolaoso, Shehu, and Yao [21] proposed a strongly conver-
gent inertial proximal point algorithm without the need for an on-line rule. This
method provides strong convergence guarantees and is particularly effective in deal-
ing with non-monotone operators, further broadening the applicability of variational
inequality problem-solving techniques. These recent advancements underscore the
ongoing efforts to refine and optimize methods for solving variational inequality
problems, highlighting the dynamic and evolving nature of research in this area.

Motivated by the above works, in this paper, we introduce a new inertial Tseng’s
extragradient algorithm with self-adaptive step-size technique for approximating
common element in the set of solutions of split common null point and pseudomono-
tone variational inequality problem and the set of common fixed point of a finite
family of quasi nonexpansive mappings in uniformly smooth and 2 - uniformly con-
vex Banach space.

Again, we prove a strong convergence theorem of our algorithm to a solution
of the stated problem without prior knowledge of Lipschitz constant of the oper-
ator under some mild assumptions. we give some numerical examples in order to
illustrate the performance of our algorithm and compare it with some existing ones
in the literature. Our results generalize and extend many existing results in the
literature.

2. Preliminaries

A Banach space E is called smooth if the limit
t —
o e+ tyl] el
t—0 t
exists for all ,y € Sg and for any A € (0,1), if [[Ax+(1—=N)y|| < 1forall z,y € Sg
with z # y, then E is said to be strictly convex. Furthermore, F is said to be
uniformly convex if for any e € (0, 2], there exists 6 = d(¢) > 0 such that if z,y € E
with ||z|| = 1, |ly|]| = 1 and ||z — y|| > €, then w <1-4¢, for all z,y € Sg, and
Sp(z) ={z € E : ||z|| = 1} is the unit sphere of E.
The modulus of smoothness of E is the function pg : [0,00) — [0, 00) defined
by

rT+TY||—||r—T
PE(T):SUP{H l 5 I l —1l:z,y € Sp}.
E is called uniformly smooth if the lin% p%m = 0 ; g - uniformly smooth if there
T—

exists a positive constant C, such that pg(7) < Cy(7)9 for any 7 > 0.
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Observe that every ¢ - uniformly smooth Banach space is uniformly smooth.
Also, every uniformly convex Banach space is strictly convex and reflexive. Typical
examples of such spaces, (see, for example Chidume [15], pp. 34, 54) are L,,l,
and W which are ¢ - uniformly smooth for 1 < ¢ < 2; 2 - uniformly smooth and
uniformly convex (see, for instance [45]). The normalized duality mapping J from

E into 2% is defined by

Jr={z" € B : (z,2%) = [|z|[.||z"|], [|="|| = [|=|[}
for all x € E.

Remark 2.1. Observe that the normalized duality mapping J has the following
basic properties (see, for more details [16, 38]):

(T1) If E is smooth Banach space, then J is single - valued mapping from E into
B
(T2) If E is strictly convex Banach space, then J is one to one;

(T3) If E is uniformly smooth Banach space, then J is uniformly norm to norm
continuous on each bounded subset of E;

(T4) If E is reflexive Banach space, then J is surjective;

(T5) If E is reflexive, smooth and strictly convex Banach space with dual E* and
J* : E* — E is the normalized duality mapping in E*, then J* = J!;

(T6) If E is reflexive, smooth and strictly convex Banach space, then the normalized
duality mapping J is single - valued, one to one and onto.

Let E be a reflexive, smooth and strictly convex Banach space and C be a
nonempty, closed and convex subset of E (see, for more details [2]).
A mapping ¢ : E x E — [0,00) denotes the Lyapunov functional defined by

$(a,y) = l2l]* = 2(x, Jy) + lyl]*, V z,y € E. (2.1)

Observe that in a Hilbert space H, ¢(x,y) = ||z —y||?, V z,y € H.
Obviously, the functional ¢ satisfies the following properties (see, for more details
[2)).
(lzll = NlyID? < é(z,y) < (2]l +1l9l)?, Y 2,y € B;

o(z,y) = d(x,2) + d(z,y) + 2{x — 2, Jz — Jy), V z,y,z € E; (2.2)
o(x,y) + oy, x) = 2w —y, Jz = Jy), V 2,9,z € E; (2.3)
¢z, y) = (2, Jo=Jy) +(y -z, Jy) <|[z[[[|Jz = Jyl[+[ly—=|ll[y]|. V2, y € E; (2.4)
Bz, J HaJr+(1—a)Jy)) < ag(z,2)+(1—a)d(z,y), ¥ z,y € E, and a € (0,1)
Define a functional V : E x E* — [0,00) (see for example [2]) by 29
V(z,z*) = ||z||* = 2(z,2*) + ||y||*, Yz € E, and z* € E*. (2.6)

The following relation is easily verified,
V(z,2*) = ¢(z, J *(z*)), Vo € E, and z* € E*. (2.7)

Observe that the mapping g defined by fixing « € E, and g(z*) = V(x,2*) for all
r* € E* is a continuous, convex function from E* into R.
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Lemma 2.1. [2] Let E be a strictly convez, reflexive and smooth Banach space,
and let V' be as defined in (2.6). Then

V(z,z*)+2(J 'a* —z,y") < V(v,2* +y*) Vo € E, and 2%,y € E*. (2.8)

Let E be a reflexive, strictly convex and smooth Banach space and C be a nonempty,
closed and convex subset of E.

It is shown that, see Alber [2] for each x € E, there exists a unique element
k e C (written as Heox) such that

The mapping llc : E — C defined by llcx = k, is called generalized projection
(see, for example [2]).
Note that if E is a Hilbert space, then Il¢ is a metric projection onto C'.

Lemma 2.2. (see for more details [1,2,22]) Let E be a smooth, reflexive and strictly
conver Banach space and C be a monempty, closed and convexr subset of E. Then
the following inequalities hold:

(x,Tlcy) + o(llcy,y) < ¢(x,y), ¥V x€C and y € E; (2.9)

If z€FE and ze€C, then z=lex<= (z—y,Jz—Jz)>0, V yeC;
(2.10)

Lemma 2.3. [14] Let E be a uniformly smooth Banach space, r > 0 a positive
number, and B.(0) a closed ball of E. Then, for any given sequence {x;}52, C B(0)
and for any sequence of positive real numbers {\;}52, with > .o, X\; = 1, there exists
a continuous, strictly increasing and convex function g : [0,2r) — [0,00) with
9(0) = 0 such that for any positive integers i,j with i < j, the following inequality
hold,

1D~ Anzall? <D Aallznl® = Xidjg(llzi — 251)- (2.11)
n=1 n=1

Lemma 2.4. [35] Let E be a uniformly convex and smooth Banach space and {,}
and { A} be two sequences in E. If lim ¢(pin, \n) = 0 and either {u,} or {\,} is
n—oo

bounded, then lim ||, — Ay|| = 0.
n— o0

Lemma 2.5. [/] Let E be a 2-uniformly convex Banach space. Then, there exists
7> 0 such that

1

Lemma 2.6. [/5] Let E be a 2-uniformly smooth Banach space with the smoothness
constants k > 0 and for all x,y € E. Then the following inequality holds:

|z +ylI? < ||l2[1* + 2(y, Jz) + 262 [Jy||*. (2.13)
Definition 2.1. Let T : C — C be a mapping.

1. A point x € C is called a fixed point of T if Ta = x, where F(T) :={z € C:
Tx = x} is the set of the fixed point of T.
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2. A point z € C is said to be an asymptotic fixed point of T, if there exists a
sequence {z,} C C such that x,, — z and lim ||z, — Tx,|| = 0. We denote
n—oo

the set of all asymptotic fixed points of T' by F(T).
3. T is said to be quasi - ¢ - nonexpansive if F'(T) # (), and

o(p,Tx) < ¢p(p,x), ¥V z€C and pe F(T). (2.14)

4. T is called demiclosed at zero if for any sequence {z,} C C with z, =~ 2 € C
and
|z, — Tan|| — 0 as n — oo, then Tz =uwx.

5. A multi - valued mapping M : E — 2F is called monotone if ¥V z,y € F,
with

u* € Mx and v* € My, then (x—y,u* —v*) >0 holds.

6. A monotone mapping M : E — 2" is said to be maximal if M is monotone
and the graph of M, G(M) := {(z,u) € E x E* : u € Mz}, is not properly
contained in the graph of any other monotone mapping defined on F.

Clearly, when M is a maximal monotone operator and A > 0, then the resolvent of
M is defined as:

Sz = (J+AM) " Jz, V x € E.
The following lemma is due to Browder [5].

Lemma 2.7. [5] Let E be a uniformly convex and smooth Banach space, and let
J be the normalized duality mapping of E into E*. Let M be a monotone operator
of E into 28" . Then A is mazimal if and only if for any A > 0,

R(J + AM) = E*,

where R(J + AM) is the range of J + AM.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm,
and M be a mazimal monotone operator of E into 2F". For all x € E and X > 0,
we consider the following inclusion (see, for more details [5,42])

0€ J(zy— ) + AMzy.

This inclusion has a unique solution xx. We define Q¥ by zn = Q¥ z. Such
QM = (I +AXJtM)~1, X\ > 0 is called the metric resolvent of M. The set of null
points of M is defined by M—*0 = {z € E:0 € Mz}. We know that M—10 is closed
and convez; and F(J{) = M~10.

Note that in Hilbert space, the metric resolvent Qx of M is called the resolvent
of M.

Lemma 2.8. [22] Let E be a reflexive, strictly convex and smooth Banach space
and C be a nonempty, closed and convexr subset of E. Let A\ > 0 and M C E x E*
be a monotone mapping such that D(M) C J=YR(J + AM). Then, the resolvent of
M which is defined by Sxx = (J +AM)~1Jz for all x € C is a firmly nonexpansive
type mapping.
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Lemma 2.9. [2/] Let E be a reflexive, strictly convex and smooth Banach space
and M : E — 25" be a mazimal monotone mapping such that M0 # 0 and
Sy = (J+AM)"LT for all X > 0, then

(", Iny) + d(Say,y) < 9(a™,y), V 2" € F(Sy), and y € E. (2.15)

Definition 2.2. Let F : C — E* be a mapping. Then F is said to be

1. monotone if the following inequality holds

(x —y,Fx — Fy) >0, Va,yecC;
2. pseudomonotone if
(x—y, F(x)) 20=(x—y,Fy) 20, Va,yedl;
3. Lipschitz continuous if there exists a constant L > 0 such that
|Fz — Fy|| < L|lz —yl|, Ya,yeC;

4. weakly sequentially continuous if for any {z,} C C such that x,, — = implies
Az, — Azx.

Lemma 2.10. [3/] Consider the variational inequality problem VIP. Suppose that
the mapping h : [0,1] — E* defined by h(t) = F(tx + (1 — t)y) and t € [0,1] is
continuous for all x,y € C (i.e, h is hemicontinuous). Then M(C,F) C VI(C,F).
Moreover, if F' is pseudomonotone, then VI(C, F) is closed, convex and VI(C, F) =
M(C, F). Note that for some ezisting results for Minty variational inequality prob-
lem (MVIP), see [27,/1] for more details.

Lemma 2.11. [/6] If {b,} is a sequence of nonnegative real numbers satisfying
the following inequality:

bn+l S (1 - wn)bn + ’L/)nO-n + Yn, T Z 07

where (i) {p} C [0,1], Y00 b, = oo; (it) limsupo, < 0; (iii) v, > 0 and
oo n < 00, then, b, — 0 as n — co.

Lemma 2.12. [32] Let {b,} be a sequence of real numbers such that there exists a
subsequence {by,} of {bn} such that b,, < by, 11 for alli € N. Then, there exists a
nondecreasing sequence {my} C N such that my — 0o and the following properties

are satisfied for all k € N:

bmk < bmk+1 and bk < bmk+15

In fact, myp =max{j <k:b; <bjt1}.
Lemma 2.13. [/2] Let E and F be strictly convez, reflexive, and smooth Banach
spaces respectively, and let Jg and Jp be the normalized duality mappings on E and
F respectively. Let A and B be mazimal monotone mappings of E into 2E" and
F into 25" such that A='0 # 0 and B='0 # 0 respectively. Let Jy and Q. be the
metric resolvents of A for A > 0 and B for u > 0, respectively. Let T : E — F
be a bounded linear operator such that T # 0, and let T* be the adjoint operator of
T. Suppose that (A=0) (\ T-Y(B710) # 0. Let \,u,7 > 0, and z € E. Then, the
following are equivalent:

1. 2= I\(Jgr(Jp(z) = rT*Jp(Tz — Q,T%2)));
2. ze (A~'0) N T-YB10);
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3. Main results

In this section, we first establish two important lemmas and then prove a strong
convergence theorem for finding a common element of the set of solutions of split
common null point and pseudomonotone variational inequality problem and com-
mon fixed point of a finite family of quasi nonexpansive mappings in uniformly
smooth and 2 - uniformly convex real Banach space. Furthermore, to obtain a
strong convergence of our algorithm, we make the following assumptions:

Assumption A

(Al) Let E; and E5 be uniformly smooth and 2 - uniformly convex real Banach
spaces and C' and D be nonempty, closed and convex subsets of F; and FEy
respectively. Let {A;}N,,{B;}~, be finite families of maximal monotone
mappings of E; into 281 and Es into 272 such that Ai_lO # () and B;lo # () for
eachi € {1,2,..., N}. Let Qi"’,n and \I/f};n be metric and generalized resolvents
of B; for {\;,} >0 and A; for {y;,} > 0 respectively. Let L : E; — Ej be
a bounded linear operator with its adjoint L* : E5 — E} such that L # 0.

(A2) The operator F' : By — EY is pseudomonotone, L - Lipschitz continuous and
weakly sequentially continuous on Ej.

(A3) Fori e {1,2,...,M},{T;} is a finite family of quasi nonexpansive mappings of
F into itself.

(A4) The solution set ' = VI(C,F)Q # 0,

where Q = {Z € (ﬂfvil F(T) N (ﬂﬁil(AfO)) such  that LI €

N _

(M= (B 10)}-
Condition B we assume that the control sequences satisfy:
(B1) {Bni} € (0,1), > Bni =1and li@infﬁmoﬁn)i >0foralli=1,2,..., M;

n o0
(B2) {a,} C (0,1) satisfies lim a, =0and Y o, = oc.
n o0

In order to prove the strong convergence result of Algorithm 3, we first prove the
following lemma which plays an important role in the proof of the main result.

Lemma 3.1. Suppose that {un}, {tn}, {yn}, {zn}, {wn}, {An} are sequences gen-
erated by Algorithm 3 and assumptions (A1)-(A4) and conditions (B1)-(B2) hold:
Then

1. If t,, = yn for somen > 1, thent, € VI(C, F).
2. The sequence {\,} generated by (3.2) is a nonincreasing sequence and lim X\, =

n—o0
A > min{#, A\ }.
Proof. (1) Suppose that t,, = y, for some n > 1. Then from Algorithm 3, we have
tn =Hedg (Je, tn — AnF(tn)).

Thus, t, € C. Using the definition of {y,} in Algorithm 3 and the property of
generalized projection Il onto C' in equation (2.10) of Lemma 2.2, we have

<tn—y,JE1tn—)\nF(tn)—JEltn> >0, VyEC’.
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Initialization: Take A\g > 0,y > 0, u € (0, nlﬁ)’ 0 > 0. Select initial data zg, x1,u €

E1, and set n = 1. Choose a positive sequence {p,} such that lim £~ = 0.
n—oo ¥n

Step 1: Given x,_1, x, and 6, for each n > 1, choose 6,, such that 6,, € [0, én} with
0,, defined by

6, — im0 i o #F o, (3.1)
0, otherwise.

Step 2: Compute

Up = ngl(JElxn +0,.(Jg,xn-1 — Jg,Tn)).
Step 3: Compute

tn =V (Tl (Jpun = 1l Je,(I = Q3 ) Luy)).
Step 4: Compute
yn =oJg (Jp tn — AF (1))
If y,, = t,, then set z, = t,, and go to step 6. Else go to step 5.
Step 5: Compute
2n = Jg (JEYn — An(Fyn — Fty)).
Step 6: Compute
M
Wp = Jill (Bn,OJEl Zn + Z ﬁn,iJEl (Tzzn))
i=1

Step 7: Compute

R Jbill(anJE1 (u) + (1 — an) g, wy)
where A\, 1 and 7, are updated as follows:

. n—tn .

ay = [Pl Ak i Fn) = Flt) £0, 33
ns otherwise.

For € > 0 small enough, € = m, the step-size v, is chosen as follows:

[e, (I — Q% ) Luy|?
0<e<r, < T if Luy# QY Lu,, (3.3)
H2HL*JE2 (I _ Q}\;n)LunIP i,n

otherwise, v, = v(y > 0). Set n:=n + 1 and return to step 1.
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Thus,
<tn - Y, _)\nF(tn» = >‘n<y - t’mF(tn» > 07 v Yy e C.

Since A, > 0, we obtain that (y — t,, F(t,)) > 0. Hence, t, € VI(C, F).

(2) It follows from (3.2) that A\,41 < Ay, for all n € N. Furthermore, since A
is a Lipschitz continuous mapping with a positive constant L, in a case where
F(tn) — F(yn) # 0, we obtain

plltn —ynll o plltn —wnll _ o
1E () = Flya)ll — Llltn —ynll L

Since {\,} is a nonincreasing sequence which bounded below by min{%, A1}, we
conclude that
lim A, =\> mln{— A}

n— oo

Remark 3.1. From Definition 3.1, we have that

lim 91’L(¢(x*7 xn—l) - d)(ﬂ?*, xn)) =0.

n—oo

Proof. We have that 0, ||z, — x,—1|| < p, for each n > 1, which together with

lim £~ = 0 implies
n—oo &n
0 Pn
lim —Hxn — Zp_1|| < lim — =0. (3.4)
n—00 (¢ n—00 (Y,
Hence,
G(r*, xn1) = (2", ) = ||27|* = 202", Tg, 2n1) + |20 |[?

—(llz*|* = 2(z*, T, n) + [lzall?)
= [[en-1l® = Jzall® + 2(2*, Tp, 20 — T, Tn1)
< M@n—1 = 2al|(|znll + [[2n-1l])
+2|[z*(|[|JEy 2n—1 — JB 0| (3.5)

Since F; is uniformly smooth, then Jg, is norm to norm uniformly continuous on
a bounded subset of E, and we obtain from (3.4) that

0
Jgngoan a—||JE1xn Jg, Tn-1]] = 0. (3.6)
Thus,
. 0,
Jl_(goan( ||Jin 1=Zp|[(||zn|[+||2n- 1\|)+2 H I e 2n—1—Jp,2nl]) = 0. (3.7)
lim 6,(6(a" 21) — B(a*,2,)) = 0. (38)

O

We know that, the following lemma, which was carefully proved in [33], plays
an important role in the proof of our main result.
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Lemma 3.2. ( [33],Lemma 9). Suppose that assumptions (A1)-(A4) and con-
ditions (B1)-(B2) hold, and let {u,} and {y,} be sequences generated by Algo-
rithm 3 and {u,,} be a subsequence of {u,} which converges weakly to T € E and
Ifgngo\|unk —Yn, || =0. Then z € VI(C, F).

Lemma 3.3. Let {xn}, {yn}, {un}, {20} be sequences defined iteratively by Algo-
rithm 3, and let x* € ' which satisfies the following inequality

O 20) < (o, t) — (1= —h

n+1

)O(Yn, tn)- (3.9)

Proof. Let x* € I'. Then from Algorithm 3, we have

O(x*, 2) = ¢(x*, g (B, yn — An(Fyn — Fty,))
= |[z*|* = 2(z", J 5! (Jm,Yn — An(Fyn — Ftn)))
I, (TB Y — An(Fyn — Ft))|?
= |lz*|* = 2(z*, Jg,yn — An(Fyn — Fty))
+||JElyn - )\n(Fyn - Ftn)HQ
= |z*I]> = 2(z*, Jg,yn) + 2An(z*, Fy, — Fty)
T Yn — An(Fyn — Ft)|[°. (3.10)

Using Lemma 2.6 and since E7 is 2-uniformly smooth, we have from (3.10) that

I[E, Yn — An(F'yn — Ftn)‘|2 < HJE1?J7L||2 = 220 (Yn, Fyn — F'ty)
+26202 || Fy, — Fito 2. (3.11)

Substituting (3.11) into (3.10) and applying equation (2.2), we obtain

d(x*, 2n) < ||2*I1? = 2(2*, Jo,yn) + 220 (2", Fyn — Fto) + || T, ynll®
2 (Yn, Fyn — Fit)) + 26202 || Fy,, — Ft,||?
= ¢(x*, yn) + 2An (x*, Fyn, — Ftp) — 220 (Yn, Fyn, — Ft)
+26% 02 ||Fy, — Ft,||?
= ¢(x*,Yn) + 22 (2" — Yn, Fyn — Ft,,) + 262X\2||Fy,, — Ft,||?
=@z, tn) + O(tn, yn) + 2(z* — tn, Jg, tn — JE, Yn)

22X (2 — Y, Fyn — Ft,) + 262 \2||Fy, — Fto||?. (3.12)
Applying equation (2.3), we have
A, Yn) = —d(Yn, tn) + 2(Yn — tn, JE,Yn — JE, tn)- (3.13)

Substituting equation (3.13) into (3.12), we obtain

(", 2n) < G(x",t0) = ¢(Ynstn) + 2(tn — Yn, JEstn — JE,Yn)
+2(x" —ty, Jp,tn — JE,Un) + 220 (2" — yn, F(yn) — F(tn))
+262 02 || Fy,, — Ft,||?
= (b(x*,tn) - ¢(yn7tn) + 2<tn — Yn, JE b — JElyn>
+2(2" = Yn, Ipitn — JEYn) — 2(tn — Yn, JEitn — 1 Yn)
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+2X (@ = Y, F(yn) — F(tn)) + 262 \2||Fy,, — Ft,,|?
= ¢($*,tn) - ¢(yn7tn) + 2<$* — Yn, JE tn — JElyn>
2 (% = Y, F(yn) — F(tn)) + 26°02 || Fy, — Fto||?. (3.14)
Using the definition of {y,} and Lemma 2.2, we have

<SC* — Yn, JEltn - >\nF(tn) - JElyn> <0
(" = Yn, JEr tn — JE Yn) — A2 — yn, F(tn)) <0

<$* = Yn, JE, T — JElyn> < )\n<x* — Yn, F(tn» (315)
Substituting (3.15) into (3.14),we have

A", 2n) < G2 tn) — O(Yns tn) + 2An (2" — Y, F(tn))

T2 (2" = yn, F(yn) — F(tn)) + 2“2>‘72z||F3/n - FthQ

= (" tn) = ¢(Yn, tn) + 220 (2" — yn, F(tn) + F(yn) — F(tn))
26202 || Fy, — Ft,||?

= ¢<x*’tn) - ¢(yn7tn) + 2)‘7l<x* — Yn, F(yn)>
+26% 02 ||Fy, — Ft,||?

= gf)(x*,tn) - ¢(yn7tn) - 2)‘n<yn — ", F(yn)>
26202 || Fy, — Fty || (3.16)

Observe that «* € VI(C, F) and (y, — «*, F(z*)) > 0. Thus, (y, —2*, F(z*)) >0

implies (y, — «*, F(yn)) > 0, since F' is pseudomonotone.
Furthermore, we have from (3.16) that

d(x*,2n) < G(a",tn) — ¢(Ynstn) + 252)‘i||Fyn - FthQ

)\2
= ¢(x*, tn) — O(Yn, tn) + 26202 2L Py, — Ft,,|?

" A
2621°0%  yn — tal?
§¢x*»tn _¢ynatn+ n -Fyn_-Ftn2
i) = Ol b g, F | ”
. 222 A2
= ¢(x",tn) — O(Yn,tn) + )\27"||yn - th2- (3.17)
n+1
Using Lemma 2.5, we obtain from (3.17)
. . 272 K2 N2
O(2™, 2n) < D2 tn) = H(yn tn) + g6, tn)
)\n+1
N 272 K2N2
=6l 1) — (1= 2R, 1)
n+1
= ¢(x",tn). (3.18)

We obtain from Lemma 2.6, Lemma 2.13 (1) and (3.3) the following

$(a* ) = (@, Ui (Jp, (Jeyun — Ya L Ty (I = QY ) Lun)))
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< 02", Jp, (Je un — 4L Ty (I = Q3! ) Lun))
= ||2*||* = 2(&", J5, (T, (JByun — L™ TEo (I = Q37 ) Lun)))
1Tz, (Jerun — 3 L™ e, (I = Q37 ) Lun)|®
= ||lz*|]® — 2(z", Jg, un — YnL* T, (I — ijm)Lu@
|| T gy tUn — YL Ty (I — Qii’n)LunHQ
< l2(1* = 202", Tpyun) + 29n (@, L™ 5, (I — Q37 ) Lun) + [[unl|?
~ 290 (tn, L™ Ty (I = QY Y Lun) + K232 || L T (T = QY1) L ||
= |lz"||* = 2(&", Jpy un) + 2vn(La”, Jp, (T = Q3 ) L) + |[unlf®
~ 29 (Lt T (I = QY VLun) + 2631 ||L" Ty (1 = Q3 ) L
= ¢(@", un) + 2yn(La”, Jp, (I — Q3 ) Lun)
—2n (Lt T (I = QY VL) + 2641 || Ty (I = QX1 ) L |
= ¢(a",un) = 29n(Lun — L™, Jp, (I — Q3! ) Lun)
26" || T, (I = QY ) Luw|[?
= ¢(@",un) = 29n(Lun = QY Lun+Qy’ Lun — La*, Jp,(I = Q3! ) Lun)
+267 || Ty (T = QY ) L2
= ¢(a",un) = 29n(Lun — QY Lun, Ju, (I — Q37 ) Lun)
29 Q) Lun — La*, Jp, (I = Q3 ) Lun)
26 || Ty (I = QY ) L[
= ¢(a",un) = 27| T2 (1 = Q7 ) Lun|* + 262 |[L" 5, (I = Q3 ) Lunl[*
29 Q3] Lun — La*, Jp, (T — Q3 ) Lun)
G, un) = 29a||TE2 (1 = QX! ) Lun||* + 262 || T, (T = Q3 ) Lunl[®
¢, un) = 29[|l T2 (1 = QY7 ) Lunl|* = K2yl |L™ TE (I = Q37 ) Lunl|?]
S, un) = Yulll 5o (I = QY ) Lunll* = &2l | L7 T5y (I = Q3! ) Lua||”]
17E2 (1 = Q%) Lua|?
K| LTy (I = QYF ) L2

i,n

x k2| L* g, (I — Qf;m)LunW]. (3.19)

IA

$(x" un) = yulllJes (I = QY ) Lun || —

P(x",tn) < @(a™, up). (3.20)

Using the definition of {u,} in Algorithm 3, we obtain

d(x",uy) = (™, ngl((l —0n)J g, X + 0 Jp, 1))
= ||lz*||> = 2(z*, JEl(ngl((l —0p)J g, Tn + 0 JE, Tn—1))
T (1= 0n) T, 20 + 00T, 21|
< lz*|1? = 2(1 = 0,)(&*, T, xn) — 20, (2™, g, Tn_1)
+(1 = 00) [T zal® + Ol T 2012
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< (1= 6,)p(z", ) + Ond(x*, Tp—1). (3.21)

Let «* € I'. Since T; is quasi nonexpansive, we have

M
oz, wy) = o(z”, (ngl (ﬂn,OJEl Zn + Z ﬂn,iJElTizn)))

=1
M
= [l2*|* = 2(z", Ju, (T, (BnoTm 2n + Y BriJe Tizn)))
i=1
M
+H<]E_11 (ﬂn,OJEl Zn + Z ﬁn,iJElTizn)”Q
=1

M
< |21 = 2Bn.0(x*, Tz, 2n) — 2 Builz”, T, Tizn) + Bu.ollJE, 2nl|”

Ny =1
+ Z ﬁn,i

i=1

|JE1EZTL||2

M

= Bnollz*|* = 2Bn.0(z", Jg, 2n) + Brollzall® + D Bu.il

i=1

I*||2

M M
=2 " Bnila®, Je, Tizn) + Y Bl Tiznl®

i=1 =1

M
= /Bn,Od)(-T*) Zn) + Z /Bn,i¢($*v Tzzn)
=1

M
S ﬂn,o¢(x*a Zn) + Z ﬂn,i¢(m*7 Zn)
i=1

= Bn00(x", 2n) + (1 — Bn0)d(x", 2n)
= (", zn). (3.22)

This implies that
d(x",wn) < (2", 2n). (3.23)
Using the definition of {z,41} in Algorithm 3, (3.23) and (3.18), we have

P(a*, 2 i1) = $a*, T ! (an T u + (1 = an)Jg, (wn)))

= ||lz*||* - 2(z*, JEl(nglanJElu + (1 — an)Jdg, (wy)))
|, (g u+ (1= an) T, (wn))]?

= ||lz*||? = 2(z*, anJp,u + (1 — an)Je, (wy))
Hlom Tp,u + (1 = an) e, (w,)]|?

< |2* [ = 20 (%, T, u) — 2(1 — o) (2™, Jg, (w,))
Fap|[ e ull? 4+ (1= an)|[ T, (wn)]]?

= ap||z*||? = 200 (z*, Jp,u) — 2(1 — ap)(z*, Jg, (wn))

o [ul[? + (1 = ) |[wa* + (1 = a) |22
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= apo(x™,u) + (1 — ap)o(z*, wy,)
< and(a”,u) + (1 — an)o(z”, 2,)
< and(z*,u) + (1 — ay)p(z™, ty)
< ang(z®, u) + (1 — an)d(z™, un). (3.24)

Substituting (3.21) into (3.24), we have

O(z", Zpt1) < and(z™, u) + (1 — an)[(1 = 0n)d(z", 20) + 0nd(2", 2n—1)]
< max{¢(z*,u), max{p(z*, x,), d(z*, xp_1)}}

< max{¢(z", u), max{¢(z", 1), p(z*, o) } }. (3.25)

Hence, {¢(z*, z,)} is bounded. Since 1|z, —z*||* < ¢(z*, z,,), we have that {z,}
is bounded. Consequently, {u,}, {yn}, {zn} and {w,} are also bounded. O

Theorem 3.1. Suppose that assumptions (A1)-(A4) hold, and the sequence {a,} C
(0,1) satisfies lim a, =0 and Y " | an = 0o. Let {x,,} be the sequence generated
n—oo

by Algorithm 3. Then {x,} converges strongly to a solution T = Ilpu.

Proof. Let z* € T'. We estimate ¢(z*, z,,41) using inequalities (3.18) and (3.21),
and we obtain

(2", Tpg1) = Pz, J 11(an Ut (1= an)JE, (wn)))
< Oénd)(l‘ ,U) + (1 - an)¢(x vwn)
< an¢(x ?u) + (1 — Qp (b(x 7zn>
2,.2\2
— (e u) 1 (1 — an)[Ba* t) — (1 — 25 Ay ]
>\n+1
T 2,.2\2

= 0,0(a" ) + (1= 000" 1) = (1= 1) (1 = 25522003, 1)
n+
2,.2\2

< 00(e )+ (1= 0)ola” 1) = (1= )1 = 52 )6, )
n+

= and(a*,u) + (1 — an)[(1 = 0,)p(a", 20) + On(a*, @)

T 2,.2\2
(1= an) (1= 2 1)
An+1
= an(x”,u) + (1 — ap)[p(a", 2n) + On(d(z", 2n 1) — O(2", 2,,))]
272 K2N2
—(1= o)1 = —5—")8(Un, tn). (3.26)
)\n+1

The remaining part of the proof will be divided into two cases.

Case 1. Suppose that the sequence {¢(x*, x,,)}5°; is nonincreasing sequence of real
numbers. Since the sequence {¢(z*,z,)}22; is bounded then it converges for all
n > ng. That is

nhﬁngo(gb(x*, Tn) — (™, py1)) = 0. (3.27)
This implies from (3.26) that
2 2 2)\2
(1= an)[(1 = =), ) < b, u) + (1 - an)o(a", )

n+1
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+(1 = an)[0n(P(z™, 2n-1) — (2", 2n))] — #(2", Tn11)
= an(9(z™,u) — ¢(z%, ) + d(z*, 2) — S(2", Tnt1)
+(1 = an)[On(P(z*, 2n_1) — P(z*, 2,))]. (3.28)

Using (3.27), equation (3.8) of Remark 3.1 and the fact that (1 — %) >
0, (1 — ) > 0 together with condition (B2), we have from (3.28) that

2,212
(1) < (0l u) — 6", )

(1—an)[(1 -
n+1
+o(x", 20) — ¢(@", ng1) + (1 — an) [0 (d(2”, 2po1) — @(2",20))] — 0
as n — oo. Hence,
lim (Yn,tn) = 0. (3.29)
Thus, from Lemma 2.4, we have that

dim |lyn — tnl] = 0. (3.30)

Using the definition of {z,} in Algorithm 3, (3.30) and the fact that A is Lipschitz
continuous, we have

Jg, 20 = Jg,Un — M(Fyn — Fty),

HJElyn - JElan = ||/\n(Fyn - Ftn)”
< Al |Fyn — Fto|

A
< nkt [y — tn|| — 0, as n — oo. (3.31)
)\n+1
This implies from (3.31) that
JLH&HJEIyn—JElan = 0. (3.32)

Since £ is uniformly smooth, then Jg " is uniformly norm to norm continuous on
bounded subsets of Ef. Hence, we have from (3.32) that
"(JE, )l (3.33)

1

tim ||,y — e, zall = lim 175 (i,m) — 5

Hence,
nll—@o'ly” — zn|| = 0. (3.34)

From Lemma 2.3 and the definitions of {z,41}, {un}, {w,} in Algorithm 3, we
obtain

M
¢z, wn) = ¢z, (J5, (BnoTbr 20 + Y Bu.idey Tizn)))
=1
M
= [|&"[|* = 2(z", Ji, (i, (Bno T 20 + Y Brid iy Tizn)))

i=1
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M
g, BroTer 20 + Y Bnide, Tizn)|”

=1

M
= [[a*||* = 2(2", BnoJB1 20 + Y _ Bn,iTizn)

i=1

M
+||ﬂn,OJElzn + Z /Bn,iJElTiZnH2

i=1
M
<Nl |I* = 2Bn0fa”, Je20) = Y 2Bn.0(2”, Jpy Tizn) + Buool| Ty 20l

=1

M
+> BuillJe Tizall* = BroBnig(||Jey 20 — Ty Tiznl )

=1

M
= Brolla™|I* = 2Bn.0(2", Jgy 20) + Bu.ollznl[* + D Bnilla”||

=1

M M
=Y 2Bni(e”, IpyTiza) + ) BuillTizall® = Bu.oBnog(Il7E: 20 — 5y Tiznl))

i=1 1=1

M
= Brod(@",20) + > Brod (@, Tizn) — Bn,0Bn,ig(||Tmy 20 — Ju, Tizn| )

i=1

M
< ﬁn,0¢(1’*7 Zn) + Z ﬂn,i¢(w*7 Zn) — ﬁn,Oﬁn,ig(HJbH zn — JEy TZZnH)

i=1
= Bn,0¢(x*7 zn) + (1 - ﬂn,o)¢($*, 2n) = Bn,08n,i9(||JE, 20 — JB, Tizn|)
= (2", 2n) = Bn,0Bn,i9([TEL 20 — JE, Tizn ). (3.35)

From (3.35), we have

¢(x*, znp1) = o(x*, Jg, (anJpu+ (1 — an)Jg, (wn)))
< ang(z*,u) + (1 — an)p(a™, wy)
< apg(a®, u) + (1 — an)[d(2", 2n) — Bn,0Bnig(|TE 20 — JE, Ti2nl|)]
< (@, u) + (1= an)[d(@", tn) = Br,oBnig(|TE 20 — JE, Tiznl )]
< and(@®,u) + (1 — o) [d(x", un) — BroBn,ig(|[JE 20 — T, Tiznl])]
= an@(a",u) + (1 — an)[(1 = 0,) (2", 2n) + Onp(x™, 2p—1)

~Bn,0B8n,i9(|1 VB, 20 — B, Ti20]])]
= and(@”,u) + (1 — an)[(1 = 0,) (", 2p) + On (2", 2n—1)]
—(1 = an)[Bn,08n,i9(|JE, 20 — B, Tiznl])]
= (2™, u) + (1 — o) (2", zn)
[0n(P(2", Tn—1) — d(2", 7))
[8n.08n.i9(|1JB, 20 — JE, Tiznl|)]
= an(p(a™,u) — ¢(z", 2n)) + P(a™, 20)
+(1 = an)[0n(P(z", 2n-1) — ¢(2", 7))]
—(1 = ) [Bn,08n,i9(| Ty 20 — T, Tiznl|)]- (3.36)

From (3.27), equation (3.8) of Remark 3.1 together with condition (B2), we have
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from (3.36) that

(1 - an)/Bn,Oﬁn,ig(H‘]El Zn — JElT'ZnH) (QS( ) d)(ﬂf* mn)) + (]5(%'* xn)
—¢(z", Tnt1) + (1= an)[On(d(z", 2 1) — @(7, 2n))] — 0, as n — oo.

Hence,
JL”QO/BH,OBH,Z‘Q(HJEl Zn — JEszzn”) =0. (337)

Thus, using the property of g in Lemma 2.3 and since liminff, o8, ; > 0, we have
n—oo
from (3.37) that

n—oo

Since Ej is uniformly smooth, then J = is uniformly norm to norm continuous on
bounded subsets of Ef. Hence, we have from (3.38) that

TLZLTC.LOHJEVZH JElTZnH - lzm ||J (JElzn) - ngl(JEllen)H
= lim ||zn, — Tyz,|| = 0. (3.39)
n—oo
Using the definition of {w,,} in Algorithm 3 and (3.39), we have
M
I[JE, wn — JE, 20| = ||(BnodE, 20 + Zﬁn,iJElTiZn) — Jg, 2|
i=1
M
= 18n.0(TE 20 = TB120) + Y Bni(Te, Tizn — Ty 20|
i=1
M
=11 Bnide Tizn — Jg, 2|
i=1

M
< Buill e, Tizn — T, 2l -
=1

Hence,
lim ||Jg, wy, — Jg, 2n]| = 0. (3.40)
n— oo

Since EY is uniformly smooth, we have that

Lim ||, Y(Tgywn) — Jgt

1

(Jg,zn)|| = lim ||w, — 2z,]| = 0. (3.41)
§—00
From the definition of {x,1} in Algorithm 3, we have

Tn1 = I (andpu+ (1 — o) Jg, wn),
Jg, Tnt1 — Jg,wn = (andpu+ (1 — ap) g, we) — Jp, W,

1B, Tnt1 — Jgywall = ||andg,u+ (1 — an) I, wn— (anJg, wn + (1 — an) I, wn)||
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= |lanJg,u — anJg,wy, + (1 — ap)Jp,w, — (1 — o) JJg,wy)||

= apl||JE,u — Jg, whll.
Now, using condition (B2), we obtain
nlgngoHJElan — Jg,wyp|| = 0. (3.42)
Since Ef is uniformly smooth, we have from (3.42) that

ILTQOHZE"H —wy|| = 0. (3.43)

n

From the definition of {u,} in Algorithm 3 and equation (3.6) of Remark 3.1, we
obtain

Uy = JEll(JEll‘n + 0n<JE1$n71 — JEl.’En),

I|[JE,un — Jg, 2nl| = [|00(JE,20-1 — B, T0) ]

On

= an.—||Jg, -1 — Jg, 20l — 0, as n — oo. (3.44)
n

Hence,

ZLmHJElun—JEImnH =0. (3.45)

Since EY is uniformly smooth, then ngl is uniformly norm to norm continuous on
bounded subsets of EY, we have

lim || g, un — Jg, x|l = lim ||u, — 25| = 0. (3.46)
n—oo n— oo
From (3.19), we obtain

(™, tn)
* B; 2 2 * B; 2
<o(@*, un) = Wl (I = QX! ) Lunll” — K5 Wm|[L*TE, (I — QX! ) Lunl["]. (3.47)

Yl e, (I = Q3 VLun[? = K[| L T, (I = QY ) Lug|’] < ¢(a*, uy)
—¢(z", tn)

= (z" un) — @(2", Tnt1) + (2", Tpg1) — d(a”, 1)

=[1=0p)0(z", 2p) + On (2", 2n-1)] — G(2", Tnt1) + (an (2, u)
+(1 = an)d(@™, wy)) — d(2", t,)

= ¢(a", zn) + On(d(2", 2n-1) — (2", 20)) — S(@", Tnt1) + an[d(z”, u) — G(z*, wn)]
+o(@", wn) — P(a", tn)

< (", wn) = G(@", Tpg1) + On(A(2™, 20—1) — S(T™, 7)) + an[p(2", u) — d(z™, wy)]
+o(x", 25) — d(2™, 1)

< o™, wy) — G(a", np1) + O0n(P(2”, mp1) — d(2", 20)) + n[d(2™, u) — G, wy)]
+o(@", tn) — d(a", tn)

= anp(z”, u) — d(x", wn)] + On(P(2", Tn—1) — (2", x))
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+o(x*, xn) — (™, Tpy1) — 0, as n — 0.
Hence, we have

tim ([1,(T = Q2 )Ll = w2l |L* T, (T~ Q) L) =

(3.48)

Next, we have from the definition of v, in (3.3) that, there exists a very small

number ¢ > 0 such that

17m, (1 = Q% ) Luy)||?
0< Tn S YBv — €.
K2||L* e, (I — QX)) Lun)|?

This implies that

Vb [|L* T, (I = Q3 )V Lug||* < || Te, (I — Q3 ) Ly

—er®||L* T, (1 = Q3 ) Lug||*.

i,n

Thus, we have from (3.50) that

ek’ LTy (1 = Q3! ) Lun|® < || Jp, (I — QY ) Luy||?

i,n

k| Ty (I = QY )L P

Hence, from (3.48), we have
JL@OGHQHL*JEZ (I - Qii,n)LunHQ =0.
Thus, we have
Jim |L Ty (I = Q3 ) L [* = 0.
Now, we have from (3.19) and (3.52) that
0 < yull T (T = QFF ) Lun |

< d@* un) = $(a”, tn) + 7 k?||L* T, (1 = Q3 ) Lunl[?

i,m

(3.49)

(3.50)

(3.51)

(3.52)

= d)(:r*,un)—qﬁ(x*,xnﬂ)—}-qﬁ(m 7xn+1)_¢( ) n)+'772L/€2||L*JE2(I_ Qiln)Lunuz

= [(1 = 0n)p(z",2n) + Opd(z™, 20—1)] — ¢(2™, Tnt1) + (and(z™, u)
L= )i wn) — 9" ) + 2RI Ty (1 Q)L
= ¢(a",xp) + On(d(™, 2n—1) — $(z", 7)) — P(2", Tn11) — Sz, )

Fom[p(a”, u) = d(a™, wn)] + d(2™, wn) + 15k | L Tp, (I ~ in ) L |2

< oa",wn) = (@", Tngr) + 00 (D(2", wn1) — G(27, 0)) — G(27, 1n)

) —
Fan[p(a*, u) = d(a*, wa)] + d(2*, z0) + 7w?||L* Tp, (I — Q,\ ) Luy||*
)

< (", wn) — G(@", Tpg1) + On(d(™, 20—1) — B(2", 7)
Fan[p(z*,u) — @@, w)] + k|| L T, (I = QX ) Ly
+o(a", tn) — d(a", tn)

= ¢(z", ) — O(", Tny1) + On(P(z™, 2p—1) — B(z", 20))
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Fag[¢(a", u) = ¢z, wa)] + k|| L g, (I = Q3 ) Luy | — 0, (3.53)

as n — oo.
Hence, we obtain
Lim ||, (I — QY ) Lun||* = 0. (3.54)
Since Es is uniformly smooth, then we have from (3.54) that

lim || Lun, — QY Luy||* =0. (3.55)

Let v, = Jg (JE1 Un, — Y L*Jg, (I — Qi"n)Lun). Following the same approach as in
(3.19), we obtaln

o(x*,vp) < d(z™, up). (3.56)
From the definition of v,,, we have
TB,Vn = Jp,tn = YL T, (1 — QY ) Ly, (3.57)
Then from (3.57) we get
0 < || Jgyun — JEyonll < vl LI JTE, (T — Qi",n)Lun|| — 0, as n— occ.
This implies
nlingoHJElun—JElUnH =0. (3.58)
Considering the fact that £ is uniformly smooth, then we have

lim ||un, — vy,|| = 0. (3.59)

n—oo

Also, from the definition of {v,}, (3.56), Lemma 2.9, (3.27), equation (3.8) of Re-
mark 3.1 together with condition (B2), we obtain

¢(Un7tn) = ¢( NL nvn)
(

x*,v) o(z*, Nf"vn)

o

< P(a* un) — pla*, Wi vy)
& — (a, Tn1) + (27, wnrr) — B2, UL ,)

= [(1 = 0,)¢(2", 20) + Ond(z*, 2n1)] = G(a*, Tny1) — G(27, U vy)
+(and(z*,u) + (1 — an)d(z", wy,))

= ¢(&*, ) + O (S(a", wn1) — S(a", 20)) — Ga*, Tny1) — S(a™, Vit vy)
+0‘n[¢($*a u) - (b(x*,wn)] + (b(ﬂt*awn)

< @@, xn) + On(B(a* 2pm1) — G(2",20)) — G(*, Tnt1)
tam[(a”, u) — dla”, wn)] + G(z*, 2n) — B2, Ui vy)

< ¢(@*,2n) — G(*, Tnt1) + On(G(2*, Tn1) — S(2", 7))

Fan[d(z*,u) — d(x", wn)] + d(z*, tn) — (a7, \Dﬁfnvn)
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= ¢(@", xn) — G(a%, Tny1) + On(d(2", 2n—1) — S(27, 27))
+an[p(x”, u) — d(z*, w,)] + d(x™, tn) — Sz, 1)
= ¢, zn) — (", Tny1) + On(P(2", 2n1) — P27, 21))

+ay[p(z* u) — pla*,w,)] — 0, as n — 0. (3.60)
Hence,
Jz_ﬁoé(v”’ tn) = 0. (3.61)

Thus, from Lemma 2.4, we have
Jg@oan —tn|] = 0. (3.62)

Again, we have from (3.59) and (3.62) that

[tn — unll = |[tn — vn + vn — unl]|
< |ltn — vnl| + ||lvn —un|| — 0, as n — oco. (3.63)
Hence,
nlllgLoth—unH =0. (3.64)

From (3.64) and (3.46), we obtain

[t — znl| = |[tn — Un + Un — 24|
<|ltn = un|l + [lun — znl| — 0, as n — oo.

Hence,

lz_)ﬂ(}oth — 2z, =0. (3.65)

n

Also we have from (3.30) and (3.64) that

[Yn = Unl| = |[yn — tn +tn — unl|
< ||yn — tall + ||tn —un]| — 0, as n — oo. (3.66)
Thus,
lim ||yn — un|| = 0. (3.67)
n—oo

Furthermore, we have from (3.46) and (3.67) that

[Yn — znll = [[yn — tn + un — 25|
< |lyn — unl| + |Jttn — x0|| — 0, as n — oco. (3.68)
Thus,
Lim ||y — an| = 0. (3.69)

From (3.69), (3.43), (3.41) and (3.34), we obtain

||Z‘n+1 _l‘nH = ||xn+1 — Wy + Wy — 2Zp + 2 — Yn + Yn _an
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Sl#ngr = wall + [[wn = 2ol + [[20 = yull + [lyn — 20| — 0,
as n —» oo. Hence,
nlz_>77;00||acn+1 — z,|| = 0. (3.70)
Furthermore, from (3.70) and (3.43), we have

Hxn - wn” = ||xn — Tp41 + Tnta _wnH

< ||#n — Tngrl]l + l|Tns1 — wal| — 0, asn — 00 (3.71)
This implies from (3.71) that
nlfgoﬂiﬂn - wn” =0. (3'72)
Thus, from (3.34) and (3.69), we obtain

||Zn *InH = HZn —Yn + Yn *an

< lzn = Ynll + |[yn — 20| — 0, as n — oo. (3.73)
Hence, from (3.73), we have

an_)TgLOHZn — z,|| = 0. (3.74)

Furthermore, since {z,} is bounded, there exists a subsequence {z,,} of {z,}
such that {z,,} converges weakly to u* € E;. Also, we know that L is linear and
bounded, then we have that {Lu,, } converges weakly to Lu*. Also, from (3.55) we
have that {ijnk Lu,, } converges weakly to Lu*. Since Qi?n is the metric resolvent

of B; for A;, > 0, we have

QY Lun = (I+ X\inJg Bi)™ ' Lu,,

Jgs (Lun — QY Luy,)
)\i n

)

€ BiQY' Lu,, VneN and i€N.

From the monotonicity of B;, we obtain

Ty (L, — Q% Luy,,)
0< (u—QY Luy,,v* — o T ), for all (u,v*) € B;.

i,n .
ik Aivnk

Taking the limit as k — oo we obtain from (3.54) that
[| T, (L, — Qfﬂk Luy,)|| = || Lun, — ijmk Luy, || — 0, as k— oo

and \; ,, > 0 for all £ > 1, it follows that 0 < (u — Lu*,v* — 0) for all (u,v*) € B;.
Thus, since B; is maximal monotone, we have Lu* € ﬂiil(Bi_lo).
We also have from (3.65) that there exists a subsequence {t,, } of {¢,} such that
{tn,} converges weakly to u*. Since ‘I’ﬁ‘in is the generalized resolvent of A;, we
have
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Let v, = J5 ! (Jp,un — Y L*Jp,(I — QY )Luy). Then

ty = W

U
Miyn 0TV

JEl Un — JEl tn
Hin

€ Ait,, YvneN and i€eN.

From the monotonicity of A;, it follows that

JE, Vn, — JE b0,
i ng,

0<(s—tn,w" — ), for all (s,w") € A;.

Hence, from (3.62), ||Jg, vn, — JE tn, || — 0 as k — oo and ;,, > 0 for all &k > 1,
we have that 0 < (s —u*,w*—0) for all (s,w*) € A;. Since A; is maximal monotone,
we obtain u* € (4;10).

Since {x,} is bounded, there exists a subsequence {z,,} C {z,} such that
Zp, — u*, which implies that z,, — u* as k — oo. Hence, by demiclosedness of
(I —T;) at zero for each ¢ € N together with lcliﬂgoHTZz”’“ — 2zn, || = 0, it follows that

ut € ML, F(T).
Next, we show that {z,} converges strongly to a point Z = IIru. By Lemma 3.2,
it follows that klz'm [|tn), — Yn, || = 0, then v* € VI(C, F). Since {x,} is bounded,
—00

then, there exists a subsequence {z,, } C {z,} such that z,, — u* and

limsup(zp4+1 — &, Jg,u — Jg, T) = lim (zp, 11 — T, Jp,u — JE,T)
n—00 k—o0
= (u* -z, JEl’LL— .]Eli‘> (375)

Thus, from equation (2.10) of Lemma 2.2 and (3.75), we have

limsup(zp+1 — &, Jg,u — Jp, T) = (u* — &, Jg,u — Jg, &) < 0. (3.76)

n—oo

Hence, it follows from (3.76) that

limsup(zpt1 — &, Jg,u — Jg, T) < 0. (3.77)

n—0o0

Furthermore, from the definition of ¢(Z, x,41) in Algorithm 3 and Lemma 2.1, we
obtain

O(T,Tpy1) = (7, J};ll(oszE1 (u) + (1 — apn)Jg,wy))
=V (Z, andp, (v) + (1 — apn)Jg, wy)
<V(z,anJg, (u) + (1 — ap)Jg,wy, — an(Jg, (u) — Jg, T))
—2(J5 (anJE, (u) + (1 — ) Jg, wn) — &, — (Jg, (1) — Jg,T))
=V (Z, andp, (v) + (1 — apn)Jg, wy — an(Jg, (u) — Jg, T))
+20, (X1 — T, g, (u) — JE, T)
= ¢(z, Jb?ll[(l — ap)Jgw, + anJp, 7)) + 200 (tnt1 — T, Jg, (u) — B, T)
< (1= an)o(&, wy) + ¥nd(T, &) + 200 (Xpt1 — T, Jg, (u) — Jg, T)
< (1= an)op(Z,2n) + 20 (xpt1 — T, Jg, (u) — Jg, T)
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< (1 — an)o(T, up) + 200 {Tnt1 — T, Jg, (u) — Jg, T)
= (1= an)[(1 = 0,)0(%, 2n) + 0n,0(%, 2 —1)]
+20 (X1 — T, g, (u) — JE, T)
= (1 - an)[d(@, 2n) + 00 (d(Z, 2n-1) — G(Z, 24))]
+ap{zpi1 — &, g, (u) — Jp, T)
= (1= an)o(@,zn) + (1 — an) [0 (42, 2n—1) — O(Z,20))]
+20, (X1 — T, Jg, (u) — JE, T). (3.78)

Setting vy, = [1 — an)0,(¢(Z, 2n—1) — #(Z, 7)) and oy, = 2(xp11 — 7, Jp, (u) — JE, T)
Now, applying Lemma 2.11, (3.77), (3.78) and condition (B2), we obtain

lim ¢(Z,x,) = 0. (3.79)

n—oo

Thus, from Lemma 2.4, we have
nlz)ngon —zn|[=0. (3.80)

Hence, x,, — = where z = Ilru.
Case II. Suppose that the sequence {¢(p, z,,)}°2; is not a nonincreasing sequence.
Then, let {x,, } be a subsequence of {z,} such that

O, xn,,) < (D, Tny+1), for all keN.

Then, using Lemma 2.12, there exists a nondecreasing sequence {ms} C N such
that mys — 00 as s —> o0o. Then,

¢(p7 xms) S ¢(p7 xm3+1) and ¢(p7 xs) S ¢(p7 xm3+l)-

Since {¢(p, m,)} is bounded, then lim ¢(p, z,,_) exists.
S—00
Therefore, using the same approach as in Case I, we have the following

(i)glingonms — W, || =0,

(ii)slg";‘o‘|“ms — Ym, || =0,

(zzz)slzlgloﬂzms — Ym, || =0,
(50) lim o, 41 — @, || = 0.

S$—00

Now, following the same steps as in the proof of Case I, we obtain

lim sup (X, +1 — Z, Jg,u — Jg,Z) < 0. (3.81)

§—00

Furthermore, from (3.78) and ¢(Z, Zm_) < ¢(T, Tm +1), we have

(T Tm, 1) < (1= am,)O(T, Tm,) + (1 — am, ) [0m, (T, Tm,—1) — AT, Tm,))]
2o (Tm, 41 — T, Jp,u — Jg, T)
< (1 - O‘ms>¢(5axms+l) + (1 - O‘ms)[ems (¢(§37$ms—1) - ¢(1_77xms))]
+200,, <$ms+1 -, JElu — JEli‘>
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Since ayy,, > 0 for all s > 0 and ¢(Z, 2, ) < ¢(T, T +1), We have
¢(fvxm.g) < ¢(f7xms+1) < 2<$ms+1 —Z,Jp,u— JE1j>
This implies

limsup ¢(Z, Ty, ) < limsup 2 (41 — T, Jg, v — Jg, T) < 0.

S§—00 S5—>00
Thus,
lim sup ¢(Z, z,,,) =0,
S§—00
which by Lemma 2.4, we have lim ||T — zp, || = 0.
S— 00
However, we know that ¢(Z, zs) < ¢(Z, xp,,+1) for all s € N, hence, lim ¢(ZT, x5)
S§—00
=0, by Lemma 2.4, implies
lim||z — zs|| = 0.
S§—00
Hence, s — T where z = Ilru. O

Corollary 3.1. Let E be uniformly smooth and 2 - uniformly convex real Banach
space, F : E — E* be a monotone and Lipschitz continuous operator, and {T;}M,
be a finite family of quasi nonexpansive mappings of E into itself. Let {u,}, {tn},
{yn}, {wn}, and {z,} be sequences generated by Algorithm 3 and {a,} C (0,1)
satisfy nliﬂgoozn =0 and let Y 0", o, = o0 be sequences satisfying assumptions
(A1) — (A4) and condition (B1) of Algorithm 3. Suppose T = VI(C,F)(Q # 0,
where @ = {z € (N, F(T)) N (N, (A710)) such that Lz e (N, (B;10))}.
Then the sequence {x,} generated by Algorithm 3 converges strongly to a solution
T = HF’U,.

Proof. Observe that in this case the weak sequential continuity of A in assumption
(A2) of Algorithm 3 has to be droped since it follows from the monotonicity of A
and Lemma 3.2 ( see, Lemma 9, equation (41) of [33] for more details) that

\ (2 = Ynir JEB Uny, — B, Yny) + Wnge — Ungs F(uny,)) < (2 = tny,, Fun,))

k

< (z — up,, F(2)).(3.82)

Furthermore, passing the limit as ¥ — oo in inequality (3.82) and applying the
fact that ||un, — yn,|| — 0, as k — oo, we obtain

(z—u",F(2)) >0, V z€C.

Hence, it follows from Theorem (3.1) that the sequence {z,} converges strongly to
a solution z = Ilru. O

Corollary 3.2. Let H be a real Hilbert space, F : H — H be pseudomono-
tone and Lipschitz continuous operator, and {T;}M, be a finite family of quasi
nonexpansive mappings of H into itself. Let {un,}, {tn}, {yn}, {wn}, and {z,}
be sequences generated by Algorithm 3 and {a,} C (0,1) satisfy nlingoan =0
and let Y 0" a,, = 00 be sequences satisfying assumptions (Al)-(A4) and con-
dition (B1) of Algorithm 3. Suppose I' = VI(C,F)(Q # 0, where Q = {z €
(ﬂi\il F(T) N (ﬂij\il(AIIO)) such that LT € (ﬂf\;(B;lO))}. Then the sequence
{zn} generated by Algorithm 3 converges strongly to a solution T = Hru.
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Proof. Let E = H, thus by Theorem (3.1), we have that the sequence {z,}
generated by Algorithm 3 converges strongly to a solution Z = Ilpu. O

4. Numerical illustration

In this section, we provide numerical experiments to demonstrate the advantages
of the suggested method and compare with some known strongly convergent algo-
rithms, including the Algorithm 3.1 introduced by Tang and Gibali [43]] (shortly,
AlgAvi), and Algorithms 3.3 presented by Okeke et al. [36](shortly, AlgOke). All
the programs are implemented in MATLAB R2023b on a personal computer.

Example 4.1. Let By = Ey = Ly([0,1]), C = D = {z € L3[0,1] : (a,z) < b},
where a = t> + 1 and b = 1, with norm ||z|| = fol |x(t)|?dt and inner product

(x,y) = fotx(t)y(t)dt, for all z,y € Ly([0,1]), t € [0,1]. Define metric projection
Pg as follows:

x, ifz e C,
Po(x) = (4.1)

b—(a,x)
llallr,

a+ x, otherwise.

Let F : Ly[0,1] — L3[0,1] be defined by F(z(t)) = e~ll*ll fg x(s)ds, for all
x € Ly[0,1], t,s € [0,1]. Then, F is a pseudomonotone and uniformly continuous
mapping. Let A, B, L : Ly([0,1]) — L2([0,1]) be operators defined as follows:

La(t) = /O Co(0)dt, Ax(t) = 5e(), and Ba(t) = 4z(t)

for all © € Ly([0,1]) and ¢ € [0,1]. Then A is bounded and linear, A and B

are maximal monotone operators with resolvents Q;‘:c(t) = ﬁ?ﬂ and UBhxz(t) =
ﬂf?ﬂ, wu > 0, respectively. Furthermore, we define the mappings T : Lo([0, 1]) —

Ly([0,1]) by T(x(t)) = f;y “Pdt, T(x(t)) = x(t) is relatively nonexpansive mapping.
We assume also that «,, = Wlﬂ’ Bn = 0.5 — ay, and in addition for Algorithm 3.1
introduced by Tang and Gibali [43]] (shortly, AlgAvi), Algorithms 3.3 presented
by Okeke et al. [36] (shortly, AlgOke), we take 3, = ﬁ, 0n = 05— Bn, pn =
221 and D(z(t)) = 3xz(t). Then, we let the iteration terminate when ||z,41 —
2n|| < € where € = 1078, The numerical experiments are listed in Table 1. Also,
we illustrate the efficiency of strong convergence of the proposed Algorithm 3 in
comparison with convergence of Algorithm [43, Algorithm 3.1](shortly, AlgAvi) and
[36, Algorithm](shortly, AlgOke) in Figure 1.
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Table 1. Comparison of Algorithm 3, [43, Algorithm 3.1] (shortly, AlgAvi) and [36, Algorithm] (shortly,
AlgOke).

Algorithm 3 AlgOke [36] AlgAvi [43]

xo =3t, T1 = 16 Iterations 18 24 73
CPU Time (s) 1.1707 1.3586 2.7914
zo=1t> 211 =" +1 Iterations 17 23 72
CPU Time (s)  0.8441 1.2749 2.7630
ro =2t, x1 = 4+ 2 Iterations 17 23 71
CPU Time (s)  0.9420 1.4623 3.0487
Ty = t4, x1 =t +4t° + 2t Iterations 18 24 74
CPU Time (s) 0.9658 1.4264 3.5148
1 | ‘ ‘ ‘ ‘ : A‘Ig 31 0 \ A‘\g 31
AlgOke A AlgOke
o f Algavi | ] AlgAvi
il 10
102
104
é 10 é
10°®
10°°
. 108 E
10°
10~10 L L L L L L L 10-10 L L L L L L L
10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Number of iterations Number of iterations
10° T T 102 - -
\ Alg 3.1 Alg 3.1
\ Algoke AlgOke
AlgAvi o [t AlgAvi ]
10 1070
102
10
2 8
10°°
10°F
10°® ool
1010 10710
10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Number of iterations Number of iterations

Figure 1. The error plotting of Comparison of Algorithm 3, [43, Algorithm 3.1](shortly, AlgAvi) and [36,
Algorithm](shortly, AlgOke) for Example 4.1.
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5. Conclusion

This paper introduces a new inertial Tseng’s extragradient algorithm with a self
adaptive step size for approximating common element of the set of solutions of split
common null point and pseudomonotone variational inequality problem as well as
common fixed point of a finite family of quasi nonexpansive mappings in uniformly
smooth and 2 - uniformly convex Banach space. Furthermore, we prove a strong
convergence theorem of our algorithm without prior knowledge of Lipschitz constant
of the operator under some mild assumptions. we presented some numerical exam-
ples in order to illustrates the performance of our proposed algorithm and compare
it with some existing ones in the literature. Our result generalize and improve many
existing result in the literature.
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