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Local Bifurcation Cyclicity for a Non-Polynomial

System∗
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Abstract In this paper, we propose a class of general non-polynomial an-
alytic oscillator models, and study the limit cycle bifurcation at the nilpo-
tent singularity or elementary center-focus. By Taylor expansion, two specific
systems from the original model are transformed into two equivalent infinite
polynomial systems, and the highest order of fine focus as the nilpotent Hopf
bifurcation or Hopf bifurcation point is determined respectively. At the same
time, the local bifurcation cyclicities and center problems for two systems are
solved respectively. To our knowledge, such dynamic properties are rarely
analyzed in many non-polynomial models.
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1. Introduction

In this paper, we study the following weak perturbation nonlinear oscillator model:

ẍ = −κ1 sinx+ κ2 sinx cosx+ h(x, ẋ), (1.1)

where κ1 > 0, κ2 > 0 and h(x, ẋ) as a perturbation part is any smooth function
on R2. Its background comes from a classic case which often appears in college
physics textbooks: a class of overdamped ball motion models on a rotating ring [24].
The trajectory of the ball can be described by the following second-order ordinary
differential equation.

mrẍ = −bẋ−mg sinx+mrω2 sinx cosx, (1.2)

where x is the swing angle, rẍ is the acceleration, mg is the gravity, mrω2 sinx cosx
is the lateral centrifugal force, the bẋ is the tangential damping force. This model
shows rich dynamics properties, including various bifurcations [24].
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For the undamped case, i.e., when b = 0, the energy Hamilton function corre-
sponding to model (1.2) can be written as follows:

H =
ẋ2

2
− g

r
cosx+

ω2

2
cos2 x. (1.3)

In fact, the existence of viscous damping in the actual background makes the target
ball in model (1.2) be affected by nonlinear damping, which is similar to the Van
der Pol oscillator model [5] and Rayleigh oscillator model [23], described by

ẍ = µ(1− x2)ẋ− x, and ẍ = µ(1− ẋ2)ẋ− x,

respectively, where µ is a scalar parameter representing the strength of the damping.
Therefore, the term of damping force bẋ can be extended in the model (1.2), and
we can propose the general model (1.1).

Furthermore, letting ẋ = y, and taking h(x, ẋ) as a specific polynomial function,
we can transform model (1.1) into the non-polynomial analytic system as follows, ẋ = y,

ẏ = −κ1 sinx+ κ2 sinx cosx+ h(x, y),
(1.4)

where h(x, y) = ax+ by+
∑

2≤i+j≤n bijx
iyj , and a, b, bij ∈ R, n ∈ Z. Motivated by

many research works on the cyclicity of piecewise smooth systems or non-polynomial
Hamiltonian systems, e.g. [11, 12, 27], we will study such a non-polynomial system
on the local bifurcation cyclicity, that is, the maximum number of small amplitude
limit cycles that can bifurcate in the vicinity of equilibrium.

For the trigonometrical functions in some practical models, the approximations:
sinx≈ x and cosx≈ 1 are usually used when x is small. However, such approxi-
mations are inappropriate in solving the local bifurcation cyclicity of the original
system. It is easily checked that the Jacobian matrix of (1.4) at its origin

J =

 0 1

a+ κ2 − κ1 b

 (1.5)

has a pair of conjugate imaginary eigenvalues if and only if b = 0, a+ κ2 − κ1 < 0,
namely the origin is a Hopf bifurcation point. Furthermore, if and only if b = 0,
and a+κ2−κ1 = 0, the Jacobian matrix (1.5) has double zero eigenvalues, i.e., the
origin is a nilpotent singularity.

In this paper, we consider the two above categories of equilibria for system
(1.4). For the former, to solve its Hopf bifurcation cyclicity in a planar polynomial
vector field of degree n ≥ 2, the general approach is to determine the highest order
of fine focus by computing the focal values or Lyapunov constants and finding
the center conditions. There have been some classic methods, and the reader can
see [13,14,17,21,25]. While the quadratic case has been completely solved, that is,
Hopf bifurcation cyclicity 3 was proven by Bautin [4], while for n > 2, this problem
is still open. More recent new progress can be found in [9,26] and references therein.
Here to overcome the difficulty arising from such non-polynomial functions, we will
adopt Taylor expansion to transform the original model into its equivalent infinite
polynomial systems, then apply the method proposed in [17] to calculate the focal
values.
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For the latter, as a degenerate case, the nilpotent singularity is much more
complicated than elementary ones in the topological structure of phase orbits near
its neighborhood. Consider the following generic planar systems with a nilpotent
singularity, 

ẋ = y +
∞∑

k+j=2

akjx
kyj = Φ(x, y),

ẏ =
∞∑

k+j=2

bkjx
kyj = Ψ(x, y),

(1.6)

where x, y, akj , bkj ∈ R (k, j ∈ N), and the functions Φ(x, y),Ψ(x, y) are analytic
in the neighborhood of the origin. Lyapunov provided the sufficient and necessary
conditions as the center-focus type for the origin of the system (1.6) in [2].

Similar to the former nondegenerate case, calculating the focal value and de-
tecting nilpotent center are needed. There also exist several available and classical
ways, such as the normal form theory [22], Lyapunov function [6] and Poincare re-
turn map [1]. Some good results can be seen in [3,7,8]. It is worth mentioning that
the integral factor method of calculating the quasi-Lyapunov constants proposed
in [19], is convenient to compute the higher order focal values and solve the center-
focus problem of the three-order nilpotent critical point. In view of this, several
planar cubic system have been investigated recently, e.g. [15,16,18]. Here we extend
this method to solve the nilpotent Hopf bifurcation for the above system (1.4) via
Taylor’s expansion.

The remainder of this paper is organized as follows. In Section 2, we introduce
some basic concepts and the quasi-Lyapunov constant method used for nilpotent
Hopf bifurcation of planar Lyapunov systems. In Section 3, the original model
with a three-order nilpotent singularity is transformed into an equivalent infinite
polynomial system by Taylor’s expansion, and the highest order of the nilpotent
focus is determined. At the same time, the nilpotent Hopf bifurcation cyclicity
is solved. In Section 4, for one specific system with an elementary center-focus,
similarly the highest order of the focus is determined and the Hopf bifurcation
cyclicity is solved. Local bifurcation cyclicity for a non-polynomial system has been
less studied, and this problem is interesting.

2. Preliminary knowledge on nilpotent singularity

In this section, we give the definition and method on symbolic computation of
quasi-Lyapunov constant for the nilpotent singularity. For more details, see [19,20].

Lemma 2.1 ( [19]). The origin of system (1.6) is a third-order monodromic critical
point if and only if

b20 = 0, (2a20 − b11)
2 + 8b30 < 0. (2.1)

Without loss of generality, we assume that a20 = µ, b20 = 0, b11 = 2µ, b30 = −2.
Otherwise, by letting

2a20 + b11 = 4λµ, (2a20 − b11)
2 + 8b30 = −16λ2, (2.2)

and making the transformation

ξ = λx, η = λy +
1

4
(2a20 − b11)λx

2, (2.3)
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we can convert (1.6) into the following form, i.e., a Lyapunov system [20]:
ẋ = y + µx2 +

∞∑
k+2j=3

akjx
kyj = X(x, y),

ẏ = −2x3 + 2µxy +
∞∑

k+2j=4

bkjx
kyj = Y (x, y),

(2.4)

where x, y, µ, akj , bkj ∈ R (k, j ∈ N). By using the transformation of generalized
polar coordinates:

x = r cos θ, y = r2 sin θ, (2.5)

system (2.4) can be converted into

dr
dθ = − cos θ[sin θ(1−2 cos2 θ)+µ(cos2 θ+2 sin2 θ)]

2(cos4 θ+sin2 θ)
r + o(r). (2.6)

When r is sufficiently small, dθ
dt < 0. So the successor function ∆(h) of Eq.(2.6) in

the neighborhood of the origin is written as

∆(h) = r(−2π, h)− h =

∞∑
m=2

vm(−2π)hm, (2.7)

where the quantity of v2k(−2π) is called the k-th focal value at the origin, k =
1, 2, · · · .

Further, we give the calculation formula of quasi-Lyapunov constant.

Lemma 2.2 ( [19]). For system (2.4), any positive integer s and a given number
sequence {c0β}, β ⩾ 3, we can derive successively and uniquely the terms of the
following formal series with the coefficients cαβ satisfying α ̸= 0,

M(x, y) = y2 +
∞∑

α+β=3

cαβx
αyβ (2.8)

such that

(
∂X

∂x
+

∂Y

∂y
)M − (s+ 1)(

∂M

∂x
X +

∂M

∂y
Y ) =

∞∑
m=3

ωm(s, µ)xm, (2.9)

where sµ = 0. And if α ̸= 0, cαβ is determined by the following recursive formula:

cαβ =
1

(s+ 1)α

∑α+β−1

k+j=2
Φkj , (2.10)

and for any positive integer m ⩾ 3, ωm is determined by the following recursive
formula:

ωm =
∑m−1

k+j=2
[Φkj ]α=m+1,β=−1, (2.11)

where

Φkj=[k − (s+ 1)(α− k)]akjcα−k,β−j+1 + [j − (s+ 1)(β − j + 2)]bkjcα−k−1,β−j+2

and when α < 0 or β < 0, we set cαβ = 0.
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Remark 2.1. About the calculation of the above formulas (2.10) and (2.11) for each
ωm, only the coefficients of polynomials of degreem−1 or less are involved in system
(2.4). Particularly, by choosing appropriate s and number sequence {c0β} (β ⩾ 3),
we can make ω2i+1(s, µ) = 0, then let

ω2i+4(s, µ) = (2i− 4s− 1)λi (2.12)

where λi is said the i-th quasi-Lyapunov constants of the origin of system (2.4),
with i = 1, 2, · · · .

Lemma 2.3 ( [20]). For system (2.4), and any positive integer m, the following
assertion holds: v2m(−2π) ∼ σmλm, namely

v2m(−2π) = σmλm +

m−1∑
k=1

ξ(k)m λm, (2.13)

where ξ
(k)
m (k = 1, 2, · · · ,m − 1) are polynomial functions of coefficients of system

(2.4), and

σm =
1

2

∫ 2π

0

(1 + sin2 θ) cos2m+4 θ

(cos4 θ + sin2 θ)s+2
v2m−4s−1
1 (θ)dθ > 0. (2.14)

Then the relation between v2m(−2π) and σmλm is called algebraic equivalence.

Consider the perturbed system of system (2.4):

ẋ = X(x, y), ẏ = δ1x+ δ2y + Y (x, y), (2.15)

where 0 < |δ1|, |δ2| ≪ h ≪ 1, and X, Y are given by system (2.4). Obviously,
when δ1 < 0, in a neighborhood of the origin, there exists one elementary focus
at the origin and two complex critical points of system (2.15). And when δ1 → 0
and δ2 → 0, the three points coincide to become a third-order critical point. Thus,
similar to the proof of Theorem 4.7 in [20], we have the following same conclusion.

Lemma 2.4 ( [20]). Suppose that the first m focus values depend on m− 1 param-
eters γ = {γ1, γ2, · · · , γm−1}, expressed as v2j = vj(−2π, γ), j = 2, 4, · · · , 2m. And

when δ1 = δ2 = 0, if there exists γ = γ(0) = {γ(0)
1 , γ

(0)
2 , · · · , γ(0)

m−1} such that

v2k(γ
(0)) ̸= 0, vj(γ

(0)) = 0, j = 2, 4, · · · , 2m− 2,

det[ ∂(v2,v4,··· ,v2m−2)

∂(γ
(0)
1 ,γ

(0)
2 ,··· ,γ(0)

m−1)
(γ(0))] ̸= 0,

(2.16)

then the origin of the perturbed system (2.15) has exactly m limit cycles.

3. Nilpotent Hopf bifurcation and center problem

In this section, we will consider the nilpotent Hopf bifurcation and center problem
of the system (1.4). Actually, we let a = b = 0 and κ1 = κ2 = K > 0 in system
(1.4), yielding the origin as a three-order nilpotent singularity, and take h(x, y) a
mixed polynomial of degree 4 as follows,

ẋ = y, ẏ = −K sinx(1− cosx) + b02y
2 + Y3 + Y4, (3.1)
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where

Y3 = b21x
2y + b12xy

2 + b03y
3, Y4 = b40x

4 + b22x
2y2 + b13xy

3 + b04y
4. (3.2)

Since the system (3.1) contains trigonometric functions and is a non-polynomial ana-
lytic system, Lemma 2.2 cannot be directly applied to determine the quasi-Lyapunov
constant of the origin unless the system is polynomial transformed. According to
Remark 2.1, by performing Taylor expansion at the origin on the right side of the
system to the terms of degree 18, we can strictly determine the first ωm,m ≤ 18,
i.e., we take

sinx(1− cosx) = x3

2 − x5

8 + x7

80 − 17x9

24192 + 31x11

1209600 − x13

1520640

+ 5461x15

435891456000 − 257x17

1394852659200 + o(x18).
(3.3)

Obviously, by introducing the transformation:

ξ =

√
K

2
x, η =

√
K

2
y, (3.4)

system (3.1) is converted into the following form with the same as system (2.4) :


ẋ = y,

ẏ = −2x3 + 2b02y
2

√
K

+ 2x5

K − 4x7

5K2 + 34x9

189K3 − 124x11

4725K4 + 4x13

1485K5

− 43688x15

212837625K6 + 514x17

42567525K7 + 4Y3

K + 8Y4

K
√
K

+ o(x18),

(3.5)

where ξ, η is still referred to as x, y.

Applying the powerful symbolic computation function of Mathematica system
and the recursive formulas in Lemma 2.2, where ckj , ωm in (2.10) (2.11) can be
found in the website: https://github.com/wql2001399/wql. We obtain the first 18
quantities as follows:

ω3 = 0, ω4 = 0,

ω5 = 0, ω6 = − 4
3K b21(4s− 1),

ω7 = 3(1 + s)c03, ω8 = − 24
5K b03(4s− 3),

ω9 = − 16
K3/2 b13(s− 1), ω10 = 32

35K3 b13 (11b02K + 6b40) ,

ω11 = 121
16 (φ1 + c05), ω12 = 2176

105K3 b13(b22 + φ2),

ω13 = 192
5K3/2 b13(φ3 − c04), ω14 = 4352

231K3 b13(b04 + φ4),

ω15 = 35
4 (φ5 + c07), ω16 = − 64

36240584216265K12 b13b40φ6,

ω17 = 3072
35K3/2 b13(φ7 − c06), ω18 = 128

39137112909749980125K15 b13b40φ8,

(3.6)
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where

φ1 = (3388b12b13K
2 + 484b13K

2 + 3888b13b
2
40)/(1815K

9/2),

φ2 = (24684b12b40K
2 + 23595b40K

2 + 135648b340)/(45254K
3),

φ3 = (64713220b212K
4 + 21156245b12K

4 + 164395440b12b
2
40K

2

+ 71743320b240K
2 + 284562720b440 + 1991176K4)/(44801460K6),

φ4 = (87553180b12b40K
4 + 74303075b40K

4 + 448842240b12b
3
40K

2

+ 2269650240b340K
2 + 7705663488b540)/(186174956K

6),

(3.7)

and φ5, φ6, φ7, φ8 are given in Appendix A. In the above expression of each ωk,
we have already let ωk−1 = 0, k = 3, 4, · · · , 18.

In particular, in order to make ω2i+1 = 0, i = 3, 4, · · · , 8, we can let c03 =
0, c04 = φ3, c05 = −φ1, c06 = −φ3, c07 = φ5 and s = 1 at the same time.
Thus, the corresponding first 7 quasi-Lyapunov constants can be calculated from
the expression (2.12), then the following conclusion is obtained.

Theorem 3.1. For the system (3.5), we get the first 7 quasi-Lyapunov constants
of the origin as follows:

λ1 = 4
3K b21,

λ2 = 24
5K b03,

λ3 = 32
35K3 b13 (11b02K + 6b40) ,

λ4 = 2176
315K3 b13(b22 + φ2),

λ5 = 4352
1155K3 b13(b04 + φ4),

λ6 = − 64
253684089513855K12 b13b40φ6,

λ7 = 128
352234016187749821125K15 b13b40φ8,

(3.8)

where for each λk, we have already let ωk−1 = 0, k = 1, 2, · · · , 7.

From Theorem 3.1, we have the following theorem.

Theorem 3.2. The order of the origin of the system (3.5) as a nilpotent fine focus
is 7 if and only if

b21 = b03 = 0, b02 = − 6
11K b40, b22 = −φ2, b04 = −φ4, φ6 = 0, b13b40 ̸= 0. (3.9)

Proof. (i) Obviously, when the conditions (3.8) hold, from Theorem 3.1, we have
λ1 = λ2 = · · · = λ6 = 0. Then, λ7 ̸= 0, i.e., φ8 ̸= 0 should be proved. In fact, under
the condition φ6 = 0 in (3.8), we can obtain φ8 ̸= 0 by calculating the resultant of
φ8 and φ6 with respect to b12 as follows:

Resultant[φ8, φ6, b12] = K12(8064b240 + 1573K2)H20 ̸= 0, (3.10)

where H20 =
∑10

i=0 qib
2i
40 is a polynomial only in b240 with all qi > 0. Thus the origin

of the system (3.5) is a nilpotent fine focus of degree 7.
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Furthermore, we can find one group of valid critical values such that the condi-
tions (3.9) hold, for example,

b13 = b40 = 1, b12 = 3(6326595715K4+181712433408K2+615046625280)
13428580K2(1573K2+8064) , (3.11)

where K = K0 ≈ ±7.0302 are two real roots of the following equation:

3144305649254400+1217227620787200K2+73347310051488K4−2008406304773K6= 0.

(ii) Conversely, from λ1 = λ2 = · · · = λ6 = 0, λ7 ̸= 0 in Theorem 3.1 and the
resultant (3.10), the necessity is easily proven.

From Theorem 3.2, we have the following theorem.

Theorem 3.3. The first 7 quasi-Lyapunov constants all disappear, and the origin
of the system (3.1) is a center if and only if one of the following two groups of
conditions hold:

(i) b21 = b03 = b13 = 0,

(ii) b21 = b03 = b22 = b40 = b04 = b02 = 0, s = 1.
(3.12)

Proof. For the case (i), we obtain the original system

ẋ = y, ẏ = b02y
2 + b04y

4 + b12xy
2 + b22x

2y2 + b40x
4 −K sinx(1− cosx), (3.13)

which defines a vector field symmetric with respect to the x-axis. For the case (ii),

ẋ = y, ẏ = b12xy
2 + b13xy

3 −K sinx(1− cosx), (3.14)

which defines a vector field symmetric with respect to the y-axis. From these,
we obtain the origin of the system (3.1) is a center, namely the sufficiency of two
conditions in (3.12) is proven.

On the other hand, from Theorem 3.2, the necessity is obvious.

Furthermore, from Theorems 3.2 and 3.3, we have the following corollary.

Corollary 3.1. The origin of the system (3.1) is a nilpotent fine focus of order 7
at most, and the first seven focal values are respectively:

v2j (−2π) = σjλj , 1 ≤ j ≤ 7, (3.15)

where each σj > 0, and in the above expression of each v2k, we have already let
v2k−2 = 0, k = 1, 2, · · · , 7.

Next, we will apply the condition (3.9) to discuss the nilpotent Hopf bifurcation
of the origin of the system (3.1), and obtain the following conclusion.

Theorem 3.4. Under appropriate perturbations, system (3.1) can generate at most
7 small-amplitude limit cycles in the neighborhood of the origin via nilpotent Hopf
bifurcation.

Proof. We first set the parameters a = δ1, b = δ2 and κ1 = κ2 in the original
system (1.4), which makes the system (3.1) become the perturbed form as (2.15).
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Under the condition (3.9), from Theorem 3.1 and Corollary 3.1, we have v14 ̸= 0,
and easily calculate the Jacobian determinant of the focal values v2, v4, · · · , v12 with
respect to the variables b02, b21, b12, b03, b22, b04, b40:

J = ∂(v2,v4,v6,v8,v10,v12)
∂(b02,b21,b12,b03,b22,b04,b40)

= 8589934592
8398039524249375K20σ1σ2σ3σ4σ5σ6b

4
13b40φ9, (3.16)

where φ9 = 216576138240b12b
2
40K

2 + 42246312680b12K
4 + 1845139875840b440 +

545137300224b240K
2 + 18979787145K4. Further, under the condition φ6 = 0 in

(3.8), we can verify φ9 ̸= 0 by calculating

Resultant[φ9, φ6, b12] = K4(8064b240 + 1573K2)H8 ̸= 0, (3.17)

where H8 =
∑4

i=0 rib
2i
40 is a polynomial only in b240 with all ri > 0. Thus under the

conditions (3.8), we have that J ̸= 0 holds.
By applying Lemma 2.4, we know that certain appropriate perturbations can

generate exactly 7 small-amplitude limit cycles at neighborhood of the origin for
system (3.1), and Theorem 3.3 implies that the highest order of the origin as the
fine focus is 7, yielding at most 7 small-amplitude limit cycles via nilpotent Hopf
bifurcation. Therefore the proof is completed.

4. Hopf bifurcation and center problem

In this section, we consider the Hopf bifurcation and center problem at the origin as
an elementary singularity for system (1.4). When taking h(x, y) as a combination
of the linear terms and a complete homogeneous polynomial of degree 3, we have
system (1.4) as follows,

ẋ = y, ẏ = −κ1 sinx+ κ2 sinx cosx+ ax+ by + Y2, (4.1)

where Y2 = b30x
3 + b21x

2y + b12xy
2 + b03y

3. For investigating Hopf bifurcation,
we apply the singular point quantity method given in [17]. Similarly, we need to
transform the non-polynomial analytic system (4.1) into the polynomial form. Thus
also by performing Taylor expansion at the origin on the right side of the system,
we take the following form to the terms of degree 16,

κ2 sinx cosx− κ1 sinx = x(κ2 − κ1) +
1
6x

3(κ1 − 4κ2) + x5( 2κ2

15 − κ1

120 )

+ x7( κ1

5040 − 4κ2

315 ) + x9( 2κ2

2835 − κ1

362880 ) + x11( κ1

39916800 − 4κ2

155925 )

+ x13( 4κ2

6081075 − κ1

6227020800 ) + x15( κ1

1307674368000 − 8κ1

638512875 ) + o(x16).

Then utilizing the condition of its Jacobian matrix (1.5) at the origin as Hopf
bifurcation point, we set

b = 0, a = κ1 − κ2 − p2, (4.2)

where p > 0. Then the matrix J has a pair of imaginary eigenvalues ±ip with
i =

√
−1. Furthermore, by introducing a matrix P which transforms J into a

diagonal one, we obtain



1440 W. Huang, J. Yao & Q. Wang

P−1JP =

 ip 0

0 −ip

 with P =

−i/p i/p

1 1

 . (4.3)

In fact, using the transformation: (x, y)′ = P (z, w)′, and after a time scaling: T =
ipt, system (4.1) can become the following complex symmetrical system,

dz
dT = z +

∑13
m=2 Zm + o(|z|16) = Z,

dw
dT = −w −

∑13
m=2 Wm − o(|w|16) = −W,

(4.4)

where

Zm =
∑

k+j=m
ãkjz

kwj , Wm =
∑

k+j=m
b̃kjw

kzj , k, j ∈ N,

which are given in the website: https://github.com/wql2001399/wql. Actually, we
have w = z and b̃kj = ãkj , thus systems (4.4) and (4.1) are called conjugate. When

there exists no misunderstanding, ãkj and b̃kj are still written as akj and bkj for
system (4.4).

Lemma 4.1 ( [17]). For system (4.4), when taking c11 = 1, c20 = c02 = 0, ckk =
0, k = 2, 3, · · · , we can derive successively and uniquely the terms of the following
formal series:

F (z, w) = zw +

∞∑
α+β=2

cαβz
αwβ ,

such that

dF

dT
=

∞∑
m=1

µm(zw)m+1. (4.5)

If α ̸= β, cαβ is determined by the following recursive formula:

cαβ =
1

β − α

α+β∑
k+j=3

[(α− k + 1)ak,j−1 − (β − j + 1)bj,k−1]cα−k+1,β−j+1, (4.6)

and for any positive integer m, µm is determined by the following recursive formula:

µm =

2m+2∑
k+j=3

[(m− k + 2)ak,j−1 − (m− j + 2)bj,k−1]cm−k+2,m−j+2. (4.7)

When α = β > 0 or α < 0 or β < 0, we set cαβ = 0. And µm is called the m-th
singular point quantity at the origin of the system, m = 1, 2, · · · .

Remark 4.1. Here the calculation of the above formulas cαβ in (4.6) and µm in
(4.7), only the coefficients of polynomials of degree 2m + 1 or less are involved
in system (4.4), this is to say, for the origin of system (4.1) or (4.4) as a Hopf
bifurcation point, we can determine strictly the first 7 singular point quantities,
i.e., µm,m ≤ 7.
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Applying also the symbolic computation function of Mathematica system and
the recursive formulas in Lemma 4.1, where ckj , µm in (4.6) (4.7) can be found in
the website: https://github.com/wql2001399/wql. We obtain the first 7 singular
point quantities as follows:

u1 = − i
p3

(
3b03p

2 + b21
)
,

u2 = i
p5 b03

(
2b12p

2 + 6b30 + κ1 − 4κ2

)
,

u3 = i
12p7 b03

(
72b203p

4 + 8b212p
2 + 3b12p

2 + 9b30 + 18κ2

)
,

u4 = i
45p9 b03

(
90b203p

4 + 36b203b12p
4 + 4b312p

2 + 10b212p
2 + 3b12p

2 + 9b30
)
,

u5 = − i
28350p11 b03

(
9b203p

2 + b212
)
f5,

u6 = − i
198450p11 b03

(
9b203p

2 + b212
)
f6,

u7 = − i
228614400p13 b03

(
9b203p

2 + b212
)
f7,

(4.8)

where

f5 = 3744b203b12p
2 + 336b312 − 100b212 + 23b12 + 30,

f6 = 480b312 + 1250b212 + 941b12 + 210,

f7 = 17350b212 + 21535b12 + 4902.

(4.9)

In the above expression of each µk, we have already let µk−1 = 0, k = 1, 2, · · · , 7.
From the above expressions of seven singular point quantities, we have

Theorem 4.1. The order of the origin of system (4.4) as a fine focus is 7 if and
only if

b21 = −3b03p
2,

κ1 = 4κ2 − 2b12p
2 − 6b30,

κ2 = − 1
18 (72b

2
03p

4 + 8b212p
2 + 3b12p

2 + 9b30),

b30 = −p2

9 (90b203p
2 + 36b203b12p

2 + 4b312 + 10b212 + 3b12),

f5 = f6 = 0, b03 ̸= 0 .

(4.10)

Proof. (i) According to the first 7 singular point quantities in (4.8), considering
the conditions (4.10), we have got naturally µ1 = µ2 = · · · = µ6 = 0. And under
the condition f6 = 0 in (4.10), we can verify f7 ̸= 0 easily. Then, µ7 ̸= 0 hold,
namely the origin of the system (4.4) is a fine focus of order 7.

(ii) Conversely, if µ1 = µ2 = · · · = µ6 = 0 and µ7 ̸= 0, the necessity of (4.10) is
easily proved.

And more we have the following theorem.

Theorem 4.2. The first 7 focal values all disappear, and the origin of the system
(4.1) is a center if and only if the following conditions holds

a− κ1 + κ2 < 0, b = 0, b21 = b03 = 0, (4.11)

Proof. For case (4.11), we obtain the original system

ẋ = y, ẏ = −κ1 sinx+ κ2 sinx cosx+ ax+ b30x
3 + b12xy

2, (4.12)
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which defines a vector field symmetric with respect to the x-axis. Thus we obtain
the origin of the system (4.1) is a center, namely the sufficiency of (4.11) is proven.

On the other hand, from Theorem 4.1, the necessity is obvious.

Furthermore, from Theorems 4.1 and 4.2, applying the relationship between the
focal values and the singular point quantities given in [17], we obtain the following
corollary.

Corollary 4.1. The origin of the system (4.1) is a fine focus of order 7 at most,
and the first seven focal values are respectively:

v2j+1(2π) = iπµj , 1 ≤ j ≤ 7, (4.13)

in the above expression of each v2k+1, we have already let v2k−1 = 0, k = 1, 2, · · · , 7.

Next, setting the parameters b = δ with 0 < |δ| ≪ 1 in the condition (4.2) of
Hopf bifurcation, we make system (4.1) become the perturbed form as follows,

ẋ = y, ẏ = −κ1 sinx+ κ2 sinx cosx− p2x+ δy + Y2, (4.14)

where κ1 = κ2. Thus by calculating based on the perturbation of linear part, we
obtain the strong focus value v1 = πδ/p+ o(δ).

Further, under the condition (4.10), we can verify that there exists a valid
critical value such that v15 ̸= 0, and more by calculating the Jacobian determi-
nant of the seven focal values v1, v3, v3, v5, · · · , v13 with respect to the variables
δ, b21, k1, k2, b30, b12, b03, we obtain:

J |(4.10) = ∂(v1,v3,v5,v7,v9,v11,v13)
∂(δ, b21,k1,k2,b30,b12,b03)

|(4.10)

= 8287801876274011123096493π19

14829348262955468256000p151 ̸= 0.

(4.15)

From these, applying Theorem 4.2 in [10], also similar to the proof of Theorem 3.4,
we have the following theorem.

Theorem 4.3. Under appropriate perturbations, system (4.1) can generate at most
7 small-amplitude limit cycles in the neighborhood of the origin via Hopf bifurcation.
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Appendix A

φ5 = (343119513033220b312b13K
6 + 1469667810663360b212b13b

2
40K

4+

195517913448165b212b13K
6 + 5939090697909600b12b13b

4
40K

2+

1501138725373980b12b13b
2
40K

4 + 42006515691063b12b13K
6+

17610229477169280b13b
6
40 + 6153888182904000b13b

4
40K

2+

420403067003304b13b
2
40K

4 + 3420033941720b13K
6)/(28222959736125K21/2),

φ6 = 262057127270400b212b
2
40 K4 + 51118038342800b212K

6+

4465238499532800b12b
4
40K

2 + 1319232266542080b12b
2
40K

4+

45931084890900b12K
6 − 3144305649254400b640 − 1217227620787200b440K

2−

73347310051488b240K
4 + 2008406304773K6,

φ7 = (678482043601753190800b412K
8 + 3884942131492729507200b312b

2
40K

6+

517189699488844181800b312K
8 + 26095516987057579353600b212b

4
40K

4+

6233342449673781842400b212b
2
40K

6 − 162288561532429917585b212K
8+

201965826779917945113600b12b
6
40K

2+64924146621553440513600b12b
4
40K

4+

3489125940475096466160b12b
2
40K

6+24999560338695514000b12K
8−

49099287104959065975b213K
9 + 109928226192273375667200b840+

57294337601814507532800b640K
2 + 9373013654929833585600b440K

4+

426858341519447416920b240K
6 + 1599971861676512896K8)/

(136624103248581748800K12),

φ8 = 368746108044652800000b312b
2
40K

6 + 71929269339563350000b312K
8+

15114514871207164723200b212b
4
40K

4+3940653216762166132800b212b
2
40K

6+

131093805037993715500b212K
8 + 151096785037937499340800b12b

6
40K

2+

50911925011665130828800b12b
4
40K

4+3389291976826728886320b12b
2
40K

6+

63784109539965564805b12K
8 − 48262391626301846323200b840−

16626718893566768025600b640K
2 − 60804649450165230720b440K

4+

161461225853348143140b240K
6 + 3618635711488746817K8,
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