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1. Introduction

We consider the parabolic problem with measure data

D) v (a e, 1w, Vu) +d (@) PO P u= peMa@), (L)
b(uw)(z, 0)=b(p(x)), z€l, (1.2)
U0 (0, 00) = 0; (1.3)

where ngQ x (0, T), (xz,t) € Q, Q@ C R*, n > 3 is a smooth Lips-
chitz domain and 9 is a Lipschitz boundary of an open set Q; p € P2 ()
is a log-Holder continuous function such that 1 < p,, = inf{p(z),z € Q} and
ps = sup{p (z),z € Q} < co. We assume the function ¢ is measurable and such
that b (¢) belongs to L ().

We consider the parabolic equation (1.1) under generalized Leray-Lions condi-
tions. This type of problem was studied in weighted Orlicz—Sobolev spaces in [11].
In the case of constant exponents, the existence result was obtained for the obstacle
parabolic problem associated with the equation with a Leray-Lions operator [18] and
some a priori estimates were obtained in [1]. The existence of renormalized solutions
for nonlinear elliptic equations with variable exponents with L' data was studied
in [5], and the existence and uniqueness of the renormalized solution for parabolic
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equations under the Leray-Lions conditions [15] were established for constant ex-
ponents in [7]. The solvability of parabolic problem with L' data was investigated
in [3], and for elliptic equations in [4,5]. The concept of a renormalized solution
was introduced by R.J. Perna, and P.L. Lions [15,21], who studied the existence
and uniqueness of solutions for some class of parabolic problems treated in [21].

Recently, results on the solvability of nonlinear parabolic equations with both
singularities and unbounded lower-order terms were obtained by T.T. Dang, and
G. Orlandi [6]. The authors did not impose the coercivity assumption on the main
differential operator of convection-diffusion type (non-atomic measure), and the
equation has the convective term with an unbounded coefficient in the Lorentz
class. L. Zhao and S. Zheng studied the local Besov regularity of to the elliptic
variational inequality with double-phase Orlicz growth. They proved that the frac-
tional differentiability of the differential is reflected by additional differentiability
assumptions on the obstacle term and the external force, under some regularity on
the coefficient [27,28]. M. Bendahmane and P. Wittbold [4] investigated the exis-
tence and uniqueness of the renormalized solution to a parabolic problem with L'
data by employing some results of abstract semigroup theory to show the solvability
of the parabolic problem with the singular right-hand side. J.X. Yin, J.K. Li, Y.Y.
Ke investigated positive solutions of the variable exponent Laplacian equation by
applying the Krasnoselskii fixed point theorem on the cone in [24]. Q. H. Zhang
showed the existence of solutions to a problem with a variable exponent operator
under the Caratheodory conditions. The author used the strict monotony condition
to deal with the limit of the approximate solutions [15,26]. The monotone operators
were studied by J.L. Lions [15].

As an example of the problem (1.1)-(1.3), we can consider a variable Laplacian
problem

8178(;/’) - Ap(~)u =p, p€ M (Q) ) (14)
b(u)(z, 0)=b(p(x)), =z, (1.5)
0% (0, o) = 0- (1.6)

By changing the unknown v = b (u) and ¥ = b~!, we obtain the generalized porous
medium operator [1] v — A,y¥ (v) with a strictly increasing function W. This
type of problem often appears in models that describe the properties of fluids and
processes of diffusion.

The presence of measure data presents additional complications. The class of
problems covered by our conditions is Leray-Lions operators [15,21] in divergent
form A(u) = =V - a(x, u, Vu). The presence of a measure datum p compels
us to work in the framework of entropy and renormalized solutions. The natural
condition of the measure data is that these measures do not charge the sets of null
capacity.

In the present paper, we establish that a function u is an entropy solution to the
initial boundary parabolic problem (1.1)-(1.3) under the Leray-Lions conditions if
and only if this function u is a renormalized solution to the same initial boundary
parabolic problem (1.1)-(1.3) under the same conditions.
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2. Preliminary information

2.1. Variable exponent Lebesgue spaces

A function « : Q — R, Q C R" is said to be globally log-Holder continuous if and
only if there are two constants ¢; and cs, such that

o (2) — a(y)] < a (2.1)
! log (e+ \x—yl_l)
and .
(@) —a(oo)| £ s (2.2)

<
~ log (e + |z])
for all z, y € Q.

Definition 2.1. The functional class P°2 () is a collection of all variable expo-
nents p : Q — (1, 00), p € P(Q) such that p~! is globally log-Holder continuous.

A modular py.) (u) of p € P8 () is defined by

oo (1) = /Q fu (2" da, (23)

and the variable exponent Lebesgue space norm ||| 1, q) is defined by

. u
lall oy = mf{)\ >0 (X) < 1}. (2.4)
Let u € LPO) (Q) and v € LI0) (Q) with ¢ (z) = p(pw(;cll, pm > 1 . Then the
following integral inequality
/ wwdz| < <1 + 1) Jul ol (2.5)
o = \pm Im Lr()(Q) L1 (Q) .

is called the generalized Holder inequality.
For all u € LP() (Q), we have

min ([l » 1l ay) < oy (w) < max (ullfie, gy » el ) - (2:6)
For each number m > 0, the truncation operator 7,, : R — R is defined by
T (s) = max {—m, min {m, s}} (2.7)

for all s € R.
Let u, ux € LP) (Q), k=1, 2, .... Then

kli)n;o l[u— ukHLp(-)(Q) =0

if and only if
klingop,,(.) (u—ug)=0.

Assume p: Q — (1, 00),p € P (). Then the following statements are equiva-
lent:
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1) HUHLp(«)(Q) <land py) (u) <1

2) HUHLp(«)(Q) =1land py() (u) = 1.

Let p: Q — (1, 00),p € P(Q). Then LP0) (Q) is a separable reflexive linear
space, for which the Poincare inequality

HUHLp(-)(Q) < cdiam () ||vu||Lp(-)(Q) (2.8)

holds for all u € Wﬁ (6) (Q), where the constant ¢ depends only on the dimension
and the log-Holder constant. So, we have that there is a constant ¢ depending only
on the dimension and the log-Holder constant such that

190l @) < Il ayots @) < (14 diam (9)) Vel o

for all w € WY (8 (©). We remark that the Poincare inequality
Pp() (1) < € pp (V)

does not hold even in the case where p is continuous and has a maximum or mini-
mum.

Let  have a finite measure and py, p2 € P (Q). Then the embedding LP>) (Q)
L) (Q) is continuous if and only if the inequality p; (z) < p (x) holds for almost
all z € Q.

For each number m > 0, the truncation operator T;, : R — R is defined by

T (8) = max {—m, min{m, s}} (2.9)
for all s € R.
Let Ty, (u) € LPC) ((O, T), Wﬁ(b) (Q)) , m > 0 for a measurable function u. To

formalize the definition of the renormalized solution, we need to widen the notion of
the gradient operator. We define the generalization of the gradient Vu : @ — R"
of u by taking

VT (u) = 1{|u‘<m}Vu (2.10)

almost everywhere in @, for each m > 0.

2.2. Variable exponent capacity and measures

To cope with entropy and renormalized solutions, we introduce the concept of vari-
able exponent parabolic capacity associated with parabolic differential operators
in variable exponent spaces. In differential problems with measure data, measures
that do not charge sets of null capacity play an essentially important role since such
measures have well-known decomposition properties.

Definition 2.2. We define a space VP() = Wi(b) (Q) N L% (Q) equipped with the
norm |[ul|y ) = ||UHW117(6)(Q) + ||u||L2(Q) and a space

w10 = fue 00 (0, 1), V7O, e 19 ((0, 1), (Vp“)*)} (2.11)

with the norm [[ullyypc), o) = ||UHLp<->((o, T), ve0)) + ||atu||Lq<->((o, T), (Vve©)")" Also,
we define the space
we L0 ((0, T), Wi (@) N L= (0, T), L2(2)),

PO al) —
Byu € L) ((o, Ty, wit) (Q))

. (2.12)
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where
PO ((07 T), Wﬁ(b) (Q)) = [Pm ((07 T), Wﬁ(b) (Q))

e L0 ((o, T), Wit (Q)) =[5 ((o, Ty, Wit (Q)).

We define a parabolic capacity of an open subset E of Q) by
Capy.y (E) = inf {Hu”wp(.), oy P UE wr)a0) 4y > 1p ae. in Q}
and a parabolic capacity of a Borelian subset B of Q by
Capy(y (B) = inf {Capy.) (E), EisopeninQ, BC E}.

Let « € C® (R x R") and v € WP():40) Then au € W»() ) and the in-
equality
lawllyyne. acr < (@) ullyoer. o

holds with constant ¢ («) depending only on «. In the distributional sense, we have

d(ou) @qua@
ot ot ot’

where 22y € L) ((O7 T), Wf(l') (Q))
Let {E;} be a family of Borelian sets in (). Then the parabolic capacity has the
subadditive property

C’app(.) <U EZ> § ZCapp(.)Ei.

The sets, which are contained in the section of parabolic cylinder Q x {7}, 7 €
[0, T] and have null capacity satisfy the following description: for any Borelian
set E in €, the necessary and sufficient condition for Cap,.) (£ x {7}) = 0 is
that the Borelian set E is null measure. Also, we have a more general result:
for any Borelian set E in 2, and any subinterval (¢1, t2) C [0, T], the equality
Capy(y (E x (t1, t2)) = 0 holds if and only if the elliptic capacity of the set F
vanishes, Cap,,.,*"? (E) = 0.

The set My (Q) consists of all bounded measures p on the o-algebra of all Bore-
lian subsets of @ such that p(E) = 0 for all subsets E C @ with zero capacity,
namely Cap,.) (E) = 0. Assume p € Mg (Q). Then, for all ¢ € C& (Q), there is a
decomposition

(Y1, Yo, F) e L90) ((o, Ty, Wit (Q)) % [P0) ((o, ), vp<->) x L1 (Q)

/¢du=/ F¢dxdt+/ (T4, ¢>dt—/ <8¢, T2>dt.
Q Q [0, ] o, 7] \ Ot

Now, we formulate the definition of the renormalized solution for the parabolic
partial differential equation with the measure data.

such that
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Definition 2.3. Let p € Mg (Q). Then, a measurable function u is said to be a
renormalized solution to the parabolic problem (1.1)-(1.3) if and only if there is

a pi-decomposition Y1 € L4() ((07 T), Wﬁ(l') (Q)) , Ty € LPO ((0, T), VPO) and
F € L' (Q) such that

b(u)— Ty € L®((0, T), L' (), (2.13)
Ty (b () — To) € LPO) ((0, T), WPt (Q)) ,m >0, (2.14)
lim V"™ dadt =0, (2.15)

k=00 J{ (2, )€Q : k<|b(u)—To|<k+1}

and the integral identity

/ ¢>8h )dxdt

+/ a(x, t, u, Vu) h' (b(u) — To) Vodzdt
Q

+ / da (z, t, u, Vu)h" (b(u) — Ya) V (b(u) — Y2) dxdt
Q

+ / od () |ulP 2wk (b (u) — Ts) dadt
Q

:/ OFR (b(u) — Y2)dadt
Q
+/ #O1h" (b(u) — T2) V (b (u) — Y2) dadt

h(b(u) = T2) (0) = h(b(p)) € L' (Q) (2.17)

for all Cl-function h € W?2 > (R) such that h’ has a compact support, and all
¢€CF(Q), 01 € (L1 (Q))".

Definition 2.4. Let u € Mg (Q). Let Ty (s) = f t)dt for all s €

[0, T]. Then, a measurable function u is said to be an entropy solution to the
parabolic problem (1.1)-(1.3) if and only if there is a p-decomposition T €

rat) ((O, T), WE&') (Q)) , Ty e LPO) ((07 T, V”(')) and F € L' (Q) such that
Ty (b(u) — T2) € LPO) ((o, ), Wi (@), m =0, (2.18)
€ [0, T%/ — Ty — ) (x, t)de
is almost everywhere a continuous function, m > 0 and @ € B, where

B =

{u e 70 ((O,T) WP (Q)) NL®(Q), du e LIV ((O,T) w0 (Q)) I (Q)}
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and

5

T (0(u) = T2 =) (T, z)dx
/ ¥ (0, z))dx
5#/% m (b(u) = Yo —9))dt

+ [ a(z, t, u, Vu) VT, (b(u) — Yo —¢) dadt (2.19)

<Q\\

+ / d(2) |ulP© 2 Ty, (b (u) — To — ) dadt

Q
< [ FLu ) T2 - 0) dod
Q

+ / 01V (T (b(w) — T — 1)) dadt

Q
for all m > 0 and ¥ € B, where
(s WO (@) + L1 Q) x WP () N L™® (Q) — R

is the duality pairing.
We remark that since To € LPC) ((O, T), Wﬁ(b) (Q)), the identity (2.15) is

equivalent to

lim IV (u — To) [P dadt = 0. (2.20)
koo Ji@ €@ k<|b(u)=Ta|<k+1}

The main incentive to study renormalized entropy solutions is that they can be
correctly defined under rather lighter regularity conditions on the structural coefhi-
cients than classical solutions. Some information on entropy solutions can be found
n [11,18]. Generally, the existence and uniqueness of the entropy solutions can
be shown by establishing the existence and uniqueness of solutions to approxima-
tion problems, which are regularizations of the initial problem with singular data.
Similar approximation arguments are applicable for dealing with the solvability of
the parabolic problem in the renormalized sense [4,6]. Since the definition of the
renormalized solutions is more demanding than the notion of distributional solu-
tion [15], for renormalized solutions, one can show its uniqueness under more general
conditions than classical case but stricter than in the distributional framework [21].

2.3. Hypotheses and conditions

Throughout this article, we suppose that the following e hypotheses on the coeffi-
cients hold true.

1) A function p € P2 () is log-Holder continuous and such that 1 < p,,, and
ps < oQ;

2)b: R — R, b€ C'(R) is a strictly increasing function such that 0 <
infd' (1) < (1) < supd’ (1) < o0, b(0) =0;
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3)a : Q@x (0, T)x Rx R"— R™such that a (-, -, 0, ) is measurable in @
for each (n, ) € Rx R™ and a(x, ¢, -, -) is continuous on R x R" for almost every
(z, t) in Q;

4 al(z t,n E>vEf™ for all € € R,

5) la(z, t, 1, €)] < ¢+ 8P 44 (z, t) for all € € R” and 1) € R;

6) (a(x, t,n, &) —alx, t, n, &)) (& — &) > 0 for almost all (z, t) € Q, and
all &y, & € R™, & # &, with some constants v, «, 8 > 0, and nonnegative function
v € L0 (Q);

7) d : @ — R is a measurable function satisfying 0 < d,,, and dg < o0;

8) the given measure is p € My (Q) .

We denote

0 ((0, T), Wi (@)

= {u : (0, T) — Wﬁ(b) (Q) is measurable f[o 7 llu @)l dt < oo} .

Pm
wrQ) (@)

We remark that all terms of equality (2.16) of the definition of the renormalized
solution are correctly defined. So, we assume that m is a positive number such that

supp (k') C [-m, m)| (2.21)
and we obtain

B (b () = T2) = h (T (b (u) = T2)) € L ((0, T), WY (@)

and W is a distribution over (. In the sense of almost everywhere in @,
we have an identity

a(x, t, u, Vu)h' (b(u) — T3)
(o, b (T (0) 4 02), T (57 (Ton (0) + T2))) W (T (b () — T2)),

where b (u) — Yo = v and u = b= (T,,, (v) + T2) over {|b(u) — YT2| < m}. Applying
2) and 5), we obtain

la(z, t, u, Vu)h' (T, (b(u) — T2))]
— z)—1
< W <a|Vb (T (v) + 1))

PO Ly (a, t))

+ 8167 (T (v) + T2)]

o — (z)—1
SHh/”LOO(R) m |Vb l(Tm (U)+’r2)’p
TER

+ B[6 (T (0) + L)

+ v (x, t)) .
Applying 5) and (2.14), we obtain

a(z, t, u, Vu)h' (b(u) — Ta) € (Lq<-> (Q))".
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Next, since u = b1 (T}, (v) + T2) we obtain the identities

a(z, t, u, Vu)h" (b(u) = T2) V (b(u) — To)
=a(z, t, b7 (T, (v) + T2), Vb (T}, (v) + T2))
xh" (b(u) — To) VT, (b(u) — To) € L' (Q).
Also, we conclude
Fh'(b(u) = T2) € L' (Q),
O11" (b(u) = Y2) VT (b(u) — Ta) € L' (Q),

and n
O11 (b(u) — Ts) € (Lq“ (Q))
Since
%142) e ((0, 1), w1 (@) + 11 (Q)
and
B @) —T2) € L0 ((0, T), W (@),
we deduce

h(b(u) = T2) € C((0, T), L' (),

thus the identity
h(b(u) = T2) (0) = h(b(p))

is correctly defined.

3. Equivalence between entropy and renormalized
solutions

This section focuses on establishing the main result, stated in the form of the

following theorem.

Theorem 3.1. Let € My (Q). If conditions 1)-8) hold then each entropy solution
to the initial-bounded problem (1.1)-(1.3) is a renormalized solution to the initial-
bounded problem (1.1)-(1.3), and each renormalized solution to the initial-bounded
problem (1.1)-(1.8) is an entropy solution to the initial-bounded problem (1.1)-(1.3).

Proof. For each m > 0, we define a function

hom (s) = s, |s| < m, (3.1)
supp(h,,) C[-m—1, m+1], (3.2)
Il oo (ry < 1. (3.3)

We assume that a function ¢ is continuous on [0, ), ¢ (t) = 1,t € [0, 7], T €
(0, T), and <. (t) = 0, t € [T +¢, 00|, and <. is linear on [r, 7 +¢]. We denote
v = b(u) — YTy, and we take a test function ¢ = ¢.Tj, (v — ), where ¢p € B. We

have
/[O’ . S <8(hgt(v))’ T (v — ¢)> dt
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+ / sea(z, t, u, Vu)hl, (v)V (Tx (v — 1)) dzdt

Q
1
+/ ——cea(x, t, u, Vu)hy, (v) Ty (v — 1)) Vodzdt
Q b (u)
+/ Ged (z )|u\pz) Zuhl, (v) Ty (v — ) dadt
Q
/CFh/ )T (v — 1) dzdt
Q

+ / v (u )%Tk( — ) ©1hy;, (v) Vodadt

+/ s.O1h., (v)V (Ty (v — 1)) dxdt.
Q

We obtain
Q0] ¢ ) (0. 1), W9 (@) + L' (@),
T (v =) € 1O (0, ), WE (@) N L™ (@)
and
(Pt nw-w)) e 0. 1),
and

a(z, t, u, Vu) V(T (v =) € L' (Q).
Since h!! (s) =0, s ¢ [m, m + 1], we have

7 ?u)a (x, t, u, Vu)hl (v) Ty (v —1) Vo
e, 1w, Vu) by (0) T (0 — )V (T () € L' (@)

and

ﬁTk (v =) O1hy, (v) Vo =Ty, (v — ) O1hyy, (V) VTinpr (v) € L1 (Q).

Taking the limit as € — 0 we obtain lim¢. = 1o, -} and

/[0, 7] <8 (hgt(v)), Ty (v — w)> dt

+ / a(z, t, u, Vu)h, (v)V (T} (v — 1)) dzdt
[0, T]x 2

+ / #a (x, t, u, Vu)hl (v) Ty (v — ) Vodzdt
0, rjx0 V' (u)

+ / d (z) [ulPD 2 ub! (V) Ty (v — ) dzdt
[0, T]xQ

:/ Fhl, (v) Ty (v — ) dzdt
[0, T]xQ
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1
+ ——T (v — ) O1hl, (v) Vodzdt
/[0 Axa V() k(v =) Oshi, (v)
A A
[0, 7]xQ

We assume that m > k + [|¢[| . ) and obtain Tj (v — ¢) = Tj; (hm (v) — ¥).

S (252, T (0 = w) )t
= Jo T (han (v) (7) = (7)) da
~ oy T (B (b () — 9 (0)) dx
o (2 T = ),

where h is continuous function h(v) : [0, 7] — L'(Q2) and equals h(v) almost
everywhere on [0, T]. By Lebesgue’s dominated convergence theorem, we have

/ Ti (o (0) (7) — 0 (7)) dz "5 / Te (v — ) () dx
Q Q
and
/ T (hm (b () — 10 (0)) d "5 / Fi (b () — 1 (0)) de.
Q Q

Next, we calculate

lim f[o, Axa @@, o, Vu)hi, (0) V(Ty (v — 1)) dadt

m—r oo

- f[07 Axa @@, tu, Vu) V(T), (v — 1)) dadt,

similarly
im [, 0d(@) [P 72 uh! (0) Ty (v — ) dadt
= Jio. rixa @) [ 72 uTy (v - ) dadt.
We have
lim Fhl, (v) Ty (v — ) dzdt = / FTy (v — ) dxdt
m=0o0 Jio, r]xQ [0, 7]xQ

and

/ O1h), (v) V (Ti, (v — ¥)) dadt ™= / OV (Ty (v — ) dzdt.
[0, T]xQ [0, T]xQ

Since |h!, (s)| <1 and R, (s) # 0 only for |s| € [m, m + 1], we have

|/[ Eu) a (@, t, u, Vu) b, (v) T (v = ¢) Vodzdt
1

+

/o Axa V' b (u) Tk (v — 1) ©1hy, (v) Vodzdt
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Sc/ ((a VPO 4 B P +7) |Vo| + |©1] |W|> dedt

{m<[v|<m+1}

Sc/ (\vu‘p(m) + |u|p(x) Jr,yq(m) + |@1|q(z) I |vv|p(m)> dudt
{m<|v|<m+1}

< (IValP® 4 w4 57 41047 4 (97" ) dudt,
{m<|v|<m+1}

hence |Vo[?™ < const <|Vu|p(m) + |VT2|p(I)). We can take the limit as m tends
to infinity so the inequality

/QTm (b(u) = T2 — ) (T, z)do
T (b(p) =¥ (0, ) da
(O, T (b(u) — T2 — o)) dt
a (@, t, u, V) VT (b(w) — Ty — o) dedt

d () [ulP "2 uT,, (b (u) — Yo — ) dadt
, TIXQ

S/ FT,, (b(u) — To — ) dadt
[0, T]x Q2
+/ O1V (T, (b(u) — Ty —¢)) dadt
[0, 7]xQ

holds for 7 € (0, T'). Taking the limit as 7 — T, we prove that an entropy solution
is a renormalized solution.
Conversely, we assume that u is a renormalized solution so we have

lim a(z, t, u, Vu) Vudzdt = 0.
k00 J{(w, )€Q : k<|b(u)=T2|<k+1)

For each | > 1, we take an element w; from L (£2) N Wﬁ(o') () such

that [|@if|pe) < m and llir&wl = Tm(p) almost everywhere in €, and
lim 4”@”7(_)(9) = 0.
l—o0

For all m > 0 and all | > 1, there exists the unique solution T, (w)l S
et) ((0, T), Wﬁ(b) (Q)) N L* (Q) to each problem

T,
% + 1 (T (w), — Toy (w)) =0, (3.4)
in D' (@), and
T (W), (x, 0) = ay, x € € (3.5)
r) ((07 T), Wi(é)(g)) ae.inQ
We have T}, (w), — T (w) and Ty, (w), - T, (w) such that

l—o0 l— o0
T ()] ey < m and Tt € 1p0) ((o, Ty, WP (Q)) for all > 1.
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We denote the duality pairing between Wﬁ(b) (Q) + L>*(Q) and Wq(') Q) +
L' () by (-, -). We assume m > 0, @ € LP0) ((0, T), Wf(b)( )) N L>®(Q),
)

we 2O ((0, 7), Wi () L= (Q), 25+ € 110 (0, T), W0 (@) + L' (Q),
and v, = h (wy). We calculate

/0 T /0 1] <aw}€, & (@k) (T (@) = T (w)z)> dsdt

/O . /g (wr)? [og — T (v),|° dadt

=5 o S o T ) da

/[ /5 wy) |vk— (vk)\ dxdt
0, T

+ g( ) |Uk T?n (Uk:)|2‘ dr

/N

(
(

/0 7] /[O t]/ (@) (v — Ty, (v),) dadsdt,

hence )
/ s — T (8)dsdt = = |t — T, ()]
0. ] 2
2 2
Since v Lﬁ) v, Ukl Lﬂ) ©, taking the limit as £ — oo and taking the

x—weak L>®(Q)
lower limit as [ — oo, we conclude

mwmATAﬂfmmwMmeﬁwm»wﬁ

l—ook—00

zligglfl /Q /[07 . /[07 ) (@) (T (V) = Trn (v),) (v =Ty (v),) dsdtdz.
And
(T (v) = Ton (v);) (v = T (v)) >0,

thus, for wy, = by (u) — (Y2), and £ € W° (R) being a nonnegative function with
compact support, we obtain

lim inf lim / / <aw’“7 € (@r) (T (w4) — T (w)l)>dsdt2 0.
[0, 7] /10, ¢]

l—oo k—oo

We take @ = b (u) — Y5 and obtain

)
/Qa(a:, t, u, Vu) V(T (w — T, (w),)) dedt
<

Tic (b () = b (w1)) dudt
+ /Q FTy (w — Ty, (w),) dadt
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+ /Q 1V (Ty, (w — Toy, (w),)) dadt.

Taking the limit as [ — co we have

/Qa (x, t, u, Vu) V (T}, (w — Ty, (w))) dadt

< [ Tetbe) b)) doa
+ /Q FTy (w — Ty, (w)) dadt
+ / 0.1V (T, (w — T), (w))) dadt.
Q

Applying condition 4), we have

V/ (V"™ dadt

{(z, t)EQ : k<|b(u)—Ya|<k+m}

§/ a(x, t, u, Vu) V (T, (w — Tpy, (w))) dadt
Q

—|—/ a(x, t, u, Vu) - VYadadt
{(z, )€Q : K<|b(u) 2| <k+m}
|

<h [ 10(e) = T (o) o+ [
Q {(z, )eQ : k<|b(u) =T}
+

{(z, DEQ : k<[b(u) =T |<k+m}

+ (
{(z, )€Q : k<[b(u)—=T2|<k+m}

|F| dadt

a|VulPO 7 4 gluP T 4 ’y) |V Y| dadt.

Since |Vw| < |Vu| 4+ |V T3] there is a constant ¢ independent of k such that

V/ |Vu|p(x) dxdt
(&, )€Q : K<|b(w)~Ta|<k+m}

< | b(¢)| da
{(z, t)€Q : k<|b(p)|}

+ k/ \F| dadt
{(z. DEQ : h<[b(u)~Ta]}

+Z (V"™ dadt

2 /{(m, )€Q : k<|b(u)—Ta|<k+m}
+ C/ (

{(z, )eQ : k<|b(u)—T2|<k+m}
Taking the limit as k — oo, from the inequality

v (V"™ dadt

2 /{(z, )€Q : k<|b(u)—Ta|<k+m}

<k / 1b(p)| da
{(z, t)€Q : k<|b(y)|}

|@1|¢1($) + |U|P(I) + ,Yq(:r) + |VT2|P(I)) dzdt.
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+ k/ \F| dadt
{(z. DEQ : h<[b(u)~Tal}

101|904 |ufPl) 4 59) 4 |VT2|”(9”)) dadt

+ 0/ (
{(z, )eQ : k<|b(u)—To|<k+m}

p(x) k—o
follows f{(gﬂ’ DeQ « k< bu)Ta|<ki1y |Vul" dedt =0,
Now, we prove that an entropy solution and a renormalized solution coincide.
We denote a (z, t, &) = a(x, t, u(x, t), &) suchthat a (z, t, £) < « \§|p(z)_1 +

(z, t), where 7 (z, t) = v (z, t) + Blu(z, )| for almost all (z, t) € Q. We
consider the simplified problem

%a@ —div(a (2.1 v3)) +a@|a]  imp e @, (36)

b (a) (z, 0) = b(p(x)), z€Q, (3.7)
a\mm =0 (3.8)

We assume that u is a renormalized solution to the simplified problem and show
that u :,1;, where u is an entropy solution. We take T, (w — hg (75)) as a test

function, where w=b (ﬂ) — Y5, and we obtain

/QTm (w — hy, (%)) (T, z)dx
T (b () = e (b(p))) dee
06 E) G
—|—/Q a (z, t, Vu) VT, (w — hy, (%>) dxdt
n /Q 4(2) [u") 2T, (= — (=)

< /Q FT, (@~ hi (@) ) dadt
n /Q 0.V (T (== 1 (7)) ) daat.

Each function hy is bounded by k + 1 such that
1 (o (2))
—T, (Tm+k+1 (@) — (8)) e 0 ((0, T), W) (Q)) NL®(Q).

From the definition of a renormalized solution, we have

/Q ahk(a):ﬁm (w — Iy (E;)) dedt

ot

S—

dxdt
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+ /Q 011, (7) V (T (= — i ())) duat

Since |kl (s)| <1 and b, (s) =0 for |s| & [m, m + 1], we obtain

e ) (e () 2
_/Qb<1ﬁ>g(x, t, va)hg(a):rm(w—hk(a))v%dmt

~P(x)  ~a(z)
/ <®1|q”) + ‘V u) + 4 |VT2|”(””)) dadt
mfb {r<|m|<k+1}

<w1 (k)

where wy (k) g So, we have

/Qahk( ) Ty (w — by (@) dudt
o

[ O o)
K (x, ) 1 (2) VT (e ()

/Q(a w1, Vu) — (m t, vﬂ) b, (%))VTm (w_hk (;))dmdt
S/Q(l‘hk( ) FTon (= = b () ) dat
+/Q@1(1 0 (2)) ¥ (T (= b (5))) dad
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+ / Ton (b() — e (b () dr + wr ().
Q

Next, we deduce
/Q (A (z, t, Vu)— a (x t, V E) R, (5)) VT (w — hy (%)) dzdt
/{x sea [2]er) ( e, t, Vu)— a (:v ¢,V E) B, (%))

VT, (w hk( ))dmdt

a (z, t, Vu) VT, (w hk( ))dxdt

’ /{<z, 0eQ : |=|>k}
/{MEQ:HM}Q(& LV W) () VT (0 — i (7)) s

We have hy, (%) =, h), (75) =1 and calculate

i (o1 () -
1o n(@)fem) (74 (3) 577 )

Vo — —=

= Ylo-5|<n} 7@

= Ypusfen} (0=~ 57 %)

So, we estimate

Awme>w

(x, t, Vu) V (w hy (%))dmdt
\

a (a:, t, V E) Vw‘ dzdt

/{( 1)eEQ : k<| | |w hi ‘<m} b

;C(z%) a (ac t, vﬂ) V @ dudt

/{(a:, 1EQ : k<’%’, )wfhk (%)|Sm} g (E)

1 o~
(oz [VuPO 4y (x, t)) |Vwo| dxdt

<
- /{(m, H€Q : k-m<|Z|<ktm+1} v (u)
/ 1
+ ~ —
{(a:, HeQ : k< ’w‘ §k+1,} b/<u)

k—mé‘%‘§k+m+1

(a VP + 5 (a, t)) ‘V 15’ dxdt

~a(a)
(|Vu|p(”> +7 4 |VT2|”(I)> dzdt

SC/
{(m, Heq : k—mg‘;‘§k+m+1}
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‘;D(m)

‘v | dedt = ws (),

+c/
{@ veq: kg‘%’gk-&-l}

k— . . -~ . .
where ws (k) =3 0 since the function u is a renormalized solution. Then, we have

a (z, t, Vu)hj, (%) VT, (w — hg (%)) dxdt

<;/
Tinfd (u) J| (2, t)eQ : k< ‘%’ <k+1,
o (3)] <
(a \Vu|p(z)71 +9 (z, t)) (|Vw| + ‘V f/D\D dxdt

SC/ -
(, 1) €q : kg‘wlgk—kL
E—m< o <m+k+1

p(x) Aq( )

(Vup(“w‘vﬂ +7 |VT2|P<“> dzdt = ws (k)

where w3 (k) gt

Thus, we conclude
Jo (E (z, t, Vu)— a (m t, v E) N (z%)) VT, (w — h (z%)) dadt

> sty | (z, 1) €Q : ‘%’ <k,
‘b(u)—b(a)‘ <m
(E (z, t, Vu)— a (x t, Vv E)) (w- v E) drdt — wy (k)

where wy (k) "2 0. So
1
sup b’ (u) /{( t) e ’8‘ < k}

ho-1(5) <
( x, t, Vu) —E(x t, Vu)) (Vu—VE)da:dt

<m/ |F|‘1 h, (%)’dxdt

/|@ |’1 hk Hv (w hk( )))‘dmdt
/|b o))l dz + ws ().

where ws (k) "% (). We have

[0l 1 @5 (o o - (2))
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§c/ (|@1|‘1(I) + | Vuf@ 4+ \VTQ\”(””)) dadt
{(z, )eQ : k—m<|w|<m+k+1}

~|p(z
(o«

+ c/ g V“rz”(z)> dadt.
{(w, HeqQ : k§|%|§k+1}

Therefore, we have

/(x beq . ‘%‘<k (E(x, t, vu)—’d(g;, t,va))(w—vﬂ)dxdt

’b(u)fb<a>‘ <m

k—oo

< wg (k) — 0.

By Fatou’s lemma, we have

(E (z, t, Vi) — a (x t, Vv E)) (Vu _v E) dwdt

/{(m, eQ : [b(w)—b(u)|<m}
<0.

Hence

(fz\(x, t, Vu)—/c;<m, t, Va)) (VU—VE) >0

on {(x, t)eq : ’b(u) -b (E)‘ < m}. Therefore, we obtain
(E (z, t, Vu)— a (m ¢, va)) (Vu—vﬂ) —0

almost everywhere on {(m, t)eq : ‘b (u) —b (a)‘ < m}, and since b (u) — b (a)

is almost everywhere finite, we deduce
(E (z, t, Vi) — @ (z ¢, va)) (vu—vﬂ) —0

almost everywhere on Q). Thus, we conclude Vu — V u= 0 almost everywhere on
Q. We have T} (Tm+1 (@) — T (%)) e LP0) ((o, Ty, W) (Q)) 50

T (Tm+1 (@) — Tt (z%))
0on {\w| <m-+1, ‘%‘ Sm—i—l}
_ ﬁv’(D1{|W7Tm+1<%>|§1} on {"(D‘ <m+1, ’%’ >m+1}

A Vol

v ()

{‘a—TmH(w)‘gl} on {\w\ >m+ 1, ’%‘ <m+ 1}

and

p(z)
dxdt

fQ ‘Tl (Tm+1 (@) = Tt (7%))

T p(z)

< v Jimelmlemeny V2 dadt + infb’l(ﬂ) f{ms\%\sm+1} ‘V a’ dad.
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Thus, we obtain

T1 (Tm+1 (w) — Tm+1 (’l%)) ’mi)}o
L0 ((0, 1), wE (@)
So
Tl (Tm—i-l (w) — Tm+1 (%)) mig Tl (wf ’%) y
and 17 (u— w) = T (wf %) = 0. Hence u =u . Thus, the function u is a

renormalized solution.

O
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