
Journal of Nonlinear Modeling and Analysis https://journal.global-sci.org/jnma

Volume 7, Number 4, August 2025, 1446–1460 DOI:10.12150/jnma.2025.1446

Some Bounds for the Steiner-Harary Index of a
Graph
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Abstract The Steiner distance for the set S ⊆ V (G) would simply be the
number of edges in the minimal subtree connecting them and is denoted as
dG(S). The Steiner-Harary index is SHk(G), defined as the sum of the recip-
rocal of the Steiner distance for all subsets with k vertices in G. In this article,
we calculate the exact value of SHk(G) for specific graphs and establish new
best possible lower and upper bounds and characterization. Furthermore, we
explore the relationship between SHk(G) and other graph indices based on
Steiner distance.
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1. Introduction

The graphs considered in this paper are undirected, simple, finite, and connected.
The graph G = (V,E) has p-vertices and q-edges, where V = V (G) and E = E(G)
represent the vertex and edge collections, respectively. The degree of a vertex vi is
defined as the number of vertices adjacent to it and is denoted by dG(vi). If a vertex
is adjacent to only one edge, it is called a pendant vertex. The distance between
two vertices in a graph is given by dG(vi, vj), the shortest path length between vi
and vj . The greatest distance between any two vertices in a graph G is called the
diameter of the graph and is denoted by diam(G). For undefined notations in this
paper, we refer to [2, 8].

In 1947, Harold Wiener [18] first introduced the distance-based graph invariant,
revealing correlations between the molecular structure of paraffins and their boiling
points. The Wiener index, denoted by W (G), is defined by:

W (G) =
∑

vi,vj⊆V (G)

dG(vi, vj).

In 1989, Chartrand [4] introduced the Steiner distance of a connected graph G and
is denoted by dG(S), where S ⊆ V (G) and 2 ≤| S |≤ p. In 2016, Li, et al. [9]
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introduced the Steiner k-Wiener index, which is defined by:

SWk(G) =
∑

S⊆V (G),|S|=k

dG(S).

In 2016, Furtula, et al. [6] introduced the k-center Steiner Harary index or the
Steiner Harary k-index or simply Steiner-Harary index, which is defined by:

SHk(G) =
∑

S⊆V (G),|S|=k

1

dG(S)
.

In 2018, Tratnik [17] introduced the Steiner k-hyper Wiener index, defined by:

SWWk(G) =
∑

S⊆V (G)

[
dG(S) + dG(S)

2
]
.

The use of graphical indices based on degree, distance, and Steiner distance has been
extensively studied. For their history, applications, and mathematical properties,
see [1, 3, 5, 7, 10,12–16] and the references cited therein.

2. Specific families of graphs

Proposition 2.1. [11] Let G be a specific families of graph with 2 ≤ k ≤ p.

(i) If Kp is a complete graph, then

SHk(Kp) =

(
p

k

)
1

k − 1
.

(ii) If Pp is a path, then

SHk(Pp) =

p−k∑
s=0

(
k + s− 2

k − 2

)
(p− k − s+ 1)

1

k + s− 1
.

(iii) If Sp is a star, then

SHk(Sp) =

(
p− 1

k

)
1

k
+

(
p− 1

k − 1

)
1

k − 1
.

(iv) If Km,n is a complete bipartite graph with 1 ≤ m ≤ n, then

SHk(Km,n) =


1

k−1

(
p
k

)
− 1

k(k−1)

(
m
k

)
− 1

k(k−1)

(
n
k

)
, if 1 ≤ k ≤ m;

1
k−1

(
p
k

)
− 1

k(k−1)

(
n
k

)
, ifm ≤ k ≤ n;

1
k−1

(
p
k

)
, if n ≤ k ≤ p.

Proposition 2.2. If Wp is a wheel and S ⊆ V (Wp) with p > 4, then

SHk(Wp) =

[(
p− 1

k − 1

)
+ (p− 1)

]
1

k − 1

+

[(
p− 1

k

)
− (p− 1)

]
1

k
.
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Proof. Let Wp be a wheel and S ⊆ V (Wp). If the vertices of S are connected,
they form a path of length k − 1. In such a case, 1

dG(S) =
1

k−1 . On the other hand,

if the vertices of S are not connected, then they form a disconnected subgraph of
Wp. In this scenario, 1

dG(S) =
1
k .

SHk(Wp) =

[(
p− 1

k − 1

)
+ (p− 1)

]
1

k − 1

+

[(
p− 1

k

)
− (p− 1)

]
1

k
.

Further, if p = 4, then W4 = K4.

Proposition 2.3. Let G ≡ Kn1,n2,n3,...,nl
be a complete multipartite graph and

S ⊆ V (G) with |S| = k and n1 ≤ n2 ≤ · · · ≤ nf−1 < k ≤ nf · · · ≤ nl. Then

SHk(G) =

(
p

k

)
1

k − 1
+

[(
nf

k

)
+

(
nf+1

k

)
+ · · ·+

(
nl

k

)][
1

k
− 1

k − 1

]
.

Proof. Let G ≡ Kn1,n2,n3,...,nl
be a complete multipartite graph with |S| =

k, n1 ≤ n2 ≤ · · · ≤ nf−1 < k ≤ nf · · · ≤ nl and vertex partitions V1(G),
V2(G), . . . , Vl(G) such that V (G) = V1(G) ∪ V2(G) ∪ · · · ∪ Vl.

SHk(G) =
∑

vi∈S;S⊆Vf+h;0≤h≤l−f

1

dG(S)
+

∑
vi∈S;S⊈Vi;for all i

1

dG(S)
,

SHk(G) =

[(
nf

k

)
+

(
nf+1

k

)
+ · · ·+

(
nl

k

)]
1

k

+

[(
p

k

)
−
(
nf

k

)
−

(
nf+1

k

)
− · · · −

(
nl

k

)]
1

k − 1
.

On simplification, we have the desired result.

Proposition 2.4. Let Lm,n be a lollipop graph and S ⊆ V (Lm,n) with m ≥ k > n.
Then

SHk(Lm,n) =

n+1∑
l=1

(
m− 1

k − l

)(
n

l − 1

)
1

k + n− l

+

n∑
l=1

(
m− 1

k − l

)(
n− 1

l − 1

)
1

k + n− l − 1

+ . . .

+

2∑
l=1

(
m− 1

k − l

)(
1

l − 1

)
1

k − l + 1

+

(
m

k − 1

)
1

k − 1
,

where the lollipop graph Lm,n is the graph obtained by joining a complete graph Km

to pendant vertex of a path graph Pn with an edge.
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Proof. Let Lm,n be a lollipop graph withm ≥ k ≥ n. We prove the result by fixing
the particular vertex in the path associated with the graph. First, we fix the pendant
vertex in the set S and choose (k − 1)-vertices from the remaining (p− 1)-vertices,

which yields a value of SHk(G) equal to
n+1∑
l=1

(
m−1
k−l

)(
n

l−1

)
1

k+n−l . Next, we fix the

vertex adjacent to the pendant vertex and choose (k−1)-vertices from the remaining
(p−2)-vertices other than the pendant vertex. The corresponding value of SHk(G)

is equal to
n∑

l=1

(
m−1
k−l

)(
n−1
l−1

)
1

k+n−l−1 . For n iterations, the value of SHk(G) for the

last selection is
2∑

l=1

(
m−1
k−l

)(
1

l−1

)
1

k−l+1 . Hence, the value of SHk(G) for choosing k-

vertices from the complete graph associated with the graph is
(

m
k−1

)
1

k−1 . Therefore,
to obtain the SHk(G) value, we need to add up the terms mentioned earlier. Thus,
the desired result follows.

Proposition 2.5. Let Sm,n be a double star and S ⊆ V (Sp) with m ≥ n > k ≥ 2
and p ≥ 7. Then

SHk(Sm,n) =

[(
m− 1

k − 1

)
+

(
m− 1

k − 2

)
+

(
n− 1

k − 1

)
+

(
n− 1

k − 2

)]
1

k − 1

+

[(
m− 1

k

)
+

(
n− 1

k

)
+

(
m− 1

k − 1

)
+

(
n− 1

k − 1

)]
1

k

+

[
k−3∑
l=1

(
m− 1

l

)(
n− 1

k − l − 2

)]
1

k − 1

+

[
2

k−2∑
l=1

(
m− 1

l

)(
n− 1

k − l − 1

)]
1

k

+

[
k−1∑
l=1

(
m− 1

l

)(
n− 1

k − l

)]
1

k + 1
,

where the double star Sm,n is a tree obtained by joining the center of two stars Sm

and Sn with an edge.

Proof. Consider a double star Sm,n with a vertex partition of m and n. This
double star has a total of p = m+ n vertices, among which m+ n− 2 are pendant
vertices, one vertex of degree m and another of degree n.

SHk(Sm,n) = X1 +X2 +X3 +X4 +X5.

The values of X1, X2, X3, X4 and X5, are as follows.

(i) If X1 is the value of SHk(Sm,n) for which (k − 1)-vertices are chosen from
either the pendant vertices adjacent to the vertex of degree m or the vertex
of degree n including the corresponding vertex or (k − 2)-vertices are chosen
from either the pendant vertices adjacent to the vertex of degree m or vertex
of degree n and including both the vertices, then

X1 =

[(
m− 1

k − 1

)
+

(
m− 1

k − 2

)
+

(
n− 1

k − 1

)
+

(
n− 1

k − 2

)]
1

k − 1
.
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(ii) If X2 is the value of SHk(Sm,n) for which k-vertices are chosen from the
pendant vertices adjacent to a vertex of degree m including the vertex of
degree n or k-vertices are chosen from the pendant vertices adjacent to a
vertex of degree n including the vertex of degree m, then

X2 =

[(
m− 1

k

)
+

(
n− 1

k

)
+

(
m− 1

k − 1

)
+

(
n− 1

k − 1

)]
1

k
.

(iii) If X3 is the value of SHk(Sm,n) for which, at least one vertex is chosen from
pendant vertices adjacent to central vertices including both the central ver-
tices, then

X3 =

[
k−3∑
l=1

(
m− 1

l

)(
n− 1

k − l − 2

)]
1

k − 1
.

(iv) If X4 is the value of SHk(Sm,n) for which, at least one vertex is chosen from
pendant vertices adjacent to central vertices with exactly one central vertex,
then

X4 =

[
2

k−2∑
l=1

(
m− 1

l

)(
n− 1

k − l − 1

)]
1

k
.

(v) If X5 is the value of SHk(Sm,n) for which, at least one vertex is chosen from
pendant vertices adjacent to central vertices without central vertices, then

X5 =

[
k−1∑
l=1

(
m− 1

l

)(
n− 1

k − l

)]
1

k + 1
.

From (i) to (v) of the above facts, the desired result follows.
By Proposition 2.5, we have the following.

Corollary 2.1. Let Sm,n be a double star with k ≥ n.

(i) If m ≥ n = k, then

SHk(Sm,n) =

[(
m− 1

k − 1

)
+

(
m− 1

k − 2

)
+

(
n− 1

k − 1

)
+

(
n− 1

k − 2

)]
1

k − 1

+

[(
m− 1

k

)
+

(
m− 1

k − 1

)
+

(
n− 1

k − 1

)]
1

k

+

[
k−3∑
l=1

(
m− 1

l

)(
n− 1

k − l − 2

)]
1

k − 1

+

[
2

k−2∑
l=1

(
m− 1

l

)(
n− 1

k − l − 1

)]
1

k

+

[
k−1∑
l=1

(
m− 1

l

)(
n− 1

k − l

)]
1

k + 1
.

(ii) If m = n = k, then

SHk(Sm,n) =

[
k−3∑
l=1

(
m− 1

l

)(
n− 1

k − l − 2

)
+ 2k

]
1

k − 1
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+ 2

[
1 +

k−2∑
l=1

(
m− 1

l

)(
n− 1

k − l − 1

)]
1

k

+

[
k−1∑
l=1

(
m− 1

l

)(
n− 1

k − l

)]
1

k + 1
.

(iii) If m > k = n+ 1, then

SHk(Sm,n) =

[(
m− 1

k

)
+

(
m− 1

k − 1

)
+ 2

k−2∑
l=1

(
m− 1

l

)(
n− 1

k − l − 1

)]
1

k

+

[(
m− 1

k − 1

)
+

(
m− 1

k − 2

)
+ 1

]
1

k − 1

+

k−3∑
l=1

(
m− 1

l

)(
n− 1

k − l − 2

)
1

k − 1

+

[
k−1∑
l=2

(
m− 1

l

)(
n− 1

k − l

)]
1

k + 1
.

(iv) If m > k = n+ 2, then

SHk(Sm,n) =

[(
m− 1

k

)
+

(
m− 1

k − 1

)
+ 2

k−2∑
l=2

(
m− 1

l

)(
n− 1

k − l − 1

)]
1

k

+

[(
m− 1

k − 1

)
+

(
m− 1

k − 2

)
+ 1

]
1

k − 1

+

k−3∑
l=1

(
m− 1

l

)(
n− 1

k − l − 2

)
1

k − 1

+

[
k−1∑
l=3

(
m− 1

l

)(
n− 1

k − l

)]
1

k + 1
.

(v) If m > k = n+ 3, then

SHk(Sm,n) =

[(
m− 1

k

)
+

(
m− 1

k − 1

)
+ 2

k−2∑
l=3

(
m− 1

l

)(
n− 1

k − l − 1

)]
1

k

+

[(
m− 1

k − 1

)
+

(
m− 1

k − 2

)]
1

k − 1

+

k−3∑
l=2

(
m− 1

l

)(
n− 1

k − l − 2

)
1

k − 1

+

[
k−1∑
l=4

(
m− 1

l

)(
n− 1

k − l

)]
1

k + 1
.

(vi) If m > k = n+ a and a > 3, then

SHk(Sm,n) =

[(
m− 1

k

)
+

(
m− 1

k − 1

)
+ 2

k−2∑
l=a

(
m− 1

l

)(
n− 1

k − l − 1

)]
1

k
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+

[(
m− 1

k − 1

)
+

(
m− 1

k − 2

)]
1

k − 1

+

k−3∑
l=a−1

(
m− 1

l

)(
n− 1

k − l − 2

)
1

k − 1

+

[
k−1∑

l=a+1

(
m− 1

l

)(
n− 1

k − l

)]
1

k + 1
.

(vii) If k = m+ a ≥ n+ a and a > 3, then

SHk(Sm,n) =

[
2

k−a−1∑
l=a

(
m− 1

l

)(
n− 1

k − l − 1

)]
1

k

+

k−a−2∑
l=a−1

(
m− 1

l

)(
n− 1

k − l − 2

)
1

k − 1

+

[
k−a∑

l=a+1

(
m− 1

l

)(
n− 1

k − l

)]
1

k + 1
.

Proposition 2.6. Let G ≡ Sn1
⊖K1⊖Sn2

be a double broom graph with p ≥ 9 and
n1 ≥ n2 > k > 4. Then

SHk(G) =

[(
n1 − 1

k − 3

)
+

(
n2 − 1

k − 3

)
+

k−4∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l − 3

)]
1

k − 1

+

[(
n1 − 1

k − 1

)
+

(
n2 − 1

k − 1

)
+

(
n1 − 1

k − 2

)
+

(
n2 − 1

k − 2

)]
1

k − 1

+

[(
n1 − 1

k

)
+

(
n2 − 1

k

)
+

(
n1 − 1

k − 1

)
+

(
n2 − 1

k − 1

)]
1

k

+

[
2

(
n1 − 1

k − 2

)
+ 2

(
n2 − 1

k − 2

)
+ 3

k−3∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l − 2

)]
1

k

+

[(
n1 − 1

k − 1

)
+

(
n2 − 1

k − 1

)
+ 3

k−2∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l − 1

)]
1

k + 1

+

k−1∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l

)
1

k + 2
,

where the double broom graph Sn1
⊖K1⊖Sn2

is a tree obtained by joining the centers
of two stars Sn1 and Sn2 with edges from pendant vertices of K1.

Proof. Let G be a double broom graph with n1 + n2 − 2 pendant vertices and
two vertices of degree n1 and n2. Then

SHk(G) = Y1 + Y2 + Y3 + Y4.

The values of Y1, Y2, Y3 and Y4, are as follows.
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(i) If Y1 is the value of SHk(G) for which, k-vertices of the set S are chosen from
n1 + n2 − 2 pendant vertices, then

Y1 =

k−1∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l

)
1

k + 1

+

[(
n1 − 1

k

)
+

(
n2 − 1

k

)]
1

k
.

(ii) If Y2 is the value of SHk(G) for which, (k − 1)-vertices of the set are chosen
from (n1 + n2 − 2) pendant vertices and one vertex are other than pendant
vertices, then

Y2 =

[(
n1 − 1

k − 1

)
+

(
n2 − 1

k − 1

)][
1

k − 1
+

1

k
+

1

k + 1

]
+ 3

k−2∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l − 1

)
1

k + 1
.

(iii) If Y3 is the value of SHk(G) for which, (k − 2)-vertices of the set are chosen
from (n1 + n2 − 2) pendant vertices and two vertices are other than pendant
vertices, then

Y3 =

[(
n1 − 1

k − 2

)
+

(
n2 − 1

k − 2

)][
1

k − 1
+ 2

1

k

]
+ 3

k−3∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l − 2

)
1

k
.

(iv) If Y4 is the value of SHk(G) for which (k − 3)-vertices of the set are chosen
from (n1+n2−2) pendant vertices and three vertices are other than pendant
vertices, then

Y4 =

k−4∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l − 3

)
1

k − 1

+

[(
n1 − 1

k − 3

)
+

(
n2 − 1

k − 3

)]
1

k − 1
.

From (i) to (iv) of the above facts, we obtain.

SHk(G) =

[(
n1 − 1

k

)
+

(
n2 − 1

k

)]
1

k
+

k−1∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l

)
1

k + 2

+

[(
n1 − 1

k − 1

)
+

(
n2 − 1

k − 1

)][
1

k − 1
+

1

k
+

1

k + 1

]
+ 3

k−2∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l − 1

)
1

k + 1

+

[(
n1 − 1

k − 2

)
+

(
n2 − 1

k − 2

)][
1

k − 1
+ 2

1

k

]
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+ 3

k−3∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l − 2

)
1

k

+

[(
n1 − 1

k − 3

)
+

(
n2 − 1

k − 3

)]
1

k − 1

+

k−4∑
l=1

(
n1 − 1

l

)(
n2 − 1

k − l − 3

)
1

k − 1
.

On simplification, we have the desired result.
By Proposition 2.6, we have the following corollary.

Corollary 2.2. Let G ≡ Sn1
⊖K1 ⊖ Sn2

be a double broom graph with p ≥ 9 and
n1 ≥ n2.

(i) If k = 4, then

SH4(G) =

3∑
l=1

[(
n1 − 1

l

)
+

(
n2 − 1

l

)]
1

3
+

3∑
l=1

[(
n1 − 1

l + 1

)
+

(
n2 − 1

l + 1

)]
1

4

+

[(
n1 − 1

2

)
+

(
n2 − 1

2

)
+ (n1 − 1)(n2 − 1)

]
1

4

+

[(
n1 − 1

3

)
+

(
n2 − 1

3

)
+ 3

2∑
l=1

(
n1 − 1

l

)(
n2 − 1

3− l

)]
1

5

+

3∑
l=1

(
n1 − 1

l

)(
n2 − 1

4− l

)
1

6
.

(ii) If k = 3, then

SH3(G) =

3∑
l=1

[(
n1 − 1

l − 1

)
+

(
n2 − 1

l − 1

)]
1

2
+

3∑
l=1

[(
n1 − 1

l

)
+

(
n2 − 1

l

)]
1

3

+ (n1 − 1)(n2 − 1)
1

3
+

2∑
l=1

(
n1 − 1

l

)(
n2 − 1

3− l

)
1

4

+

[(
n1 − 1

2

)
+

(
n2 − 1

2

)
+ 3(n1−)(n2 − 1)

]
1

5
.

(iii) If k = 2, then

SHk(G) =(n1 + n2) +

[(
n1 − 1

2

)
+

(
n2 − 1

2

)
+ n1 + n2 + 2

]
1

2

+ [n1 + n2 − 2]
1

3
+ (n1 − 1)(n2 − 1)

1

4
.

3. Bounds and characterization

Theorem 3.1. Let G be any connected graph with ρ-pendant vertices (ρ > 1) and
k = p− 1. Then

SHk(G) = η
1

p− 1
+ (p− η)

1

p− 2
,
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where η is the number of non-pendant vertices adjacent to at least one pendant
vertex.

Proof. Let G be a connected graph with ρ-pendant vertices, η be the number
of non-pendant vertices adjacent to at least one pendant vertex, and k = p − 1.
To calculate SHk(G), we first choose all the vertices except one from the above
mentioned η-vertices. Then, we choose all η-vertices adjacent to at least one pendant
vertex, except for one vertex other than the η-vertices, which yields

SHk(G) = ρ
1

p− 2
+ η

1

p− 1
+ (p− ρ− η)

1

p− 2

= η
1

p− 1
+ (p− η)

1

p− 2
.

Theorem 3.2. Let G be a connected r-regular graph with r ≥ p
2 . Then(

p

k

)
1

k
≤ SHk(G) ≤

(
p

k

)
1

k − 1
.

Proof. Let G be a connected r-regular graph with r ≥ p
2 . Then, the sum of

degree of any two distinct vertices is equal to 2r ≥ p. The induced subgraph
with vertex set S is either connected or disconnected, and the minimum size of the
connected subgraph of G whose vertex set contains S is k − 1 or k, respectively,
that is 1

k ≤ 1
dG(S) ≤ 1

k−1 . Taking the sum for each S, we have the desird result.

Theorem 3.3. Let Pp and Pp be the path and its complement graph with p ≥ 4.
Then

SHk(Pp) ≤ SHk(Pp).

Further, the equality holds if p = 4.

Proof. Let Pp and Pp be the path and its complement graph with p ≥ 4. The path
minimizes the SHk(G) value for any connected graph. Since Pp is also connected,
we have

SHk(Pp) ≤ SHk(Pp).

Further, if p = 4, then P4
∼= P4, resulting in equality.

Theorem 3.4. Let G∗ be a connected graph with diam(G∗) = 2, p ≥ 6 and k ≥ 3.
Then (

p− 1

k

)
1

k
+

(
p− 1

k − 1

)
1

k − 1
≤ SHk(G

∗) ≤
(
p

k

)
1

k − 1
.

Proof. Let G∗ be a connected graph with diam(G∗) = 2. The removal of an
edge cannot decrease the value of 1

dG∗ (S) . The graph attains its upper bound with

the maximum possible edges. This graph is created by removing one edge from a
complete graph. The corresponding inequality is

SHk(G
∗) ≤

(
p

k

)
1

k − 1
. (3.1)
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The star is a connected graph with a diam(G∗) = 2 that has the minimum number
of edges, leading to the lower bound

SHk(G
∗) ≥

(
p− 1

k

)
1

k
+

(
p− 1

k − 1

)
1

k − 1
. (3.2)

By equation (3.1) and equation (3.2), we have(
p− 1

k

)
1

k
+

(
p− 1

k − 1

)
1

k − 1
≤ SHk(G

∗) ≤
(
p

k

)
1

k − 1
.

Lemma 3.1. Let G∗∗ be a connected graph with p ≥ 7 and maximum possible edges
and diam(G∗∗) = 3. Then

SHk(G
∗∗) =

[(
p− 2

k

)
+

(
dG∗∗(v1)

k − 1

)
+

(
dG∗∗(v2)

k − 1

)
+

(
p− 2

k − 2

)]
1

k − 1

+

[(
dG∗∗(v2)

k − 1

)
+

(
dG∗∗(v1)

k − 1

)]
1

k

+

[(
dG∗∗(v1)

k − 2

)
+

(
dG∗∗(v2)

k − 2

)](
1

k
− 1

k − 1

)
,

where dG∗∗(v1) + dG∗∗(v2) = p− 2.

Proof. Consider a graph G∗∗ with diam(G∗∗) = 3 and the maximum possible
edges. Since the diameter of the graph G∗∗ is 3, a pair of vertices (v1, v2) must exist
such that the distance between them is 3. The remaining (p − 2)-vertices in the
graph must be adjacent to each other, and each of these (p − 2)-vertices must be
connected to the vertices of either v1 or v2. The partition of (p−2)-vertices into sets
V1 and V2 is such that vertices in V1 are adjacent to vertex v1 with |V1| = dG∗∗(v1)
and vertices in V2 are adjacent to vertex v2 with |V2| = dG∗∗(v2).

The value of dG∗∗(S) is k−1 for S ⊆ V (G∗∗) with |S| = k, if any of the following
conditions hold:

(i) The vertices in S are chosen from (p− 2)-vertices, excluding v1 and v2.

(ii) The vertices in S include v1 and v2, along with at least one vertex from the
partitions V1 and V2.

(iii) The vertices in S include v1 but not v2, and at least one vertex from V1, and
vice versa.

In all other cases, dG∗∗(S) = k.

For dG∗∗(v1) ≥ dG∗∗(v2) ≥ k = |S|, then

SHk(G
∗∗) =

∑
S⊆V1∪V2

1

dG∗∗(S)
+

∑
S⊆V1∪{v1},

v1∈S

1

dG∗∗(S)
+

∑
S⊆V2∪{v1},

v1∈S

1

dG∗∗(S)

+
∑

S⊆V1∪{v2},
v2∈S

1

dG∗∗(S)
+

∑
S⊆V2∪{v2},

v2∈S

1

dG∗∗(S)
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+
∑

S⊆{v1,v2}∪V1∪V2,
v1,v2∈S

1

dG∗∗(S)
.

SHk(G
∗∗) =

(
p− 2

k

)
1

k − 1
+

(
dG∗∗(v1)

k − 1

)
1

k − 1
+

(
dG∗∗(v2)

k − 1

)
1

k − 1

+

(
p− 2

k − 2

)
1

k − 1
+

(
dG∗∗(v2)

k − 1

)
1

k
+

(
dG∗∗(v1)

k − 1

)
1

k

+

[(
dG∗∗(v1)

k − 2

)
+

(
dG∗∗(v2)

k − 2

)](
1

k
− 1

k − 1

)
.

On simplification, we have the desired result.
By Lemma 3.1, we have the following corollary.

Corollary 3.1. Let G∗∗ be a connected graph with maximum possible edges and
diam(G∗∗) = 3.

(i) SHk(G
∗∗) =

[(
p− 2

k

)
+

(
dG∗∗(v1)

k − 1

)
+

(
p− 2

k − 2

)]
1

k − 1

+

[(
dG∗∗(v2)

k − 1

)]
kb +

[(
dG∗∗(v2)

k − 2

)](
1

k
− 1

k − 1

)
,

if k − 2 ≤ dG∗∗(v1) ≤ k < dG∗∗(v2) and dG∗∗(v1) + dG∗∗(v2) = p− 2.

(ii) SHk(G
∗∗) =

[(
p− 2

k

)
+

(
p− 2

k − 2

)]
1

k − 1
,

if dG∗∗(v1) ≤ dG∗∗(v2) < k − 1 and dG∗∗(v1) + dG∗∗(v2) = p− 2.

Observation 3.1. Let G be a connected graph with diam(G) = 3 and p ≥ 7.
Then the upper bound is attained for graph with the maximum number of edges
and lower bound attained for the graph with minimum number of edges.

4. Comparision among Steiner related indices

Theorem 4.1. Let G be a connected graph with k ≥ 2. Then

kSWk(G) + (k − 1)SHk(G)−
(
p

k

)
≤ SWWk(G)

≤ pSWk(G) + (p− 1)SHk(G)−
(
p

k

)
.

Further, both the equality hold if k = p.

Proof. Let G be a conncected graph with |S| = k ≥ 2. Then

SWk(G) + SHk(G) =
∑

S⊆V (G)

(
dG(S) +

1

dG(S)

)
=

∑
S⊆V (G)

1

dG(S)

(
(dG(S)

2 + dG(S))− dG(S) + 1
)
. (4.1)
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Now ∑
S⊆V (G)

1

dG(S)

(
(dG(S)

2 + dG(S))− dG(S) + 1
)
≤

(
SWWk(G) +

(
p
k

))
k − 1

− SWk(G)

k − 1
,

=⇒ SWk(G) + SHk(G) ≤
(
SWWk(G) +

(
p
k

))
k − 1

− SWk(G)

k − 1

=⇒ kSWk(G) + (k − 1)SHk(G)−
(
p

k

)
≤ SWWk(G). (4.2)

And ∑
S⊆V (G)

1

dG(S)

(
(dG(S)

2 + dG(S))− dG(S) + 1
)
≥

(
SWWk(G) +

(
p
k

))
p− 1

− SWk(G)

p− 1
,

=⇒ SWk(G) + SHk(G) ≥
(
SWWk(G) +

(
p
k

))
p− 1

− SWk(G)

p− 1

=⇒ pSWk(G) + (p− 1)SHk(G)−
(
p

k

)
≤ SWWk(G). (4.3)

By equation (4.2) and equation (4.3), we have the desired results.
Further, If k = p, then dG(S) = p− 1, which leads to the equality.

Remark 4.1. In Theorem 4.1, the left equality holds if dG(S) = k − 1 for all
S ⊆ V (G) and the right equality holds if dG(S) = p− 1 for all S ⊆ V (G).

5. Conclusion and open problems

The Steiner-Harary index of a graph lies on the claim that their particular cases, for
pertinently chosen values of the parameter k, p, and q. Here, we have the following
observations and open problems.

(i) Among all connected graphs, the complete graph has the highest value, and
the path attains the lowest value of SHk(G).

(ii) Removing edges from a graph may decrease the value while adding edges may
increase the value of SHk(G).

(iii) The fucntion corresponding to SHk(G) is strictly decreasing with the inde-
pendent variable dG(S).

(iv) If G is a tree with diameter d ≥ 4, then the number of pendent vertices varies
between

⌈
p
d

⌉
and p − d + 1. But with diameter d, the bounds for the G are

still unsolved.
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(v) Find the values of the Steiner-Harary index of certain class of chemical graphs
and compare them with other distane-based graphical indices. Also, explore
some results towards QSPR / QSAR / QSTR model.

(vi) IfG andG are both connected regular graphs with dG(vi) >
p
2 , then SHk(G) ≥

SHk(G).
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