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Local Bifurcation Cyclicity for a Non-Polynomial
System*
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Abstract In this paper, we propose a class of general non-polynomial an-
alytic oscillator models, and study the limit cycle bifurcation at the nilpo-
tent singularity or elementary center-focus. By Taylor expansion, two specific
systems from the original model are transformed into two equivalent infinite
polynomial systems, and the highest order of fine focus as the nilpotent Hopf
bifurcation or Hopf bifurcation point is determined respectively. At the same
time, the local bifurcation cyclicities and center problems for two systems are
solved respectively. To our knowledge, such dynamic properties are rarely
analyzed in many non-polynomial models.
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1. Introduction
In this paper, we study the following weak perturbation nonlinear oscillator model:
&= —Kysinzx + ko sinz cosx + h(zx, ), (1.1)

where k1 > 0, k2 > 0 and h(z,4) as a perturbation part is any smooth function
on R%. Its background comes from a classic case which often appears in college
physics textbooks: a class of overdamped ball motion models on a rotating ring [24].
The trajectory of the ball can be described by the following second-order ordinary
differential equation.

mri = —bi — mgsinx + mrw? sinz cos z, (1.2)
where z is the swing angle, 7 is the acceleration, mg is the gravity, mrw? sin z cos
is the lateral centrifugal force, the bz is the tangential damping force. This model
shows rich dynamics properties, including various bifurcations [24].
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For the undamped case, i.e., when b = 0, the energy Hamilton function corre-
sponding to model (1.2) can be written as follows:

.2 2

H:%f%costr%coszx. (1.3)
In fact, the existence of viscous damping in the actual background makes the target
ball in model (1.2) be affected by nonlinear damping, which is similar to the Van

der Pol oscillator model [5] and Rayleigh oscillator model [23], described by
#=p(l —2*)i—xz, and i=p(l—i*i -z,

respectively, where p is a scalar parameter representing the strength of the damping.
Therefore, the term of damping force b& can be extended in the model (1.2), and
we can propose the general model (1.1).

Furthermore, letting & = y, and taking h(z, &) as a specific polynomial function,
we can transform model (1.1) into the non-polynomial analytic system as follows,

T =y,
(1.4)
Y= —kKisinz + ke sinz cosz + h(zx,y),

where h(z,y) = ax +by + > oot < bijxty?, and a,b,b;; € R, n € Z. Motivated by
many research works on the cyclicity of piecewise smooth systems or non-polynomial
Hamiltonian systems, e.g. [11,12,27], we will study such a non-polynomial system
on the local bifurcation cyclicity, that is, the maximum number of small amplitude
limit cycles that can bifurcate in the vicinity of equilibrium.

For the trigonometrical functions in some practical models, the approximations:
sinx &~ x and cosx ~ 1 are usually used when x is small. However, such approxi-
mations are inappropriate in solving the local bifurcation cyclicity of the original
system. It is easily checked that the Jacobian matrix of (1.4) at its origin

0 1
J= (1.5)
a+ ko —K1 b

has a pair of conjugate imaginary eigenvalues if and only if b =0,a + ko — k1 < 0,
namely the origin is a Hopf bifurcation point. Furthermore, if and only if b = 0,
and a+ kg — k1 = 0, the Jacobian matrix (1.5) has double zero eigenvalues, i.e., the
origin is a nilpotent singularity.

In this paper, we consider the two above categories of equilibria for system
(1.4). For the former, to solve its Hopf bifurcation cyclicity in a planar polynomial
vector field of degree n > 2, the general approach is to determine the highest order
of fine focus by computing the focal values or Lyapunov constants and finding
the center conditions. There have been some classic methods, and the reader can
see [13,14,17,21,25]. While the quadratic case has been completely solved, that is,
Hopf bifurcation cyclicity 3 was proven by Bautin [4], while for n > 2, this problem
is still open. More recent new progress can be found in [9,26] and references therein.
Here to overcome the difficulty arising from such non-polynomial functions, we will
adopt Taylor expansion to transform the original model into its equivalent infinite
polynomial systems, then apply the method proposed in [17] to calculate the focal
values.
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For the latter, as a degenerate case, the nilpotent singularity is much more
complicated than elementary ones in the topological structure of phase orbits near
its neighborhood. Consider the following generic planar systems with a nilpotent
singularity,

o0
=yt Y agaty =@(v,y),
o = (1.6)
y = Z bijkyj = \If(fﬂ, y)v
k4j=2

where x,y,ar;,br; € R(k,j € N), and the functions ®(z,y), U(x,y) are analytic
in the neighborhood of the origin. Lyapunov provided the sufficient and necessary
conditions as the center-focus type for the origin of the system (1.6) in [2].

Similar to the former nondegenerate case, calculating the focal value and de-
tecting nilpotent center are needed. There also exist several available and classical
ways, such as the normal form theory [22], Lyapunov function [6] and Poincare re-
turn map [1]. Some good results can be seen in [3,7,8]. It is worth mentioning that
the integral factor method of calculating the quasi-Lyapunov constants proposed
in [19], is convenient to compute the higher order focal values and solve the center-
focus problem of the three-order nilpotent critical point. In view of this, several
planar cubic system have been investigated recently, e.g. [15,16,18]. Here we extend
this method to solve the nilpotent Hopf bifurcation for the above system (1.4) via
Taylor’s expansion.

The remainder of this paper is organized as follows. In Section 2, we introduce
some basic concepts and the quasi-Lyapunov constant method used for nilpotent
Hopf bifurcation of planar Lyapunov systems. In Section 3, the original model
with a three-order nilpotent singularity is transformed into an equivalent infinite
polynomial system by Taylor’s expansion, and the highest order of the nilpotent
focus is determined. At the same time, the nilpotent Hopf bifurcation cyclicity
is solved. In Section 4, for one specific system with an elementary center-focus,
similarly the highest order of the focus is determined and the Hopf bifurcation
cyclicity is solved. Local bifurcation cyclicity for a non-polynomial system has been
less studied, and this problem is interesting.

2. Preliminary knowledge on nilpotent singularity

In this section, we give the definition and method on symbolic computation of
quasi-Lyapunov constant for the nilpotent singularity. For more details, see [19,20].

Lemma 2.1 ( [19]). The origin of system (1.6) is a third-order monodromic critical
point if and only if
bog =0, (2a20 — b11)2 + 8b3g < 0. (2.1)

Without loss of generality, we assume that asg = p, byg = 0, b1 = 2u, bgg = —2.
Otherwise, by letting

2a99 + b11 = 4)\/1, (2&20 — b11)2 + 8b3p = —16/\2, (22)

and making the transformation

1
E=Az,n=\y+ Z(2@0 — by1)\2?, (2.3)
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we can convert (1.6) into the following form, i.e., a Lyapunov system [20]:

0 .
P=y+p+ Y apatyl = X(w,y),
k+2j=3 (2.4)

O .
g= 20" +2uxy + X bty =Y(z,y),
k+2j=4

where x,y, i, ar;, br; € R(k,j € N). By using the transformation of generalized
polar coordinates:

x=rcosd,y=r’sind, (2.5)
system (2.4) can be converted into

dr _ —cos0[sin §(1—2 cos® 8)+p(cos® 642 sin? 9)]

a6 — 2(cos® 6+sin? 0) r+ O(T)' (26)

When r is sufficiently small, % < 0. So the successor function A(h) of Eq.(2.6) in

the neighborhood of the origin is written as
A(h) =r(=2m,h) —=h =Y vp(-2m)h"™, (2.7)
m=2

where the quantity of vor(—27) is called the k-th focal value at the origin, k =
1,2,---.
Further, we give the calculation formula of quasi-Lyapunov constant.

Lemma 2.2 ( [19]). For system (2.4), any positive integer s and a given number
sequence {cop}, > 3, we can derive successively and uniquely the terms of the
following formal series with the coefficients cqp satisfying o # 0,

M(z,y) =y*+ > capr®y’ (2.8)
a+p3=3
such that
0X oY OM oM - m
(7833 + Fy)M —(s+ 1)(%-}( + Tyy) = m§:3wm(3»/$)x ’ (2.9)

where sp = 0. And if o # 0, cop is determined by the following recursive formula:

1 a+p-1
o = - @ ’ .
C 8 (S ¥ 1)0[ Zk+j:2 kj (2 10)

and for any positive integer m > 3, wy, is determined by the following recursive
formula:

m—1
Wm :Zk+j:2[q)kj]a:m+1,5:71, (211)
where
Ppj=[k — (s + 1)(a — k)lakjca—k,p—j+1 + [ — (s + 1)(B — j + 2)|bkjca—k—1,5-j+2

and when o < 0 or B <0, we set cop = 0.
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Remark 2.1. About the calculation of the above formulas (2.10) and (2.11) for each
W, only the coefficients of polynomials of degree m—1 or less are involved in system
(2.4). Particularly, by choosing appropriate s and number sequence {cog} (8 = 3),
we can make wo;11(s, u) = 0, then let

w2i+4(87 ,u) = (21 —4s — 1))\z (212)

where )\; is said the i-th quasi-Lyapunov constants of the origin of system (2.4),
with i =1,2,---.

Lemma 2.3 ( [20]). For system (2.4), and any positive integer m, the following
assertion holds: Vo, (—27) ~ omAm, namely

m—1
UZm(_Qﬂ—) = OmAm + Z gq(vlf))\ma (213)
k=1
where ff,]f)(k =1,2,--- ,m — 1) are polynomial functions of coefficients of system

(2.4), and

(6)d6 > 0. (2.14)

1 /2” (1 + sin? f) cog?™+4 9U2m74s,1
2 Jo

Om = =
" (cost @ + sin? g)s+2 !
Then the relation between v, (—2m) and o, is called algebraic equivalence.

Consider the perturbed system of system (2.4):

i=X(z,y), §=0a+dy+Y(zy), (2.15)

where 0 < |01],|02] < h < 1, and X, Y are given by system (2.4). Obviously,
when 0; < 0, in a neighborhood of the origin, there exists one elementary focus
at the origin and two complex critical points of system (2.15). And when 6; — 0
and d; — 0, the three points coincide to become a third-order critical point. Thus,
similar to the proof of Theorem 4.7 in [20], we have the following same conclusion.

Lemma 2.4 ( [20]). Suppose that the first m focus values depend on m — 1 param-
eters v = {v1,%v2, -+, Ym—1}, expressed as vo; = v;(—2m,7), j =2,4,--- ,2m. And

when 61 = 0y = 0, if there exists v = (0 = {%0)7 ’yéo), e ,'y,(,?)_l} such that

ng(’}/(o)) 7é 0’ ,U]'(P)/(O)) = 07 ]: 2747"' 72m_ 27

o U4y V2 —
det] 2arenpl (1)) £ 0,

(2.16)

then the origin of the perturbed system (2.15) has exactly m limit cycles.

3. Nilpotent Hopf bifurcation and center problem

In this section, we will consider the nilpotent Hopf bifurcation and center problem
of the system (1.4). Actually, we let a = b = 0 and k1 = ko = K > 0 in system
(1.4), yielding the origin as a three-order nilpotent singularity, and take h(z,y) a
mixed polynomial of degree 4 as follows,

=1y, y=—Ksinz(l —cosz) + boay?® + Y3 + Yz, (3.1)
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where
Ys = bo122y + biowy? + bosy®, Vi = baox? + baox?y® + bisay® + boayt.  (3.2)

Since the system (3.1) contains trigonometric functions and is a non-polynomial ana-
lytic system, Lemma 2.2 cannot be directly applied to determine the quasi-Lyapunov
constant of the origin unless the system is polynomial transformed. According to
Remark 2.1, by performing Taylor expansion at the origin on the right side of the
system to the terms of degree 18, we can strictly determine the first w,,, m < 18,
i.e., we take

3 5 7 9 11 13
: _ _ oz oz ' 17x 3lx _ T
sinz(l — cosz) = 5 s T8 — 22102 T 1209600 — 1520640 (3.3)
4 546lw® 9572t o(z8) ’
135891456000 1394852659200 :

Obviously, by introducing the transformation:

VK VK
§=——u, 77:7

5 Y, (3.4)

system (3.1) is converted into the following form with the same as system (2.4) :

T =y,
. 5.3 2boey® | 22° 427 34z°  124z"! 413
=20+ TFE= + T — 5zt TRor® — 1roskT T Tis5ES (3-5)
43688z1° 514217 4Y3 8Yy 18
~ 312837625K° T 12567535K7 T K T kvi T o(x™%),

where £, 1 is still referred to as x,y.

Applying the powerful symbolic computation function of Mathematica system
and the recursive formulas in Lemma 2.2, where cgj,wy, in (2.10) (2.11) can be
found in the website: https://github.com/wql2001399/wql. We obtain the first 18
quantities as follows:

wg =0, wyq =0,

ws =0, we = —%bgl(éls - 1),

wr = 3(1 + 8)co3, wg = —2xboz(4s — 3),

wy = —zbis(s — 1), w10 = ez 013 (11boa K + 6bao) , (3.6)
wi1 = 2 (1 + cos), wiz = parrezbiz(baz + pa),

wiz = ssbis(ps — coa),  wia = 5525b13(boa + pa),

w15 = 34*5(805 + cor), wie = *mbw%%

_ 3072 _ 128
w17 = Ras013(P7 — C06)s  Wis = FuTTTTIO00TA09s0TZE RIS V130408,
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where

1 = (3388b12b13 K2 + 484b13 K2 + 3888by3b3,) /(1815 K°/2),
2 = (24684b15bs0 K2 + 23595b40 K2 + 135648b3) /(45254 K3),
o3 = (6471322003, K* + 21156245b1, K* + 164395440b12b%, K>
+ 7174332003, K2 + 28456272063, + 1991176 K*) /(44801460 K°©),
@4 = (87553180b19bag K* + 7430307540 K* + 448842240b15b% K>
4 226965024003, K2 + 7705663488b3,) /(186174956 K'©),

(3.7)

and @5, ©g, @7, Pg are given in Appendix A. In the above expression of each wy,
we have already let wg_1 =0, k = 3,4,---,18.

In particular, in order to make wo;41 = 0,7 = 3,4,---,8, we can let cp3 =
0, coa = @3, Co5 = —P1, Cog = —@3, cor = w5 and s = 1 at the same time.
Thus, the corresponding first 7 quasi-Lyapunov constants can be calculated from
the expression (2.12), then the following conclusion is obtained.

Theorem 3.1. For the system (8.5), we get the first 7 quasi-Lyapunov constants
of the origin as follows:

A1 = ggcbar,

Ay = Zbos,

A3 = 5223b1g (11bp2 K + 6bag)

M = gisrsbis(ba + 02), (3.8)

As = 1222:b13(bos + 4),

_ 64
Ag = 253684089513855K 12 bisbaops,

_ 128
Ar = 352234016187749821125K 15 bisbaows,

where for each A\, we have already let w1 =0, k=1,2,---,7.

From Theorem 3.1, we have the following theorem.
Theorem 3.2. The order of the origin of the system (3.5) as a nilpotent fine focus
is 7 if and only if

bor = bos = 0, boz = — b0, bao = =2, bos = —u, w6 =0, bigbso # 0. (3.9)

Proof. (i) Obviously, when the conditions (3.8) hold, from Theorem 3.1, we have
A1 =Xy =---=Xg =0. Then, A7 # 0, i.e., pg # 0 should be proved. In fact, under
the condition g = 0 in (3.8), we can obtain ¢g # 0 by calculating the resultant of
s and @g with respect to bio as follows:

Resultant[pg, @g, bi2] = K*%(8064b3, + 1573K?)Hyg # 0, (3.10)

where Hyy = Z}QO q;b3} is a polynomial only in b%, with all ¢; > 0. Thus the origin
of the system (3.5) is a nilpotent fine focus of degree 7.
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Furthermore, we can find one group of valid critical values such that the condi-
tions (3.9) hold, for example,

_ _ _ 3(6326595715K%+181712433408 K 2+615046625280)
bis =bao =1, b1o = 13428580 K 2 (1573 K 2+8064) ) (3.11)

where K = Ky = £7.0302 are two real roots of the following equation:

3144305649254400+1217227620787200K > +73347310051488K * — 2008406304773 K° = 0.
(ii) Conversely, from Ay = Ao = --- = A\g = 0, A7 # 0 in Theorem 3.1 and the

resultant (3.10), the necessity is easily proven. O
From Theorem 3.2, we have the following theorem.

Theorem 3.3. The first 7 quasi-Lyapunov constants all disappear, and the origin
of the system (3.1) is a center if and only if one of the following two groups of
conditions hold:

i) ba1 = bog = b13 =0,
(i) bo1 = bog = bis (3.12)
(ii) ba1 = bos = baa = bsg = bosa = b2 = 0,5 = 1.

Proof. For the case (i), we obtain the original system

=y, §=boay® + boay®* + bi1oxy?® + baox?y? + byor* — Ksinz(1 —cosz), (3.13)

which defines a vector field symmetric with respect to the z-axis. For the case (ii),
=y, 9=bry?+bzry’ — Ksinz(l — cosx), (3.14)

which defines a vector field symmetric with respect to the y-axis. From these,
we obtain the origin of the system (3.1) is a center, namely the sufficiency of two
conditions in (3.12) is proven.
On the other hand, from Theorem 3.2, the necessity is obvious. O
Furthermore, from Theorems 3.2 and 3.3, we have the following corollary.

Corollary 3.1. The origin of the system (3.1) is a nilpotent fine focus of order 7
at most, and the first seven focal values are respectively:

V2 (—271') = O'j)\j, 1< j < 7, (315)
where each o; > 0, and in the above expression of each va, we have already let
V2k—2 :03 k= 1727"' 77'

Next, we will apply the condition (3.9) to discuss the nilpotent Hopf bifurcation
of the origin of the system (3.1), and obtain the following conclusion.

Theorem 3.4. Under appropriate perturbations, system (3.1) can generate at most
7 small-amplitude limit cycles in the neighborhood of the origin via nilpotent Hopf
bifurcation.

Proof. We first set the parameters a = 61, b = d2 and k1 = k2 in the original
system (1.4), which makes the system (3.1) become the perturbed form as (2.15).
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Under the condition (3.9), from Theorem 3.1 and Corollary 3.1, we have v14 # 0,
and easily calculate the Jacobian determinant of the focal values vo, vy4, - - - , v12 With
respect to the variables bog, b21, b12, 503, b227 b04, b402

_ 9(v2,v4,96,V8,v10,V12) _ 8589934592 4
J = 9(boz,b21,b12,b03,b22,b04,ba0) ~ 8398039524249375K 20 010203040506b13b1090, (3~16)

where @g = 216576138240b12b2,K2 + 42246312680b12 K* + 1845139875840b%, +
5451373002243, K2 + 18979787145K*. Further, under the condition g = 0 in
(3.8), we can verify @9 # 0 by calculating

Resultant|wg, @g, b12] = K*(8064b3, + 1573K%)Hg # 0, (3.17)

where Hg = 27 7;b3 is a polynomial only in b3, with all ; > 0. Thus under the
conditions (3.8), we have that J # 0 holds.

By applying Lemma 2.4, we know that certain appropriate perturbations can
generate exactly 7 small-amplitude limit cycles at neighborhood of the origin for
system (3.1), and Theorem 3.3 implies that the highest order of the origin as the
fine focus is 7, yielding at most 7 small-amplitude limit cycles via nilpotent Hopf
bifurcation. Therefore the proof is completed. O

4. Hopf bifurcation and center problem

In this section, we consider the Hopf bifurcation and center problem at the origin as
an elementary singularity for system (1.4). When taking h(x,y) as a combination
of the linear terms and a complete homogeneous polynomial of degree 3, we have
system (1.4) as follows,

T=vy, Y= —Kisinx+ rasinzcosx+ ax+ by + Ys, (4.1)

where Ys = b3gx3 + bo12%y + broxy? + bosy>. For investigating Hopf bifurcation,
we apply the singular point quantity method given in [17]. Similarly, we need to
transform the non-polynomial analytic system (4.1) into the polynomial form. Thus
also by performing Taylor expansion at the origin on the right side of the system,
we take the following form to the terms of degree 16,

2K2 K1

Kosinacosx — Ky sine = (kg — k1) + 23 (k1 — 4k2) + 2° (2 — 135)

T(_ k1 _ 4ka 9(2k2 _ _ K1 11 K1 _ _4ko
+ " (5005 — 31%) T (55% — 36830) T % (3o976800 — To50%5)

13(_4ka K1 15 f1 _ 8r1 16
t+x (6081075 6227020800) t+x (1307674368000 638512875) + O(.I )

Then utilizing the condition of its Jacobian matrix (1.5) at the origin as Hopf
bifurcation point, we set

b=0, a=*ry —ky—Dp (4.2)
where p > 0. Then the matrix J has a pair of imaginary eigenvalues +ip with

i = v/—1. Furthermore, by introducing a matrix P which transforms J into a
diagonal one, we obtain
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ip 0 —i/pi
plap=|" ) with P = /pifp . (4.3)
0 —ip 1 1

In fact, using the transformation: (x,y) = P(z,w)’, and after a time scaling: T =
ipt, system (4.1) can become the following complex symmetrical system,

c%z" =z+ Z:r?:z Zm +0(|2]'%) = Z,

dw 13 16 (44)
ar — TwW— Zm:Q W, — O(|w| ) = 7Wa

where
_ ~ k.. — b oonk o d :
T = E kﬂ:ma;wz w!, W, = E k+j:mbk]w 2, k,jeN,

which are given in the website: https://github.com/wql2001399/wql. Actually, we
have w = Z and l;kj = Gy;, thus systems (4.4) and (4.1) are called conjugate. When
there exists no misunderstanding, aj; and Bkj are still written as ay; and by; for
system (4.4).

Lemma 4.1 ( [17]). For system (4.4), when taking c11 = 1,¢c20 = co2 = 0, ¢ =
0,k =2,3,---, we can derive successively and uniquely the terms of the following
formal series:

oo
F(z,w) = zw + Z Capz®w?,
a+pB=2
such that

(oo}

ji; = > pm(zw)" (4.5)

m=1

If a # B, cqp is determined by the following recursive formula:

1 a+p

Cal = 54 > la—k+Darj1— B3+ Dbjk-1lca—rt1p-jr1, (4.6)
ktj=3

and for any positive integer m, (., is determined by the following recursive formula:

2m—42

P, = Z [(m =k +2)ak,j-1 — (M —j +2)bj k—1]cm—k+2,m—j+2- (4.7)
k+j=3

When oo =3 >0 ora <0 or 8 <0, we set cog =0. And p,, is called the m-th
singular point quantity at the origin of the system, m =1,2,--- .

Remark 4.1. Here the calculation of the above formulas ¢, in (4.6) and g, in
(4.7), only the coefficients of polynomials of degree 2m + 1 or less are involved
in system (4.4), this is to say, for the origin of system (4.1) or (4.4) as a Hopf
bifurcation point, we can determine strictly the first 7 singular point quantities,
i.e., tm,m < T.
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Applying also the symbolic computation function of Mathematica system and
the recursive formulas in Lemma 4.1, where cg;, ftr, in (4.6) (4.7) can be found in
the website: https://github.com/wql2001399/wql. We obtain the first 7 singular
point quantities as follows:

up = —2 (3bosp® + b2 ) ,

U = p%bos (2b12p* + 6bso + K1 — 4k2) ,

uz = ﬁb% (72035p* + 8b1,p? + 3b12p? + 9b3o + 18k2)

Ug = ﬁb% (90b35p* + 36b33b12p" + 4b3op* + 10359 + 3b1op® + 9bzo) , (4.8)

us = — 533805 003 (9050° + b12) f,

ug = —Wl)og (9625p% + b3,) fe,

ur = — sysstaamap o3 (90050 + bs) fr,
where

f5 = 3744[)%3[)12])2 + 336()‘;’2 — 1005%2 + 23b12 + 30,
fi = 480, + 125062, + 941b15 + 210, (4.9)
fr = 1735062, + 21535b1 + 4902,

In the above expression of each puy, we have already let pux_1 =0, k=1,2,--- 7.
From the above expressions of seven singular point quantities, we have

Theorem 4.1. The order of the origin of system (4.4) as a fine focus is 7 if and
only if
ba1 = —3bosp?,
K1 = 4ky — 2b1ap® — 6bso,
Ko = —15(72b33p" + 8b5p? + 3b12p? 4 9bso), (4.10)
bso = — L (90b23p? + 36b2;b12p? + 4b3, + 1062, + 3bys),
fs=1F6 =0, bos #0.

Proof. (i) According to the first 7 singular point quantities in (4.8), considering
the conditions (4.10), we have got naturally g3 = po = -+ = ug = 0. And under
the condition fg = 0 in (4.10), we can verify f; # 0 easily. Then, pu; # 0 hold,
namely the origin of the system (4.4) is a fine focus of order 7.
(ii) Conversely, if 3 = pg = -+ = ug = 0 and py # 0, the necessity of (4.10) is
easily proved. O
And more we have the following theorem.

Theorem 4.2. The first 7 focal values all disappear, and the origin of the system
(4.1) is a center if and only if the following conditions holds

a— K1+ ke <0, b=0, by =boz =0, (4.11)
Proof. For case (4.11), we obtain the original system

=1y, U=—risinc+ kesinzcosx + ax + byx® + biazy?, (4.12)
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which defines a vector field symmetric with respect to the x-axis. Thus we obtain
the origin of the system (4.1) is a center, namely the sufficiency of (4.11) is proven.

On the other hand, from Theorem 4.1, the necessity is obvious. O

Furthermore, from Theorems 4.1 and 4.2, applying the relationship between the
focal values and the singular point quantities given in [17], we obtain the following
corollary.

Corollary 4.1. The origin of the system (4.1) is a fine focus of order 7 at most,
and the first seven focal values are respectively:

Ug+1(2m) =imp;, 1 < j <7, (4.13)

in the above expression of each vog 41, we have already let vo,_1 =0, k=1,2,--- ,7.

Next, setting the parameters b = ¢ with 0 < |§| < 1 in the condition (4.2) of
Hopf bifurcation, we make system (4.1) become the perturbed form as follows,

i=vy, y=—r1sinz+ kysinzcosz—p’r+dy+ Yo, (4.14)

where k1 = k3. Thus by calculating based on the perturbation of linear part, we
obtain the strong focus value v = 7d/p + 0(9).

Further, under the condition (4.10), we can verify that there exists a valid
critical value such that v15 # 0, and more by calculating the Jacobian determi-
nant of the seven focal values vy, vs,vs,vs, -+ ,v13 with respect to the variables
(5, 1)217 ]{71, kg, b30, b12, b()3, we obtain:

J| _ 9(v1,v3,V5,07,09,V11,V13) |
(4.10) = B(3, bar1,k1,k2,b30,b12,b03) | (4-10)

(4.15)

__ 82878018762740111230964937° £0
~ 714829348262955468256000p 151 :

From these, applying Theorem 4.2 in [10], also similar to the proof of Theorem 3.4,
we have the following theorem.

Theorem 4.3. Under appropriate perturbations, system (4.1) can generate at most
7 small-amplitude limit cycles in the neighborhood of the origin via Hopf bifurcation.
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Appendix A

05 = (343119513033220b3,b15 K© + 14696678106633600%,b13b%, K4+
195517913448165b2,b13 K 4 5939090697909600b1 251 3b%, K2+
1501138725373980b12b1 363 K * + 42006515691063b, 2b15 K 6+
17610229477169280b;3bS,, + 6153888182904000b5b%, K 2+
420403067003304b; 363, K* + 3420033941720b13 K 6) /(28222959736125 K 21/2),
@6 = 262057127270400b2,b%, K* + 51118038342800b2, K 6+
4465238499532800b12b% K% + 1319232266542080b;2b%, K 4+
45931084890900b;5 K¢ — 314430564925440065, — 1217227620787200b%, K2 —
73347310051488b2, K* 4 2008406304773K°,

o7 = (678482043601753190800b%, K& + 38849421314927295072006%,b%, K 5+
517189699488844181800b%, K& + 26095516987057579353600b2,b%, K4+
6233342449673781842400b2,b%, K¢ — 162288561532429917585b2, K5+
201965826779917945113600b; 55, K 2 +64924146621553440513600b,2b%, K4+
3489125940475096466160b15b%, K & +24999560338695514000b, 5 K 5~
490992871049590659756%, K9 + 109928226192273375667200b%,+
5729433760181450753280065, K2 + 9373013654929833585600b%, K 4+
42685834151944741692062, K¢ + 1599971861676512896K)/
(136624103248581748800 K 12),

05 = 368746108044652800000b3,b2, K6 + 7192926933956335000063, K 5+
15114514871207164723200b2, b K4 +3940653216762166132800b2,b2, K 5+
131093805037993715500b2, K& + 151096785037937499340800b; 555, K 2+
50911925011665130828800b;2b4%, K * +3389291976826728886320b15%, K O+
63784109539965564805b;5 K& — 48262391626301846323200b5, —
16626718893566768025600b5, K2 — 60804649450165230720b% K 4+
161461225853348143140b%, K6 + 3618635711488746817K%,

References

[1] M. Alvarez and A. Gasull, Monodromy and stability for nilpotent critical points,
International Journal of Bifurcation and Chaos, 2005, 15(4), 1253-1265.

[2] V. Amelkin, N. Lukashevich and A. Sadovskii, Nonlinear oscillations in second-
order systems, Minsk Izdatel BGU, Minsk, 1982.

[3] L. Barreira, J. Llibre and C. Valls, On the Global Nilpotent Centers of Cu-



1444

W. Huang, J. Yao & Q. Wang

[13]
[14]

[15]

[16]

[17]

bic Polynomial Hamiltonian Systems, Differential Equations and Dynamical
Systems, 2022, 1-11.

N. Bautin, On the number of limit cycles appearing from an equilibrium point
of the focus or center type under varying coefficients, Matem. Sb., 1952, 30,
181-196.

M. Cartwbight, Balthazar van der Pol, Journal of the London Mathematical
Society, 1960, 35, 367-376.

J. Chavarriga, H. Giacomin, J. Gine and J. Llibre, Local analytic integrability
for nilpotent centers, Ergodic Theory and Dynamical Systems, 2003, 23(2),
417-428.

H. Giacomini, J. Gine and J. Llibre, The problem of distinguishing between a
center and a focus for nilpotent and degenerate analytic systems, Journal of
Differential Equations, 2006, 227(2), 406—426.

J. Gine and J. Llibre, A method for characterizing nilpotent centers, Journal
of Mathematical Analysis and Applications, 2014, 413(1), 537-545.

L. Gouveia and T. Joan, Lower bounds for the local cyclicity of centers using
high order developments and parallelization, Journal of Differential Equations,
2021, 271, 447-479.

M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.

M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems
via Melnikov function, Journal of Applied Analysis and Computation, 2015,
5(4), 809-815.

M. Han and J. Yang, The Maximum Number of Zeros of Functions with Param-
eters and Application to Differential Equations, Journal of Nonlinear Modeling
and Analysis, 2021, 3(1), 13-34.

B. Hassard, N. Kazarinoff and Y. Wan, Theory and Application of Hopf Bifur-
cation, Cambridge University Press, Cambridge, 1981.

J. Li, Hilbert’s 16th problem and bifurcations of plannar polynomial vector
fields, International Journal of Bifurcation and Chaos, 2003, 13, 47-106.

F. Li, T. Chen, Y. Liu and P. Yu, A Complete Classification on the Center-
Focus Problem of a Generalized Cubic Kukles System with a Nilpotent Singular
Point, Qualitative Theory of Dynamical Systems, 2024, 23(1), 8.

F. Li and S. Li, Integrability and limit cycles in cubic Kukles systems with a
nilpotent singular point, Nonlinear Dynamics, 2019, 96(1), 553-563.

Y. Liu and J. Li, Theory of values of singular point in complex autonomous
differential system, Sci. China Ser. A. 1990, 33, 10-24.

Y. Liu and J. Li, Bifurcations of limit cycles and center problem for a class of
cubic nilpotent system, International Journal of Bifurcation and Chaos, 2010,
20(8), 2579-2584.

Y. Liu and J. Li, On third-order nilpotent critical points: integral factor method,
International Journal of Bifurcation and Chaos, 2011, 21(5), 1293—-1309.

Y. Liu and J. Li, New study on the center problem and bifurcations of limit
cycles for the Lyapunov system (I), International Journal of Bifurcation and
Chaos, 2009, 19(11), 3791-3801.



Local Bifurcation Cyclicity for a Non-polynomial System 1445

[21]

22]

[25]

[26]

[27]

N. Lloyd and J. Pearson, REDUCE and the bifurcation of limit cycles, Journal
of Symbolic Computation, 1990, 9, 215-24.

R. Moussu, Symetrie et forme normale des centres et foyers degeneres, Ergodic
Theory and Dynamical Systems, 1982, 2(2), 241-251.

J. Rayleigh, The Theory of Sound, Macmillan, 1896.

S. Strogatz, Nonlinear dynamics and chaos with student solutions manual:
With applications to physics, biology, chemistry, and engineering, CRC press,
2018.

Y. Tian and P. Yu, An explicit recursive formula for computing the normal
form and center manifold of n-dimensional differential systems associated with
Hopf bifurcation, International Journal of Bifurcation and Chaos, 2013, 23(06),
1350104.

Y. Tian and P. Yu, Bifurcation of small limit cycles in cubic integrable systems
using higher-order analysis, Journal of Differential Equations, 2018, 264(9),
5950-5976.

J. Yang and L. Zhao, Bounding the number of limit cycles of discontinuous
differential systems by using Picard-Fuchs equations, Journal of Differential
Equations, 2018, 264, 5734-5757.



	Introduction
	Preliminary knowledge on nilpotent singularity
	Nilpotent Hopf bifurcation and center problem
	Hopf bifurcation and center problem

