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Abstract This paper investigates a class of fractional problems involving
the variable-order p(·, ·)-Laplacian with homogeneous Dirichlet boundary con-
ditions. Under suitable assumptions on the nonlinear term, we establish novel
existence and uniqueness results for weak solutions. We achieve this by com-
bining variational techniques with a result from the theory of monotone oper-
ators. Additionally, we reveal several interesting properties of the solution.
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1. Introduction

In recent decades, there has been a notable surge in interest and significance sur-
rounding nonlinear problems that involve nonlocal and fractional pseudo-differential
operators. The exploration of these problems has been motivated by their wide-
ranging applications across various fields of applied sciences. These applications
encompass physics and engineering, population dynamics, finance, chemical reac-
tion design, optimization, minimal surfaces, and game theory (as detailed in ref-
erences [9, 16, 17, 24]). Moreover, differential equations and variational problems
with variable exponents have gained great attention due to their strong physical
relevance. As evidenced in references [1,13,22], such equations emerge in the math-
ematical modeling of fluid dynamics, including electrorheological and thermorheo-
logical fluids. They are also encountered in elastic mechanics, image restoration,
and biology (as indicated in references [11, 20, 21, 30]). Notably, recent research on
fractional p(x, ·)-Laplacian problems and the corresponding variational problems
can be found in references [2, 4–6,10,14,15,26,27].

In this current paper, we focus on establishing the existence and uniqueness of
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weak solutions for the subsequent problem:
(
−∆p(·,·)

)κ(·,·)
u+ a(x)|u|p(x,x)−2u = µf(x, u) in Ω,

u = 0 in RN\Ω,

(Pµ)

where Ω ⊂ RN is a bounded smooth domain, the variable exponent p(·, ·) : R2N →
(1,∞) and the variable fractional κ(·, ·)-order κ(·, ·) : R2N → (0, 1), are continuous
functions, with N > κ(x, y)p(x, y) for all (x, y) ∈ R2N , they fulfill the following two
conditions respectively:

p(·, ·) is symmetric and 1 < inf
(x,y)∈R2N

p(x, y) =: p− ≤ sup
(x,y)∈R2N

p(x, y) =: p+ <∞,

(1.1)
κ(·, ·) is symmetric and 0 < inf

(x,y)∈R2N
κ(x, y) =: κ− ≤ sup

(x,y)∈R2N

κ(x, y) =: κ+ < 1,

(1.2)

a : Ω → [0,∞), f : Ω×R → R, µ > 0 is parameter and
(
−∆p(x,·)

)κ(x,·)
denotes the

variable fractional κ(·, ·)-order fractional p(·, ·)-Laplacian operator defined as(
−∆p(x,·)

)κ(x,·)
u(x) = p.v.

∫
RN

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+κ(x,y)p(x,y)
dy, x ∈ RN ,

where p.v. is employed as an abbreviation in the principal value sense.

Note that when κ(·, ·) = κ (constant),
(
−∆p(x,·)

)κ(x,·)
becomes the fractional

p(x, ·)-Laplacian operator and problem (Pµ) reduces to fractional p(x, ·)-Laplacian
problem studied by M. Ait Hammou [2]. By employing the Berkovits topological
degree theory, the author proved the existence of at least one weak solution for
(Pµ).

The variable-order fractional derivatives extend the concept of constant-order
fractional derivatives, first proposed by S. G. Samko and B. Ross [23]. In this
approach, the derivative order can vary continuously based on dependent or inde-
pendent variables, allowing for a better representation of memory effects over time
or space [7]. C. F. Lorenzo and T. T. Hartley later applied this concept to model
diffusion processes that respond to temperature fluctuations [18], which can also be
used to describe temperature changes [19].

Very recently, considerable attention has been focused by many researchers
about the existence of at least one or multiple solutions for p(x, ·)-Laplacian prob-
lems in the fractional variable-order case see (for example [8, 28, 29, 31]). In [8], R.
Biswas and S. Tiwari considered the following fractional nonlocal Choquard prob-
lem:

(−∆)
s(·)
p(·) u(x) = λ|u(x)|α(x)−2u(x) +

(∫
Ω

F (y, u(y))

|x− y|µ(x,y)
dy

)
f(x, u(x)) in Ω,

u = 0 in RN\Ω,

under suitable assumption on α, µ, s, f and by using the variational approach, the
authors have established the existence of at least two distinct nontrivial weak so-
lutions to the problem. In [29], the existence and uniqueness of weak solutions to
variable-order fractional p(x, ·)-Laplacian equation have been discussed.
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Inspired by the above facts and aforementioned research papers, the principal
objective of this paper is to prove the existence and uniqueness of solutions through
the application of variational techniques in conjunction with a result derived from
the theory of monotone operators as presented in reference [25, Theorems 25.F].
Additionally, we elucidate certain properties of the solutions pertaining to problem
(Pµ).

2. Preliminaries

Initially, we provide pertinent notations and fundamental outcomes concerning vari-
able exponent Lebesgue spaces, which will serve as essential tools in establishing
the principal theorems (see [12]). For ξ ∈ C(Ω, (1,∞)), we write

max
x∈Ω

ξ(x) =: ξ+ and min
x∈Ω

ξ(x) =: ξ−.

Let us establish the definition of the variable exponent Lebesgue space as follows:

Lξ(·)(Ω) =

{
u : Ω → R measurable :

∫
Ω

|u|ξ(x)dx <∞
}
.

Lξ(·)(Ω) endowed with the norm

||u||ξ(·) = inf

{
τ > 0 :

∫
Ω

∣∣∣u
τ

∣∣∣ξ(x) dx ≤ 1

}
,

is a separable and reflexive Banach space. Let Lξ̂(·)(Ω) be the conjugate space of

Lξ(·)(Ω) with ξ̂(x) =
ξ(x)

ξ(x)− 1
.

Then the following Hölder-type inequality holds.

Lemma 2.1 ( [12]). Let u ∈ Lξ(·)(Ω) and v ∈ Lξ̂(·)(Ω). Then∫
Ω

|uv|dx ≤ 2||u||ξ(·)||v||ξ̂(·).

On the space Lξ(·)(Ω), we define the modular function given by

ρξ(·)(u) =

∫
Ω

|u|ξ(x)dx.

Lemma 2.2 ( [12]). For any u ∈ Lξ(·)(Ω), we have

min
(
||u||ξ

−

ξ(·), ||u||
ξ+

ξ(·)

)
≤ ρξ(·)(u) ≤ max

(
||u||ξ

−

ξ(·), ||u||
ξ+

ξ(·)

)
.

For any x ∈ RN , we put p(x, x) =: p̃(x) and κ(x, x) =: κ̃(x). Subsequently,
we introduce the concept of the variable exponent fractional Sobolev space to
provide a suitable variational framework for addressing our problem. We define
Wκ(·,·),p(·,·)(Ω) as the variable exponent fractional Sobolev space according to the
following characterization:

W := Wκ(·,·),p(·,·)(Ω)
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=

{
u ∈ Lp̃(·)(Ω) :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

ζp(x,y)|x− y|N+κ(x,y)p(x,y)
dxdy <∞, for some ζ > 0

}
.

Equip W with the norm
||u||W = [u]W + ||u||p̃(·),

where

[u]W = inf

{
ζ > 0 :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

ζp(x,y)|x− y|N+κ(x,y)p(x,y)
dxdy ≤ 1

}
.

Then (W, ||u||W) is a reflexive Banach space. For any x ∈ Ω, we set

p⋆κ(x) :=
Np̃(x)

N − κ̃(x)p̃(x)
.

Lemma 2.3 ( [26, 27]). Assume that (1.1) and (1.2) hold. Then for any ξ ∈
C(Ω, (1,∞)) such that ξ(x) < p⋆κ(x) for all x ∈ Ω. Then the embedding W ↪→
Lξ(·)(Ω) is continuous. Moreover, this embedding is compact.

Because of the homogeneous Dirichlet boundary condition on RN\Ω, it becomes
necessary to incorporate this constraint into the weak formulation of (Pµ). To
address this, we introduce a new function space:

X := Xκ(·,·),p(·,·)(Ω)

=

{
u : RN → R, u|Ω ∈ Lp̃(·)(Ω),

∫
Q

|u(x)− u(y)|p(x,y)

ζp(x,y)|x− y|N+κ(x,y)p(x,y)
dx dy <∞,

for some ζ > 0} ,

where Q = (RN × RN )\(Ωc × Ωc). Endow X with the norm

||u||X = [u]X + ||u||p̃(·),

where

[u]X = inf

{
ζ > 0 :

∫
Q

|u(x)− u(y)|p(x,y)

ζp(x,y)|x− y|N+κ(x,y)p(x,y)
dxdy ≤ 1

}
.

In the same way (X, || · ||X) is a separable reflexive Banach space.
Since the variable exponents p, p̃ and ξ are continuous, we can extend p to

RN × RN and p̃, ξ to RN continuously under the conditions given in Lemma 2.3.
Let X0 be the linear space:

X0 = {u ∈ X : u = 0 a.e. in RN\Ω}

equipped with the norm

||u||X0
= [u]X = inf

{
ζ > 0 :

∫
R2N

|u(x)− u(y)|p(x,y)

ζp(x,y)|x− y|N+κ(x,y)p(x,y)
dxdy ≤ 1

}
.

Obviously, (X0, || · ||X0) is a reflexive Banach space. Set

ρ0(u) =

∫
R2N

|u(x)− u(y)|p(x,y)

|x− y|N+κ(x,y)p(x,y)
dxdy for all u ∈ X0.



1486 A. Azghay, M. Massar & A. El Mhouti

Lemma 2.4 ( [26]). For all u, un ∈ X0, the following properties hold true:

(1) ||u||X0
> 1 ⇒ ||u||p

−

X0
≤ ρ0(u) ≤ ||u||p

+

X0
;

(2) ||u||X0
≤ 1 ⇒ ||u||p

+

X0
≤ ρ0(u) ≤ ||u||p

−

X0
;

(3) ||un − u||X0
→ 0 ⇔ ρ0(un − u) → 0.

Lemma 2.5. [8, Theorem 3.6] Assume that (1.1) and (1.2) hold. Then for any
ξ ∈ C(Ω, (1,∞)) such that ξ(x) < p⋆κ(x) for all x ∈ Ω. Then the embedding X0 ↪→
Lξ(·)(Ω) is continuous. Moreover, this embedding is compact.

Remark 2.1. Since 1 < p̃(x) < p⋆s(x) for all x ∈ Ω, by Lemma 2.5, the norms
|| · ||X0

and || · ||X are equivalent in X0.

Let L denote the operator associated with
(
−∆p(x,·)

)κ(x,·)
defined as

L : X0 → X∗
0

u 7→ L(u) : X0 ∋ ϕ 7→ ⟨L(u), ϕ⟩ ∈ R

such that

⟨L(u), ϕ⟩ =
∫
R2N

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+κ(x,y)p(x,y)
dxdy,

where ⟨·, ·⟩ denotes the usual duality between X0 and its dual space X∗
0.

The proof of the following lemma can be shown similarly to the proofs of Lemma
4.2 in [6] and Proposition 2.6 in [28].

Lemma 2.6. Assume that (1.1) and (1.2) hold. Then, the following assertions
hold:

(L1) L is a bounded and strictly monotone operator on X0;

(L2) L is a mapping of type (S+), that is, if lim inf
k→∞

⟨L(uk)−L(u), uk − u⟩ ≤ 0, and

uk ⇀ u in X0, then uk → u in X0;

(L3) L is a homeomorphism on X0.

For the proof of Theorem 3.1, we will apply the following lemma from monotone
operator theory.

Lemma 2.7. [25, Theorems 25.F] Let (E, || · ||E) be a reflexive Banach space and
let the functional I ∈ C1(E,R) satisfy the following two properties:

(i) I is weakly coercive on E (i.e., I(v) → ∞ as ||v||E → ∞ on E);

(ii) I
′
is strictly monotone on E (i.e., ⟨I ′

(z)− I
′
(w), z − w⟩ > 0 for all z, w ∈ E

with z ̸= w).

Then, there exists a unique z̃ ∈ E such that ⟨I ′
(z̃), w⟩ = 0 for all w ∈ E and

I(z̃) = infz∈E I(z).
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3. Main result

Prior to presenting our principal theorem, we shall initially formulate certain as-
sumptions concerning the data associated with problem (Pµ).

(F1) f(x, t) is non-increasing in the second variable for each fixed x ∈ Ω;

(F2) There exist g ∈ L
̂̃p(·)(Ω), γ ∈ C(Ω, [0,∞)) and σ > 0 such that p− > γ+ and

|f(x, t)| ≤ |g(x)|+ σ|t|γ(x)−1 for all (x, t) ∈ Ω× R,

where L
̂̃p(·)(Ω) is the conjugate space of Lp̃(·)(Ω) with ̂̃p(x) = p̃(x)

p̃(x)− 1
;

(F3) There exist α > 0, x0 ∈ Ω and s2 > s1 > 0 such that
Bs1(x0) ⊂ Bs2(x0) ⊂ Ω,

f(x, α) ≥ 0 for all x ∈ Bs2(x0)\Bs1(x0),

lim sup
α→0+

infx∈Bs1
(x0) F (x, α)

αp−
= ∞,

where Bs(x0) is the open s− ball in RN centered at x0, and F (x, α) :=∫ α

0

f(x, τ)dτ.

Next, we give the sense in which we will take a solution to problem (Pµ).

Definition 3.1. We say that u ∈ X0 is a weak solution of problem (Pµ) if∫
R2N

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+κ(x,y)p(x,y)
dxdy +

∫
Ω

a(x)|u|p̃(x)−2uϕdx

= µ

∫
Ω

f(x, u)ϕdx for all ϕ ∈ X0.

It is a widely recognized fact that the weak solution of (Pµ) corresponds to a
critical point of the energy functional, which is defined on the space X0 as follows:

Iµ(u) =
∫
R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+κ(x,y)p(x,y)
dxdy +

∫
Ω

a(x)
|u|p̃(x)

p̃(x)
dx− µ

∫
Ω

F (x, u)dx

= Ψ(u)− µΦ(u). (3.1)

By a standard argument we show that Iµ ∈ C1(X0,R), and its derivative is given
by

⟨I
′

µ(u), ϕ⟩ =
∫
R2N

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+κ(x,y)p(x,y)
dxdy

+

∫
Ω

a(x)|u|p̃(x)−2uϕdx− µ

∫
Ω

f(x, u)ϕdx

= ⟨Ψ
′
(u), ϕ⟩ − µ⟨Φ

′
(u), ϕ⟩ for all u, ϕ ∈ X0. (3.2)

The main result can be stated as follows.
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Theorem 3.1. Assume that the assumptions (F1), (F2) and (F3) hold. Then for
each µ > 0, problem (Pµ) possesses a unique nontrivial weak solution uµ ∈ X0

verifying:

(i) Iµ(uµ) = infu∈X0
Iµ(u) < 0;

(ii) The mapping (0,∞) ∋ µ 7→ Iµ(uµ) is strictly decreasing;

(iii) For each nonempty bounded set Λ ⊂ (0,∞), there exists Cµ,Λ > 0 such that

||uµ||X0
≤ Cµ,Λ for all µ ∈ Λ.

Moreover, ||uµ||X0 → 0 as µ→ 0+.

4. Proof of the main result

Proof of Theorem 3.1. To apply Lemma 2.4, we need the following two lemmas.

Lemma 4.1. For any µ > 0, the energy functional Iµ : X0 → R is weakly coercive.

Proof. Let u ∈ X0 such that ||u||X0
> 1. By (F2), (3.1) and Lemmas 2.1, 2.4 and

2.5, it follows that

Iµ(u) =
∫
R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+κ(x,y)p(x,y)
dxdy +

∫
Ω

a(x)
|u|p̃(x)

p̃(x)
dx− µ

∫
Ω

F (x, u)dx

≥
∫
R2N

|u(x)− u(y)|p(x,y)

p(x, y)|x− y|N+κ(x,y)p(x,y)
dxdy − µ

∫
Ω

|F (x, u)|dx

≥ 1

p+

∫
R2N

|u(x)− u(y)|p(x,y)

|x− y|N+κ(x,y)p(x,y)
dxdy−µ

∫
Ω

|g(x)||u|dx−µσ
∫
Ω

1

γ(x)
|u|γ(x)dx

≥ 1

p+
||u||p

−

X0
− 2µ||g||̂̃p(·)||u||p̃(·) − µσ

γ−
||u||γ

+

γ(·)

≥ 1

p+
||u||p

−

X0
− 2µC1||g||̂̃p(·)||u||X0 −

µσ

γ−
Cγ

+

2 ||u||γ
+

X0
.

This implies that Iµ(u) → ∞ as ||u||X0 → ∞ on X0, since p
− > γ+ and p− > 1.

Consequently, Iµ is weakly coercive. The proof is finished.

Lemma 4.2. For any µ > 0, the mapping I ′

µ : X0 → X∗
0 is strictly monotone.

Proof. Let u, v ∈ X0 with u ̸= v. Set U(x, y) = u(x) − u(y) and V(x, y) =
v(x)− v(y). From (F1) and (3.2) we have

⟨I
′

µ(u)− I
′

µ(v), u− v⟩

=

∫
R2N

(
|U(x, y)|p(x,y)−2U(x, y)
|x− y|N+κ(x,y)p(x,y)

− |V(x, y)|p(x,y)−2V(x, y)
|x− y|N+κ(x,y)p(x,y)

)
(U(x, y)−V(x, y)) dxdy

+

∫
Ω

a(x)
(
|u|p̃(x)−2u− |v|p̃(x)−2v

)
(u− v)dx− µ

∫
Ω

(f(x, u)− f(x, v))(u− v)dx

≥
∫
R2N

(
|U(x, y)|p(x,y)−2U(x, y)
|x− y|N+κ(x,y)p(x,y)

− |V(x, y)|p(x,y)−2V(x, y)
|x− y|N+κ(x,y)p(x,y)

)
(U(x, y)−V(x, y)) dxdy

+

∫
Ω

a(x)
(
|u|p̃(x)−2u− |v|p̃(x)−2v

)
(u− v)dx. (4.1)
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We refer to the following inequalities, credited to J. Simon [3]:

⟨|ζ|r−2ζ − |η|r−2η, ζ − η⟩ ≥


(r − 1)|ζ − η|2

(|ζ|+ |η|)2−r
if 1 < r < 2,

1

2r
|ζ − η|r if r ≥ 2,

(4.2)

for any ζ, η ∈ Rd with d ∈ N, where ⟨·, ·⟩ denotes the inner product in Rd.
Now, from (4.1), (4.2) and Lemma 2.6(L1), we see that

⟨I
′

µ(u)− I
′

µ(v), u− v⟩ > 0 for all u, v ∈ X0 with u ̸= v.

Consequently, I ′

µ is a strictly monotone operator.

Thus, from Lemmas 4.1 and 4.2, and by applying [25, Theorems 25.F], we con-
clude that problem (Pµ) has a unique weak solution uµ ∈ X0.

Now, we show that uµ ̸≡ 0 and (i) holds, for this we define the following function:

ψ : RN → R

x 7→ ψ(x) =


0 if x ∈ RN\Bs2(x0),
dist(x, x0)− s2

s1 − s2
if x ∈ Bs2(x0)\Bs1(x0),

1 if x ∈ Bs1(x0),

where dist(x, x0) is the Euclidean distance on RN . Then 0 ≤ ψ(x) ≤ 1 for all
x ∈ RN . Moreover, ψ ∈ X0. In fact, clearly, ψ|Ω ∈ Lp̃(·)(Ω). Observe that

|x− y|N+κ(x,y)p(x,y) ≥


|x− y|N+κ+p+ if |x− y| ≥ 1,

|x− y|N+κ−p− if |x− y| < 1.

Then ∫∫
R2N

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ(x,y)p(x,y)
dxdy

≤
∫∫

R2N

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ+p+
dxdy +

∫∫
R2N

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ−p−
dxdy. (4.3)

Put: 
Ω1 = Bs1(x0)×

(
RN \Bs2(x0)

)
,

Ω2 = Bs1(x0)× (Bs2(x0) \Bs1(x0)) ,
Ω3 = (Bs2(x0) \Bs1(x0))× (Bs2(x0) \Bs1(x0)) ,
Ω4 = (Bs2(x0) \Bs1(x0))×

(
RN \Bs2(x0)

)
.
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Then, we can write∫∫
R2N

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ+p+
dxdy = 2

∫∫
Ω1

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ+p+
dxdy

+ 2

∫∫
Ω2

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ+p+
dxdy

+ 2

∫∫
Ω3

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ+p+
dxdy

+ 2

∫∫
Ω4

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ+p+
dxdy

=: 2I+1 + 2I+2 + 2I+3 + 2I+4 .

(4.4)

Before estimating the integrals I+1 , I
+
2 , I

+
3 and I+4 by direct calculations, we first

recall that if f : Bs(0) ∋ x 7→ f(x) is a continuous and radial function (i.e., there

exists a function f̃ : [0, s] ∋ x 7→ f̃(|x|)), then∫
Bs(0)

f(x)dx = ωN−1

∫ s

0

f̃(r)rN−1dr,

where ωN−1 is (N − 1)-dimensional measure of the unit sphere and r = |x| =(∑N
i=1 x

2
i

) 1
2

. Note that if s → ∞, it is now straightforward to see that if f is a

continuous and improperly Riemann integrable function on RN which is radial, then∫
RN

f(x)dx = ωN−1

∫ ∞

0

f̃(r)rN−1dr.

From the definition of ψ and the preceding reminders, we deduce that

I+1 =

∫∫
Ω1

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ+p+
dxdy

=

∫
Bs1

(x0)

(∫
RN\Bs2

(x0)

1

|x− y|N+κ+p+
dy

)
dx

=

∫
Bs1

(x0)

(∫
RN\Bs2

(x−x0)

1

|z|N+κ+p+
dz

)
dx

=ωN−1

∫ ∞

s2

sN−1

sN+κ+p+
ds

∫
Bs1 (x0)

dx

=ϖNωN−1s
N
1

∫ ∞

s2

sN−1

sN+κ+p+
ds

=
ϖNωN−1

κ+p+
sN1 s

−κ+p+

2 , (4.5)

where ϖN is N -dimensional measure of the unit ball,

I+2 =

∫∫
Ω2

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ+p+
dxdy
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=

∫∫
Ω2

1

|x− y|N+κ+p+

∣∣∣∣s2 − dist(y, x0)

s1 − s2

∣∣∣∣p(x,y) dxdy
≤
∫
Bs1

(x0)

(∫
Bs2

(x0)\Bs1
(x0)

1

|x− y|N+κ+p+
dy

)
dx

=

∫
Bs1 (x0)

(∫
Bs2 (x−x0)\Bs1 (x−x0)

1

|z|N+κ+p+
dz

)
dx

=ωN−1

∫ s2

s1

sN−1

sN+κ+p+
ds

∫
Bs1 (x0)

dx

=ϖNωN−1s
N
1

∫ s2

s1

sN−1

sN+κ+p+
ds

≤ϖNωN−1

κ+p+
sN−κ+p+

1 , (4.6)

I+3 =

∫∫
Ω3

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ+p+dxdy
dxdy

=

∫∫
Ω3

1

|x− y|N+κ+p+

∣∣∣∣dist(y, x0)− dist(x, x0)

s1 − s2

∣∣∣∣p(x,y) dxdy
≤
∫∫

Ω3

1

|x− y|N+κ+p+
dxdy

=

∫
Bs2

(x0)\Bs1
(x0)

(∫
Bs2

(x0)\Bs1
(x0)

1

|x− y|N+κ+p+
dy

)
dx

=

∫
Bs2

(x0)\Bs1
(x0)

(∫
Bs2

(x−x0)\Bs1
(x−x0)

1

|z|N+κ+p+
dz

)
dx

=ωN−1

∫ s2

s1

sN−1

sN+κ+p+
ds

∫
Bs2

(x0)\Bs1
(x0)

dx

=ϖNωN−1(s
N
2 − sN1 )

∫ s2

s1

sN−1

sN+κ+p+
ds

≤ϖNωN−1

κ+p+
sN2 s

−κ+p+

1 (4.7)

and

I+4 =

∫∫
Ω4

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ+p+
dxdy

=

∫∫
Ω4

1

|x− y|N+κ+p+
dxdy

=

∫
Bs2

(x0)\Bs1
(x0)

(∫
RN\Bs2

(x0)

1

|x− y|N+κ+p+
dy

)
dx

=

∫
Bs2

(x0)\Bs1
(x0)

(∫
RN\Bs2

(x−x0)

1

|z|N+κ+p+
dz

)
dx
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=ωN−1

∫ ∞

s2

sN−1

sN+κ+p+
ds

∫
Bs2

(x0)\Bs1
(x0)

dx

=ϖNωN−1(s
N
2 − sN1 )

∫ ∞

s2

sN−1

sN+κ+p+
ds

≤ϖNωN−1

κ+p+
sN−κ+p+

2 . (4.8)

By (4.4)-(4.8), there is a constant C1 := C(N, p+, κ+, s1, s2) > 0 such that∫∫
R2N

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ+p+
dxdy ≤ C1.

Analogously, there is a constant C2 := C(N, p−, κ−, s1, s2) > 0 such that∫∫
R2N

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ−p−
dxdy ≤ C2.

Therefore, it follows from (4.3) that∫∫
R2N

|ψ(x)− ψ(y)|p(x,y)

|x− y|N+κ(x,y)p(x,y)
dxdy ≤ C1 + C2 <∞,

which yields that ψ ∈ X0. By (F3) there exists a sequence of {αn} ⊂ (0, α] such
that

αn → 0 and α−p−
n inf

x∈Bs1 (x0)
F (x, αn) → ∞ as n→ ∞. (4.9)

From (4.9), there exists δ > 0 and for n large enough, one has,

0 < αn < min
{
1, ||ψ||−1

p̃(·)

}
and inf

x∈Bs1
(x0)

F (x, αn) ≥ δαp
−

n .

Then we have

||αnψ||p̃(·) < 1 and

∫
Bs1

(x0)

F (x, αn)dx ≥
∫
Bs1

(x0)

δαp
−

n dx = δαp
−

n ϖNs
N
1 . (4.10)

Furthermore, by virtue of Lemma 2.4(2), we deduce the following

Ψ(αnψ(x)) =

∫
R2N

|αnψ(x)− αnψ(y)|p(x,y)

p(x, y)|x− y|N+κ(x,y)p(x,y)
dxdy +

∫
Ω

a(x)
|αnψ(x)|p̃(x)

p̃(x)
dx

≤ αp
−

n

p−

(
||ψ||p

−

X0
+ ||a||1

)
. (4.11)

For any x ∈ Bs2(x0)\Bs1(x0), by the assumption (F1), we obtain

F (x, αnψ(x)) =

∫ αnψ(x)

0

f(x, τ)dτ ≥ αnψ(x)f(x, αnψ(x))

≥ αnψ(x)f(x, α)

≥ 0, (4.12)
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since f(x, α) ≥ 0 and 0 ≤ αnψ(x) ≤ α. For any fixed Θ > 0, choose the above
constant δ large enough so that

Θ <
δαp

−

n ϖNs
N
1

||ψ||p−X0
+ ||a||1

. (4.13)

From (4.11)-(4.13), and for any n large enough, we derive that

Φ(αnψ)

Ψ(αnψ)
=

∫
Bs1

(x0)

F (x, αnψ)dx+

∫
Bs2

(x0)\Bs1
(x0)

F (x, αnψ)dx

Ψ(αnψ)

≥

∫
Bs1 (x0)

F (x, αn)dx

Ψ(αnψ)

≥ δαp
−

n ϖNs
N
1

||ψ||p−X0
+ ||a||1

> Θ.

Then
Φ(αnψ)

Ψ(αnψ)
→ ∞ as n→ ∞, for Θ large enough. Hence, for n large enough, we

have Iµ(αnψ) = Ψ(αnψ) − µΦ(αnψ) < 0. Then, from the fact that αnψ ∈ X0 and
uµ is a global minimum of Iµ in X0, we have Iµ(uµ) < 0, which gives that uµ ̸≡ 0
and (i) is satisfied.

Next, we prove (ii). For all u ∈ X0 and µ > 0, in view of (3.1), we have
Iµ(u) = µJµ(u), where

Jµ(u) =
Ψ(u)

µ
− Φ(u). (4.14)

Let 0 < µ1 < µ2 be fixed. Then from (i) and for k = 1, 2, we get that

µkJµk
(uµk

) = Iµk
(uµk

) = inf
u∈X0

Iµk
(u) = µk inf

u∈X0

Jµk
(u) < 0.

Thus, Jµk
(uµk

) = infu∈X0 Jµk
(u). Moreover, in view of (4.14), we have Jµ2(uµ2) ≤

Jµ1
(uµ1

). Therefore,

Iµ2
(uµ2

) = µ2Jµ2
(uµ2

) ≤ µ2Jµ1
(uµ1

) < µ1Jµ1
(uµ1

) = Iµ1
(uµ1

).

Hence, (ii) holds.
Finally, we show that (iii). Arguing by contradiction, we assume that there

exists {µn} ⊂ Λ such that ||uµn ||X0 → ∞ as n→ ∞. Then, by the assumption (F2),
Lemma 2.4(1) and Lemma 2.3, for n large enough, we have

||uµn ||
p−

X0
≤
∫
R2N

|uµn(x)− uµn(y)|p(x,y)

|x− y|N+κ(x,y)p(x,y)
dxdy

≤ ⟨Ψ
′
(uµn

), uµn
⟩ = µn⟨Φ

′
(uµn

), uµn
⟩

≤ µn

∫
Ω

|uµnf(x, uµn)|dx

≤ µ

∫
Ω

g(x)|uµn |dx+ µσ

∫
Ω

|uµn |γ(x)dx
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≤ 2µ||g||̂̃p(·)||uµn ||p̃(·) + µσ||uµn ||
γ+

γ(·)

≤ 2µC3||g||̂̃p(·)||uµn
||X0

+ µσC4||uµn
||γ

+

X0
, (4.15)

where µ := supn∈N µn <∞.We derive a contradiction since p− > γ+, and therefore
there exists Cµ,Λ > 0 such that ||uµ||X0

≤ Cµ,Λ for all µ ∈ Λ. In particular, there
exists C5 > 1 such that

||uµ||X0
≤ C5 for all µ ∈ (0, 1).

Then, similar to (4.15), we entail

||uµ||p
+

X0
≤
∫
R2N

|uµ(x)− uµ(y)|p(x,y)

|x− y|N+κ(x,y)p(x,y)
dxdy

≤ 2µ||g||̂̃p(·)||uµ||p̃(·) + µσ||uµ||γ
+

γ(·)

≤ 2µC3||g||̂̃p(·)||uµ||X0 + µσC4||uµ||γ
+

X0

≤ 2µC3C5||g||̂̃p(·) + µσC4C
γ+

5 → 0 as µ→ 0.

Hence it yields that ||uµ||X0
→ 0 as µ→ 0+. This ends the proof of Theorem 3.1.

Acknowledgements

The authors thank the anonymous referees for invaluable comments and insightful
suggestions which improved the presentation of this manuscript.

References

[1] S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous
flows, Annali dell’Università di Ferrara, 2006, 52, 19–36.

[2] M. Ait Hammou, Weak solutions for fractional p(x, ·)-Laplacian Dirichlet prob-
lems with weight, Analysis, 2022, 42(2), 121–132.
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