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1. Introduction

In this paper, we consider the following nonlinear boundary value problem∆
(
ω(x)(|∆u|p(x)−2∆u+ |∆u|q(x)−2∆u)

)
− L(u) = λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω is a smooth and bounded domain of RN , the variable exponents p, q : RN →
(1,∞) are continuous functions with 1 < p(x) < q(x), the weight ω is non-negative
locally integrable function on Ω, λ is a real parameter and f(x, s) is continuous on
Ω̄× R and

L(u) := div
(
ω(x)(|∇u|p(x)−2∇u+ |∇u|q(x)−2∇u)

)
.

In the last few years, elliptic equations with variable exponents have been widely
performed and have got a considerable amount of attention . They have contributed
to the progress in elasticity theory and electrorheological fluids dynamics (see [6,34]).

Problems involving p-Laplacian and (p, q)-Laplacian operators in bounded or
unbounded domains have been studied by many authors, for instance [1, 3, 14, 20–
22, 29, 30, 32]. However, very few works have concerned p(x)-Laplacian and p(x)-
Biharmonic type problems with singular weights i.e, with not bounded weights or
not separated from zero in Ω (see [11,23,24,28]). In that case, the above operators
are called degenerated operators. We note that similar degeneracy can be physically
connected with the equilibrium of continuous anisotropic media [7].

The study of double phase phenomena in partial differential equations is crucial
because it extends the understanding of complex systems where material properties
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exhibit phase transitions, such as in elasticity or fluid dynamics. In such systems,
the governing equations have coefficients that vary according to two different phases.
The double phase framework is also significant in understanding models where en-
ergy densities switch between two distinct behaviors.

In the constant case, the authors in [9] have treated the following bifurcation
problem involving degenerated p-Laplacian{

− div
(
a(x)|∇u|p−2∇u

)
= λb(x)|u|p−2u+ f(λ, x, u) in Ω,

u = 0 on ∂Ω.
(1.2)

Also, for weight w satisfying the Muckenhoupt condition, the following fourth order
elliptic equation has been treated

∆
(
ω(x)(|∆u|p−2∆u+ |∆u|q−2∆u)

)
− div

(
ω(x)(|∇u|p−2∇u+ |∇u|q−2∇u)

)
= f(x)− div(G(x)) in Ω,

u = ∆u = 0 on ∂Ω,

(1.3)

where f ∈ Lp′
(Ω, ω−1/(p−1)) and G ∈

[
Lp′

(Ω, ω−1/(q−1))
]N

(see [5]). The au-

thor has shown the existence of unique solution in the weighted Sobolev space
W 2,p(Ω, ω) ∩W 1,p

0 (Ω, ω) .

In the variable case, the Dirichlet problem involving degenerated p(x)-Laplacian− div
(
w(x)|∇u|p(x)−2∇u

)
= µg(x)|u|p(x)−2u+ f(λ, x, u,∇u) in Ω,

u = 0 on ∂Ω,

has been studied (see [25]), where w,w−1/(p(x)−1) are locally integrable functions
on Ω and w satisfies the hypothesis (ℑ) mentioned in (2.4).

The novelty of this paper is in extending the problem (1.3) using critical point
theory (see [2, 10]), which requires a particular kind of weight depending on the
variable exponent q, and a more complicated non-linearity. For this reason further
analysis has to be realized.

The problem (1.1) is stated in the weighted Sobolev space X = W 2,q(x)(Ω, ω)∩
W

1,q(x)
0 (Ω, ω). A function u ∈ X is a weak solution to (1.1) if and only if for every

v in X, we have ∫
Ω

ω(x)(|∆u|p(x)−2∆u∆v + |∆u|q(x)−2∆u∆v) dx

+

∫
Ω

ω(x)(|∇u|p(x)−2∇u∇v + |∇u|q(x)−2∇u∇v)

=λ

∫
Ω

f(x, u)vdx.

In order to prove the existence and multiplicity of solutions for the problem
(1.1), we assume that the weight w belongs to the class Ãq(.)(Ω) defined in (2.3),
and satisfies the hypothesis (ℑ) mentioned in (2.4). Furthermore, we consider the
following conditions on f



1418 A. El katit, A. R. El Amrouss & F. Kissi

(F0) |f(x, s)| ≤ C(1 + |s|α(x)−1) a.e x ∈ Ω, and for all s ∈ R where C ⩾ 0,
α(x) ∈ C+(Ω) and α(x) < q∗θ,2(x) for all x ∈ Ω̄, where

qθ(x) =
q(x)θ(x)

1 + θ(x)
, q∗θ,2(x) =

{
Nqθ(x)

N−2qθ(x)
if 2qθ(x) < N,

∞ if 2qθ(x) ≥ N,

with θ(x) is given in (ℑ).
(F1) There exist x0 ∈ Ω and ρ0, l > 0 such that B(x0, ρ0) ⊂ Ω and

F (x, s) ≥ 0 for x ∈ B(x0, ρ0) and s ∈ [0, l[,
F (x, l) > 0 for x ∈ B(x0, ρ0/2).

(F2) f(x, s) = o(|s|τ−1) uniformly for a.e x ∈ Ω with q+ < τ < q∗θ,2(x) for all

x ∈ Ω̄,

Our main results are given by the following two theorems:

Theorem 1.1. Suppose that (F0) and (F1) hold and α+ < q−. Then there exists
λ∗ > 0 such that for each λ ∈ (λ∗,∞), the problem (1.1) admits at least one
nontrivial weak solution u1,λ satisfying Eλ(u1,λ) < 0.

Theorem 1.2. Assume that (F0)-(F2) are satisfied. Then for each λ ∈ (λ∗,∞),
the problem (1.1) has a second nontrivial weak solution u2,λ fulfilling Eλ(u2,λ) > 0.

This paper is organized as follows. In Section 2, we recall some backgrounds
about the weighted generalized Lebesgue–Sobolev space. In Section 3, we state
and prove some auxiliary results about the weighted generalized Sobolev space and

discuss the equivalent norms in the space W 2,q(x)(Ω, ω) ∩W
1,q(x)
0 (Ω, ω).

In Section 4, we provide the proof of our main results. Finally we give an
example to illustrate our results.

2. Preliminaries

For the suitability of readers, we remind some backgrounds about the weighted
variable exponent Lebesgue-Sobolev spaces. By a weight ω(.), we always mean a
non-negative locally integrable function on Ω. Set

C+(Ω) = {ϱ ∈ C(Ω̄) : ϱ(x) > 1 for all x ∈ Ω̄},
ϱ+ = max

Ω̄
ϱ(x), ϱ− = min

Ω̄
ϱ(x), for ϱ ∈ C+(Ω).

For a measurable positive weight ω(.) and exponent q(.) in C+(Ω), we introduce
the weighted variable exponent Lebesgue space Lq(x)(Ω, ω) composed of measurable
real-valued functions u such that∫

Ω

ω(x)|u(x)|q(x)dx < ∞,

equipped with the norm

|u|Lq(x)(Ω,ω) = inf

{
µ > 0 :

∫
Ω

ω(x)

∣∣∣∣u(x)µ

∣∣∣∣q(x)dx ⩽ 1

}
,
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then the space Lq(x)(Ω, ω) endowed with the above norm is reflexive and Banach
space (see [25]).

At the time that ω(x) ≡ 1, we have Lq(x)(Ω, ω) ≡ Lq(x)(Ω) and we employ the
notation Lq(x)(Ω) in the place of Lq(x)(Ω, ω).

For m ∈ N∗, the weighted variable exponent Sobolev space Wm,q(x)(Ω, ω) is
defined by

Wm,q(x)(Ω, ω) =
{
u ∈ Lq(x)(Ω) : Dαu ∈ Lq(x)(Ω, ω), |α| ⩽ m

}
,

with α ∈ N∗. We can define the norm on Wm,q(x)(Ω, ω) by

∥u∥Wm,q(x)(Ω,ω) = |u|Lq(x)(Ω) +
∑

1⩽|α|⩽m

|Dαu|Lq(x)(Ω,ω).

Define the class LH(RN ) of globally log-Hölder continuous functions composed of
measurable functions h : RN → [1,∞) with 1 < h− ⩽ h(x) ⩽ h+ < ∞, where
h− = ess infx∈RNh(x) and h+ = ess supx∈RNh(x) satisfying the following:

|h(x)− h(y)| ≤ C

−log|x− y|
, |x− y| < 1/2, (2.1)

|h(x)− h(y)| ≤ C

log(e+ |x|)
, |y| ⩾ |x|. (2.2)

We note that for r ∈ C+(Ω), smooth functions are not in general dense in
the Sobolev space W 1,r(x)(Ω). However, when the exponent r(.) fulfills (2.1) for
x, y ∈ Ω, then smooth functions are dense in variable exponent Sobolev space.

As a result there is no confusion in defining the Sobolev space W
1,r(x)
0 (Ω) as the

completion of C∞
0 (Ω) with respect to the norm of W 1,r(x)(Ω).

Throughout this paper, we assume that q belongs to the class of globally log-
Hölder continuous functions LH(RN ).

Proposition 2.1. ( [12]) The space (Lq(x)(Ω), |u|q(x)) is separable, reflexive and

uniformly convex Banach, and its conjugate space is Lp(x)(Ω), where 1
q(x) +

1
p(x) =

1,∀x ∈ Ω̄. For any v ∈ Lq(x)(Ω) and w ∈ Lp(x)(Ω), we have∣∣∣∣∫
Ω

vwdx

∣∣∣∣ ⩽ ( 1

p−
+

1

q−

)
|v|Lq(x)(Ω)|w|Lp(x)(Ω) ⩽ 2|v|Lq(x)(Ω)|w|Lp(x)(Ω).

Denote B(x, r) the open ball centered at x of radius r. Let us define the class

Ãq(.)(Ω) to contain those weights ω(.) which fulfill the following condition

sup
x∈Ω,r>0

(
1

|B̃(x, r)|

∫
B̃(x,r)

|ω(y)|q(y)dy

)(
1

|B̃(x, r)|

∫
B̃(x,r)

dy

|ω(y)|
q(y)

q(y)−1

)q−−1

< ∞,

(2.3)
where |B(x, r)| is the N -dimensional Lebesgue measure of B(x, r) and B̃(x, r) =
B(x, r) ∩ Ω.

Remark 2.1. We point out that if w ∈ Ãq(.)(Ω), then it necessarily satisfies the
following condition

(w1) w ∈ L1
loc(Ω) and w−1/(q(x)−1) ∈ L1

loc(Ω).
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This yields that Lq(x)(Ω, ω) ⊂ L1
loc(Ω), which makes sense to talk about weak

derivatives in Lq(x)(Ω, ω).

Here, define the Hardy-Littlewood maximal function, Mf , for a locally inte-
grable f on Ω by

Mf(x) = sup
r>0

1

|B̃(x, r)|

∫
B̃(x,r)

|f(y)|dy.

Proposition 2.2. ( [25]) Let ϕ ∈ C∞
0 (Ω) and let a multi-index γ be fixed. If ω(.)

satisfies (w1), then the formula

Lγ(u) =

∫
Ω

uDγϕdx, u ∈ Lq(x)(Ω, ω),

defines a continuous linear functional Lγ on Lq(x)(Ω, ω).

Define the modular ρ : Lq(x)(Ω, ω) → R, by ρ(u) =
∫
Ω
ω(x)|u(x)|q(x). As u ∈

Lq(x)(Ω, ω) i.e. ω
1

q(x)u ∈ Lq(x)(Ω) and
∣∣∣ω 1

q(x) |u|
∣∣∣
Lq(x)(Ω)

= |u|Lq(x)(Ω,ω), then in view

of [ [12],theorem 1.3], we have the following Lemma.

Lemma 2.1. For each un, u ∈ Lq(x)(Ω, ω), we have

(1) |u|Lq(x)(Ω,ω) > 1 then |u|q
−

Lq(x)(Ω,ω)
⩽ ρ(u) ⩽ |u|q

+

Lq(x)(Ω,ω)
;

(2) |u|Lq(x)(Ω,ω) < 1 then |u|q
+

Lq(x)(Ω,ω)
⩽ ρ(u) ⩽ |u|q

−

Lq(x)(Ω,ω)
;

(3) limn→+∞ |un − u|Lq(x)(Ω,ω) = 0 if and only if limn→+∞ ρ(un − u) = 0.

Let us define the norm on X as follows:

∥u∥ = inf

{
µ > 0 :

∫
Ω

ω(x)

∣∣∣∣∆u(x)

µ

∣∣∣∣q(x) dx ⩽ 1

}
.

Remark 2.2. Setting J(u) =
∫
Ω
ω(x)|∆u|q(x)dx, we also have

min(∥u∥q
−
, ∥u∥q

+

) ⩽ J(u) ⩽ max(∥u∥q
−
, ∥u∥q

+

).

In order to ensure certain properties of the space X, we suppose that w(.) fulfills
the following

(ℑ) ω−θ(x) ∈ L1(Ω) for some θ ∈ C+(Ω) with θ(x) ∈
(

N

q(x)
,∞
)
∩
[

1

q(x)− 1
,∞
)
.

(2.4)

Corollary 2.1. ( [25]) For q ∈ C+(Ω), if (ω1) and (ℑ) hold, then the estimate

|u|Lq(x)(Ω) ⩽ c|∇u|Lq(x)(Ω,ω)

holds for each u ∈ C∞
0 (Ω), where c is a positive constant independent of u.
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3. Auxiliary results

In this section, we state and prove some auxiliary results about the weighted gen-
eralized Sobolev space that will be useful in the proof of our main results.

Proposition 3.1. If ω ∈ Ãq(.)(Ω), then X = W 2,q(x)(Ω, ω) ∩ W
1,q(x)
0 (Ω, ω) is a

reflexive and Banach space.

Proof. Let {un} ⊂ X be a Cauchy sequence. Hence {un} is a Cauchy sequence in

W
1,q(x)
0 (Ω, ω) and {Diun} is a Cauchy sequence in W 1,q(x)(Ω, ω) which is a Banach

space. As a result there exist u ∈ W
1,q(x)
0 (Ω, ω) and vi ∈ W 1,q(x)(Ω, ω) such that

Diun → Diu in Lq(x)(Ω, ω) and ∇(Diun) → ∇vi in Lq(x)(Ω, ω,RN ), i = 1, · · · , N.

By Remark 2.1, Proposition 2.2 and the following relation∫
Ω

Diun.∇φ dx = −
∫
Ω

∇(Diun).φ dx,

it follows that∫
Ω

Diu.∇φ dx = −
∫
Ω

∇vi.φ dx, for every φ ∈ C∞
0 (Ω).

As ∇vi ∈ Lq(x)(Ω, ω,RN ), we obtain that ∇(Diu) = ∇vi. Hence the Cauchy se-

quence (un) converges to u in X and thus X is a Banach space. Since W1,q(x)(Ω, ω)
is a reflexive space (see [25]), and there exists an isometry T defined as follows:

T :X −→ W 1,q(x)(Ω, ω)×
(
W 1,q(x)(Ω, ω)

)N
= Y,

u → (u,∇u).

This yields that T (X) is a closed subspace of Y which is a reflexive space, hence
both T (X) and X are reflexive spaces. This completes the proof.

Theorem 3.1. Assume that ω(.) fulfills (ℑ) and belongs to the class Ãq(.)(Ω). Then
in the space X, the norms ∥.∥W 2,q(x)(Ω,ω) and |∆ .|Lq(x)(Ω,ω) are equivalents.

Proof. Let u in π = C∞
0 (Ω) and define Ri

ϵ(u)(x) =
∫
|x−y|>ϵ

CN
xi−yi

|x−y|N+1u(y)dy.

Let k(x, y) = CN
xi−yi

|x−y|N+1 . The authors in ( [33]) have shown that k is a stan-

dard kernel and satisfies (a) and (b) of [ [8], Proposition 4.3], then it follows from
Proposition 4.3 that for every s with 2 ≤ s < ∞, the operators Ri

ϵ are uniformly
bounded on Ls(RN ) with respect to ϵ. Furthermore

Ri(u)(x) = lim
ϵ→0+

Ri
ϵ(u)(x) = lim

ϵ→0+

∫
RN

kϵ(x, y)u(y)dy, (3.1)

exists almost everywhere and limϵ→0+ Ri
ϵ(u) = Ri(u) in Ls(RN ). In particular Ri

is continuous on Lq(.)(RN ).
From [ [8], Remark 4.4], the operator Ri defined in (3.1) is a Calderon Zygmund

operator. Now, consider the extension ω̂ of ω defined by ω̂ = ω in Ω and ω̂ = 0 in
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RN\Ω. Thus ω̂ ∈ Ãq(.)(RN ). From [15], it follows that Ri is a bounded operator in

Lq(x)(RN , ω̂), i.e.

|Ri(u)|Lq(x)(RN ,ω̂) ⩽ C|u|Lq(x)(RN ,ω̂) ∀ u ∈ Lq(x)(RN , ω̂),

where C is a positive constant.
Since |Ri(u)|Lq(x)(RN ,ω̂) = |Ri(u)|Lq(x)(Ω,ω) and |u|Lq(x)(RN ,ω̂) = |u|Lq(x)(Ω,ω), it

follows that Ri is a bounded operator in the space Lq(x)(Ω, ω), i.e.

|Ri(u)|Lq(x)(Ω,ω) ⩽ C|u|Lq(x)(Ω,ω) ∀ u ∈ Lq(x)(Ω, ω).

In view of ( [31]), we know that ∂2u
∂xi∂xj

= −RiRj(∆u). Consequently, for any u in

π ⊂ Lq(x)(Ω, ω), we get∣∣∣∣ ∂2u

∂xi∂xj

∣∣∣∣
Lq(x)(Ω,ω)

=
∣∣RiRj(∆u)

∣∣
Lq(x)(Ω,ω)

⩽ C|∆u|Lq(x)(Ω,ω), (3.2)

Let Γ be a Newtonian potential. According to [13], we have

|∇u| = |DΓ∗(∆u)| ⩽ C1I1(∆u) =

∫
Ω

∆u(y)

|x− y|N−1
dy,

where C1 depends only on N . It is well known (see [4,26]) that I1(∆u) ⩽ C2M(∆u),
where C2 only depends on Ω and N . Therefore |∇u| ⩽ C3M(∆u). In view of [ [26],
Theorem A], the Hardy-Littlewood maximal operator M is bounded in Lq(x)(Ω, ω),
hence for every u in π ⊂ Lq(x)(Ω, ω), one has

|∇u|Lq(x)(Ω,ω) ⩽ C3|M(∆u)|Lq(x)(Ω,ω) ⩽ C4|∆u|Lq(x)(Ω,ω), C4 > 0. (3.3)

From Remark 2.1, Corollary 2.1 and (3.3), for every u in π, we get

|u|Lq(x)(Ω) ⩽ C5|∇u|Lq(x)(Ω,ω) ⩽ C6|∆u|Lq(x)(Ω,ω), (3.4)

where C5, C6 are two positive constants. Combine (3.2), (3.3) and (3.4), we can
claim that

|∆u|Lq(x)(Ω,ω) ⩽ ∥u∥W 2,q(x)(Ω,ω) ⩽ C7|∆u|Lq(x)(Ω,ω), (3.5)

Since π is dense in X, the inequality (3.5) holds for any u in X, thus the proof is
completed.

Lemma 3.1. ( [12]) Let α, r ∈ C+(Ω). Assume that α(x) < r∗2(x) for every x ∈ Ω̄.

Then there is a continuous and compact embedding from W 2,r(x)(Ω) ∩ W
1,r(x)
0 (Ω)

into Lα(x)(Ω).

Next, we will prove a compact embedding theorem for the weighted variable
exponent Sobolev space.

Theorem 3.2. Assume that ω(.) satisfies (ℑ) and belongs to the class Ãq(.)(Ω),
then we have the compact embedding

X ↪→ Lγ(x)(Ω),

provided that γ ∈ C+(Ω) and γ(x) < q∗θ,2(x) =
Nqθ(x)

N−2qθ(x)
for all x ∈ Ω̄.
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Proof. Firstly, the embedding X ↪→ W 2,qθ(x)(Ω) ∩ W
1,qθ(x)
0 (Ω) is continuous.

Indeed, let u in X, we have∫
Ω

|∆u|qθ(x)dx ⩽ 2
∣∣∣ω θ(x)

θ(x)+1 |∆u|qθ(x)
∣∣∣
L

θ(x)+1
θ(x) (Ω)

∣∣∣ω− θ(x)
θ(x)+1

∣∣∣
Lθ(x)+1(Ω)

.

By (ℑ) and Lemma 2.1, we have

∣∣∣ω− θ(x)
θ(x)+1

∣∣∣
Lθ(x)+1(Ω)

⩽

(∫
Ω

ω−θ(x)(x)dx+ 1

) 1
θ−+1

≤ K.

This implies that∫
Ω

|∆u|qθ(x)dx ⩽ K
∣∣∣ω θ(x)

θ(x)+1 |∆u|qθ(x)
∣∣∣
L

θ(x)+1
θ(x) (Ω)

. (3.6)

Without loss of generality, we can assume that
∫
Ω
|∆u|qθ(x) > 1. If

∫
Ω
ω(x)|∆u|q(x)dx

< 1, then from (3.6) and Lemma 2.1, we have

|∆u|
q−θ−

θ−+1

Lqθ(x)(Ω)
⩽
∫
Ω

|∆u|qθ(x)dx

⩽ K

(∫
Ω

ω(x)|∆u|q(x)dx
) θ−

1+θ−

⩽ K|∆u|
q−θ−

θ−+1

Lq(x)(Ω,ω)
,

i.e.
|∆u|Lqθ(x)(Ω) ⩽ K|∆u|Lq(x)(Ω,ω). (3.7)

On the other hand, if
∫
Ω
ω(x)|∆u|q(x)dx > 1, then from (3.6) and Lemma 2.1, we

have

|∆u|
q−θ−

θ−+1

Lqθ(x)(Ω)
⩽
∫
Ω

|∆u|qθ(x)dx

⩽ K

(∫
Ω

ω(x)|∆u|q(x)dx
) θ+

1+θ+

⩽ K|∆u|
q+θ+

θ++1

Lq(x)(Ω,ϱ)
,

i.e.
|∆u|Lqθ(x)(Ω) ⩽ K|∆u|ζ

Lq(x)(Ω,ω)
, (3.8)

where ζ = q+θ+

θ++1 .
θ−+1
q−θ− . From inequalities (3.7) and (3.8), we get ∆u ∈ Lqθ(x)(Ω).

Following the same lines as above, one can also show that ∇u ∈ Lqθ(x)(Ω),
and Dαu ∈ Lqθ(x)(Ω), with |α| = 2. Thus, we conclude that X ↪→ W 2,qθ(x) ∩
W

1,qθ(x)
0 (Ω, ω) continuously. Furthermore, as γ(x) < q∗θ,2(x), it follows from Lemma

2.2 that
W 2,qθ(x)(Ω) ∩W

1,qθ(x)
0 (Ω) ↪→ Lγ(x)(Ω).

Therefore X ↪→ Lγ(x)(Ω) compactly, this completes the proof.
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4. Proof of main results

For u ∈ X, the functional energy associated with problem (1.1) is defined by
Eλ(u) = T (u)− λΨ(u), where

T (u) =

∫
Ω

ω

(
1

p(x)
|∆u|p(x)+ 1

q(x)
|∆u|q(x)

)
+

∫
Ω

ω

(
1

p(x)
|∇u|p(x) + 1

q(x)
|∇u|q(x)

)
,

Ψ(u) =

∫
Ω

F (x, u)dx.

The functional T is Gateaux differentiable, and for u,v in X,

< T
′
(u), v >=< Np(u), v > + < Nq(u), v > + < Mp(u), v > + < Mq(u), v >,

where

< Nr(u), v >=

∫
Ω

ω(x)|∆u|r(x)−2∆u∆v dx,

< Mr(u), v >=

∫
Ω

ω(x)|∇u|r(x)−2∇u∇v dx, for r = p, q.

Now we shall prove that T
′
is continuous. For that purpose, we only prove that

Nq is continuous. Similarly one can show that Np,Mp and Mq are continuous. Let
{un} be a sequence of X converging to u in X. For v ∈ X, we have

|< Nq(un)−Nq(u), v >|

=

∣∣∣∣∫
Ω

ω(x)
(
|∆un|q(x)−2∆un − |∆u|q(x)−2∆u

)
∆vdx

∣∣∣∣
⩽

∣∣∣∣∫
Ω

ω(x)
q(x)−1
q(x)

(
|∆un|q(x)−2∆un − |∆u|q(x)−2∆u

)
ω(x)

1
q(x)∆vdx

∣∣∣∣
⩽ 2

∣∣∣ω q(x)−1
q(x)

(
|∆un|q(x)−2∆un − |∆u|q(x)−2∆u

)∣∣∣
Lq′(x)(Ω)

∣∣∣w 1
q(x)∆v

∣∣∣
Lq(x)(Ω)

⩽ 2
∣∣∣|∆un|q(x)−2∆un − |∆u|q(x)−2∆u

∣∣∣
Lq′(x)(Ω,ω)

|∆v|Lq(x)(Ω,ω)

= 2
∣∣∣|∆un|q(x)−2∆un − |∆u|q(x)−2∆u

∣∣∣
Lq′(x)(Ω,ω)

∥v∥.

Since un → u in X, i.e, ∆un → ∆u in Lq(x)(Ω, ω), we get

|∆un|q(x)−2
∆un → |∆u|q(x)−2

∆u in Lq′(x)(Ω, ω).

Therefore, from the above inequality, it follows that Nq is continuous on X.

Proposition 4.1. (a) The operator T
′
: X → X

′
is of (S+) type.

(b) If f satisfies the condition (F0), then we have
(i) Ψ is a C1 functional. (ii) The operator Ψ

′
: X → X

′
is completely

continuous.

Proof. (a) Let {un} ⊂ X be such that

un ⇀ u in X and lim sup
n→+∞

< T
′
(un), un − u >≤ 0.
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It follows that

lim sup
n→+∞

< T
′
(un)− T

′
(u), un − u >= 0, lim sup

n→+∞

∫
Ω

ω(x)σ(un, u) = 0, (4.1)

where

σ(un, u) = (|∆un|q(x)−2∆un − |∆u|q(x)−2∇u)(∆un −∆u),

and φ(un, u) = |∆un|+ |∆u|.

In the other part, we have∫
{q(x)≥2}

ω(x)|∆un −∆u|q(x)dx ⩽ k1

∫
Ω

ω(x)σ(un, u)dx,∫
{1<q(x)<2}

ω(x)|∆un −∆u|q(x)dx

⩽ k2

∫
{1<q(x)<2}

ω(x)σ(un, u)
q(x)
2 φ(un, u)

(2−q(x))
q(x)
2 ,

Setting Ωq = {x ∈ Ω : 1 < q(x) < 2}, by (4.1) we can consider 0 ⩽
∫
Ω
ω(x)σ(un, u) <

1.
If
∫
Ω
ω(x)σ(un, u) = 0, then since ω(x)σ(un, u) ⩾ 0 in Ω. It follows that,

ω(x)σ(un, u) = 0.
If 0 <

∫
Ω
ω(x)σ(un, u)dx < 1, thanks to Young’s inequality∫

Ωq

ω(x)|∆un −∆u|q(x)dx

⩽k2

(∫
Ωq

ω(x)σ(un, u)

) 1
2 ∫

Ωq

ω(x)σ(un, u)
q(x)
2

(∫
Ωq

ω(x)σ(un, u)

)−1
2

φ(un, u)
(2−q(x))

q(x)
2

⩽k2

(∫
Ωq

ω(x)σ(un, u)

) 1
2 ∫

Ωq

ω(x)

σ(un, u)

(∫
Ωq

ω(x)σ(un, u)

) −1
q(x)

+ φ(un, u)
q(x)


⩽k2

(∫
Ωq

ω(x)σ(un, u)

) 1
2 (

1 +

∫
Ω

ω(x)φ(un, u)
q(x)

)
.

Hence J(un − u) → 0 as n → +∞. By Remark 2.1, we conclude that un → u in X.
Thus T

′
is of (S+) type.

(b) (i) By condition (F0), we have

|F (x, s)| ⩽ C(|s|+ |s|α(x)) ⩽ C
′
+ C|s|α(x), C

′
> 0.

Using the Nemytski operator properties and the above implies that Ψ is a C1

function in Lα(x)(Ω). Since there is a continuous embedding of X into Lα(x)(Ω),
then we derive Ψ ∈ C1(X,R), and for every u, v ∈ X

< Ψ
′
(u), v >=

∫
Ω

f(x, u(x))v(x) dx.

(ii) Let {un} ⊂ X be such that un ⇀ u weakly. Using the compact embedding of X
into Lα(x)(Ω), there exists a subsequence, also denoted by {un}, such that un → u
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in Lα(x)(Ω). According to the Krasnoselki’s theorem, the Nemytski operator defined

from Lα(x)(Ω) into Lα
′
(x)(Ω) by Nf (u) = f(., u) is continuous. Hence f(., un) →

f(., u) in Lα
′
(x)(Ω). In view of Proposition 2.1 and the continuous embedding of X

into Lα(x)(Ω), we get

| < Ψ
′
(un)−Ψ

′
(u), v > | ⩽ d |f(., un)− f(., u)|

Lα
′
(x)(Ω)

∥v∥. d > 0

Consequently Ψ
′
(un) → Ψ

′
(u) in X

′
. Hence Ψ

′
is completely continuous.

4.1. Proof of Theorem 1.1

The functional Eλ is coercive on X. Indeed by contradiction, let K ∈ R and let
{un} ⊂ X be such that ∥un∥ → ∞ and Eλ(un) ≤ K. For n large enough, ∥un∥ > 1.

As α(x) < q∗θ,2(x) for all x ∈ Ω̄, then X ↪→ Lα(x)(Ω) continuously and from
(F0), one has

K ⩾ Eλ(un) = T (un)− λC

[
1

α−

∫
Ω

|un|α(x)dx+

∫
Ω

|un|dx
]

⩾ T (un)− λC

[
1

α− |un|ᾱLα(x)(Ω)dx+ |un|L1(Ω)

]
⩾

∥un∥q
−

q+
− λC

[ c1
α− ∥un∥ᾱ + c2∥un∥

]
.

Since q− > α+ > 1, passing to the limit, we get a contradiction. As the functional
Eλ is weakly lower semi-continuous, it follows that Eλ admits a minimum point
u1,λ ∈ X. Then u1,λ is a weak solution to (1.1). Now it remains to show that u1,λ

is nontrivial.
Let φ ∈ C∞

0 (Ω) be such that 0 ⩽ φ ⩽ l in B(x0, ρ0) and φ ≡ l in B(x0,
ρ0

2 ).
From (F1), we have

Eλ(φ)

= T (φ)− λ

∫
Ω

F (x, φ(x))dx

= T (φ)− λ

[∫
Ω\B(x0,ρ0)

F (x, φ) +

∫
B(x0,ρ0)\B(x0,

ρ0
2 )

F (x, φ) +

∫
B(x0,

ρ0
2 )

F (x, l)

]

⩽ T (φ)− λ

∫
B(x0,

ρ0
2 )

F (x, l).

Take λ∗ = T (φ)∫
B(x0,

ρ0
2

)
F (x,l)dx

. Hence for every λ > λ∗, we have Eλ(φ) < 0. Therefore,

the problem (1.1) has at least one nontrivial solution for each λ > λ∗. This completes
the proof.

4.2. Proof of Theorem 1.2

In order to prove Theorem 1.2, we shall verify both of the geometrical condition
and the condition of compactness of the mountain pass theorem [2].
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There exist η, r > 0 such that Eλ(u) ⩾ η for every u ∈ X with ∥u∥ = r. Indeed,
let u ∈ X with ∥u∥ < 1. Using (F2), it follows that

|F (x, s)| ⩽ ϵ

τ
|s|τ , a.e x ∈ Ω, ∀|s| < δ. (4.2)

Combining (F0) with (4.2) yields that

|F (x, s)| ⩽ C(ϵ)|s|τ for a.e x ∈ Ω, ∀s ∈ R where C(ϵ) =
ϵ

τ
+

C

δτ−ᾱ

(
1

δᾱ−1
+

1

α−

)
.

As τ < q∗θ,2(x), then X ↪→ Lτ (Ω) continuously. Therefore

Eλ(u) ⩾ T (u)− λC(ϵ)

∫
Ω

|u|τdx ≥ ∥u∥q+

q+
− λC

′
(ϵ)∥u∥τ .

Take γ =
(

1
2q+λC′ (ϵ)

) 1

τ−q+

and r = min (γ, ∥u1,λ∥) . Then ∥u1,λ∥ > r, Eλ(u1,λ) < 0

and

Eλ(u) ⩾
1

2q+
rq

+

= η ∀u ∈ X ∥u∥ = r.

Now, it remains to show that Eλ satisfies the Palais-Smale condition. Indeed,
let (un)n be a Palais-Smale sequence of X, i.e, |Eλ(un)| ≤ c and E

′

λ(un) → 0 in

X
′
. From Theorem 3.1, the functional Eλ is coercive, hence (un)n is a bounded

sequence in X reflexive. We may assume, taking a subsequence if necessary that
un ⇀ u weakly in X. Hence

lim
n→∞

< E
′

λ(un), un−u >= lim
n→∞

(
< T

′
(un), un − u > −λ < Ψ

′
(un), un − u >

)
= 0.

(4.3)
In view of Proposition 4.1, the operator Ψ

′
is completely continuous and T

′
is of

(S+) type, hence from (4.3), we conclude that un → u in X, therefore (un)n has a
convergent subsequence. According to mountain pass theorem, the functional Eλ

admits a critical value c ⩾ η which is characterized by

c = inf
ϑ∈Γ

sup
t∈[0,1]

Eλ(ϑ(t)), Γ = {ϑ ∈ C([0, 1];X) : ϑ(0) = 0 and ϑ(1) = u1,λ} .

Since Eλ(u1,λ) < 0 < c = Eλ(u2,λ), it follows that u2,λ ̸= u1,λ. Therefore, the
problem (1.1) has at least two nontrivial solutions.

Example 4.1. Consider the problem (1.1) with f defined by

f(x, s) =

{
|s|β(x)−2s if |s| > 1,

|s|γ(x)−2s if |s| < 1,

where β(.), γ(.) ∈ C+(Ω) and β(x) < γ(x) < q∗θ,2(x) for any x ∈ Ω̄.

If β+ < q−, by Theorem 3.1, there exists λ∗ > 0 such that when λ > λ∗, the
problem (1.1) has at least one nontrivial solution.

If in addition γ− > q+, the problem (1.1) has at least two nontrivial weak
solutions for any λ > λ∗ thanks to Theorem 3.2.
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5. Conclusion

In this study, we introduced a class of weights Ãq(.)(Ω) in order to assure some

basic properties of the space W 2,q(.)(Ω, ω) ∩ W
1,q(.)
0 (Ω, ω), along with the equiva-

lence of norms, then by applying variational approach and critical point theory, we
established the existence of at least two distinct nontrivial weak solutions for the
fourth-order double phase problem (1.1) governed by singular operators, for any
λ > λ∗ under some suitable hypotheses on the nonlinearity f .
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