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Subdifferential Frictional Contact Problem with
Thermo-Electro-Visco-Elastic Locking Materials:
Analysis and Approximation

Zakaria Faiz"! and Hicham Benaissa!

Abstract This paper investigates a frictional contact problem involving a
thermo-electro-visco-elastic model for locking materials in contact with a rigid
foundation. Friction is described by the subgradient of a locally Lipschitz
function, while contact is governed by Signorini’s unilateral condition. We
formulate the problem as a system of three hemivariational inequalities and
establish an existence and uniqueness theorem using a fixed-point argument
and recent advances in hemivariational inequalities theory. Finally, we present
a fully discrete finite element approximation of the model and derive error
estimates for the approximate solution.
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1. Introduction

The investigation of piezoelectric materials has gained significant attention in re-
cent years due to their extensive applications across various industries, including
railways, automotive systems, civil engineering, and aeronautics. These materials
possess unique properties, such as the ability to produce electrical charges under me-
chanical deformation and to undergo mechanical deformation when exposed to elec-
tric fields. Nonetheless, the interaction between a deformable piezoelectric structure
and a conductive base presents intricate challenges. For example, friction-induced
energy dissipation can heat the material, and through the pyroelectric effect, this
heating affects certain piezoelectric systems by generating electrical charges or volt-
age. Analyzing these complex interactions requires a thorough study of coupled
thermo-electro-mechanical phenomena, especially in contact problems with or with-
out friction. Understanding these behaviors is essential for accurately modeling
electro-elastic materials in real-world applications.

This study explores a contact problem involving a nonlinear thermo-visco-electro-
elastic body with locking materials in contact with a rigid foundation. The model
is formulated using hemivariational inequalities that account for visco-piezoelectric,
thermal, subdifferential friction, and material degradation effects. For a comprehen-
sive discussion on contact problems in piezoelectric and visco-piezoelectric materials,
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see [2,17,21,24,26-28, 32, 36, 38, 45, 46], while further insights into thermo-visco-
piezoelectric materials are available in [1,3,7-9, 16, 18-20, 22, 29, 30, 39, 4244, 47].
Furthermore, the concept of locking materials, first introduced by Prager [40, 41],
describes materials that exhibit a significant increase in stiffness beyond a certain
deformation threshold, effectively restricting further strain. This behavior is partic-
ularly observed in the study of contact problems, where interactions between a de-
formable body and a rigid foundation can lead to localized stress concentrations. In-
corporating locking effects into our model allows for a more accurate representation
of real-world materials, where excessive deformation must be restricted to prevent
structural failure. In the context of thermo-electro-visco-elasticity, accounting for
these effects is crucial, as they influence the overall mechanical response, frictional
dissipation, and electro-thermal coupling in the system. For further discussions on
the physical interpretation of locking materials, we refer the reader to [5,21] and
the references therein.

The analysis is performed over a time interval [0,7], where T > 0, with time
derivatives indicated by dots (e.g., & = %). The focus is on thermo-electro-visco-
elastic materials with locking properties, without explicitly expressing the depen-
dence of various functions on the independent variables x € Q UT. The governing
laws of such materials are given as follows:

o(t) € de(u(t)) + Be(u(t)) — PTE(p(t)) — €O(t) + DL, e(ult)), (1.1)
D(t) € Z=(u(t)) + BE(p(t)) +90(t) + 01, E(o(t)), (1.2)

O(t) — div# (VO(t)) — ho(t) € Me(u)(t) — N B(p(t)) + 01, VO(t),  (1.3)

in which o is the stress tensor, u is the displacement field, ¢ represents the electric
potential field and 6 is the temperature field. Moreover, 0, : S¢ — QSd, oIy, :
L*(Q) — 2L%(@) and oI, : L*(Q) — 2L%(@) stand for the subdifferentials of the
indicator maps of the sets L1, Lo and L3, defined by

0 if eel,;,
ILi(Qae) =
+o0 if €¢L;.

The subsets L; C S¢, Ly C L?(Q) and Ly C L%(Q) define the locking constraints
and characterize the material properties. These sets can take various forms, as
explored in [5]. In this paper, we specifically focus on the case of perfectly locking
materials, where the sets L1, Lo, and L3 are given by

Ly ={e€S*:Qi(e) <0}, (1.4)
Ly = {¢ € L*(Q) : Q2(¥) <0}, (1.5)

nd
’ Ly ={0 € L*(Q) : Q3(0) < 0}. (1.6)

Here, the locking functions Q1 : S* = R, Qo : L?(2) — R, and Q3 : L?>(Q) — R are
convex, continuous, and the initial condition @;(0) < 0 for ¢ = 1,2, 3.
Mathematically, models describing thermo-electro-visco-elastic materials are rel-
atively recent advancements, as seen in works such as [20,43]. The first contribution
of this paper is the extension of these models to thermo-electro-visco-elastic contact
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problems involving locking materials, framed within the theory of hemivariational
inequalities. We establish both the existence and uniqueness of a solution for Sig-
norini’s contact problem with non-monotone boundary conditions defined by the
Clarke subdifferential. The second contribution is the introduction of a numerical
analysis of the hemivariational inequalities arising in locking thermo-electro-visco-
elastic contact problems. Specifically, we present a fully discrete numerical scheme,
where we apply the finite element method for spatial approximation and finite dif-
ferences for time derivatives, leading to the derivation of error estimates for the
approximate solutions. For further details on the numerical treatment of elastic
and electro-elastic contact problems, we refer the reader to [5,6,44,46] and refer-
ences therein.

The paper is structured as follows. Section 2 is dedicated to studying the ex-
istence and uniqueness of the unique solution to a contact problem for locking
materials. Additionally, we derive the variational formulation of this problem, ex-
pressed as a coupled system of three hemivariational inequalities and a parabolic
equation. Finally, in Section 3, we examine a fully discrete approximation of the
related model, and we derive error estimates and convergence results.

2. Problem description and weak formulation

In this section, we analyze a quasi-static contact problem for a nonlinear thermo-
electro-visco-elastic body with locking materials. The problem is governed by uni-
lateral constraints involving a multi-valued normal compliance function and a non-
monotone, slip-dependent multi-valued friction condition. We first outline the phys-
ical context and then present its classical variational-hemivariational formulation as
a system of three hemivariational inequalities. Finally, we investigate the existence
and uniqueness of weak solutions to this system.

We consider a thermo-visco-piezoelectric-locking material’s body occupying the
domain Q C R¢, where d = 2,3. The domain Q is assumed to be open, bounded,
and connected, with a Lipschitz boundary T' = 9€2. The body is subjected to body
forces fy, a volume free electric charge qg, a surface electric charge ¢, and a heat
source h,. Mechanically and electrically, it is constrained on I', and to describe
these constraints, we partition I' into three open, measurable parts I'y, I's, and T's
such that Ty UToUT3 = T with meas(I';) > 0. Furthermore, we decompose I'; UT,
into two open, measurable subsets ', and T, with meas(T,) > 0.

Throughout this paper, the indices 7, j, k range from 1 to d, the summation over
repeated indices is implied, and an index following a comma represents the partial
derivative with respect to the corresponding component of the variable. Let S¢
denote the space of second-order symmetric tensors on RY. We use the notation
“.7” and || - || to represent the inner product and the associated Euclidean norm on
both R? and S¢, defined as follows:

w-v=wuv;, v = (v-v)? Yu, v € RY,
o-T=0yTij, |7]|=(T- )2, Vo, es?

Let v denote the outward unit normal to I'. The normal and tangential components
of the displacement vector v € R% and the stress tensor o € S¢ on the boundary T
are given by:

vw=v-v, vy,=v—uvwv and o,=(ov) -V, 0;=0V—0,l.
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From the two orthogonality relations v,-v = 0 and o, -v = 0, we derive the following
useful result:

oV -V =0,0V,+0; Vr.

Thus, the classical formulation of our locking thermo-visco-piezoelectric contact
problem, is given by the following:

Problem (P). Find a displacement field u : Q x [0,T] — R%, a stress field o :
Ox[0,T] — S%, an electric potential field ¢ : Qx[0,T] — R, an electric displacement
field D : Q2 x [0, T] — R? and a temperature field 6 : Q x [0,T] — R that satisfy the
following conditions:

o(t) € de(u(t)) + Be(u(t)) — PTE(p(t)) — €O(t) + 0l e(u(t))  in Qx[0,T], (2.1)

D(t) € Pe(u(t)) + BE(p(t)) +90(t) + I, E(p(t)) in Qx[0,7], (2.2)
0(t) — divt (VO(t)) — ho(t) € Me(u)(t) — N E(p(t) + I, VO(E) in Qx[0,T], (2.3)
Divo(t) + fo(t) =0 in Qx[0,7], (2.4)
div D(t) — qo(t) = 0 in Qx[0,7], (2.5)
u(t) =0 on Ty x [0,T], (2.6)
e(t)=0 on T, x [0,7T], (2.7)
o(t) =0 on Ty x [0,T], (2.8)
ot)v = fa(t) on Ty x [0,7], (2.9)
D(t) v = q(t) on Ty x [0,7], (2.10)
qt) - v = ha(t) on 'y x [0,7], (2.11)
— 0, (t) € 84w (1)), —or(t) € jr(ur(t)) on Ty x [0,T], (2.12)
D(t) - v € he(uu(t)) dje(p(t) — vo) on T's x [0,T], (2.13)
— #(VO®)) - v € Bje(0(t)) on T3 x [0,T], (2.14)
w(0) =uo , 6(0) =6y in Q. (2.15)

The conditions (2.1)-(2.3) define the constitutive laws for thermo-electro-visco-
elastic materials with locking properties; further details can be found in [1,35,39,43].
Specifically, the tensors & and % represent the viscous and elastic components,
respectively. The piezoelectric and thermal expansion tensors are denoted by & and
@, respectively, while 8 and ¢ represent the electric permittivity and pyroelectric
tensors, respectively. Additionally, .2 denotes the thermal conductivity tensor,
M represents the thermo-mechanical coupling operator, and .4 stands for the
thermo-electric coupling vector field. The linearized strain tensor is given by e(u) =
(Vu + (Vu)T)/2, and the electric field by E(p) = —V¢. The transpose of the
piezoelectric tensor is denoted by 2T = (e;ix)” = (egij)-

The equilibrium equations for the stress and electric displacement fields are
formulated in (2.4)-(2.5), where Div and div denote divergence operators for ten-
sors and vector-valued functions, respectively. The boundary conditions describing
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mechanical, electrical, and thermal interactions are specified in (2.6)-(2.11). Fur-
thermore, the conditions (2.12) address the normal stress and normal velocity under
a non-monotone damped response and friction law, where j,, and j, are locally Lip-
schitz functions, and 9j, and Jj, denote their Clarke generalized gradients. The
regularized electrical contact condition on I's is given in (2.13), incorporating the
foundation’s electric potential ¢y and the prescribed functions he and j.. Finally,
heat exchange between the surface I's and the foundation is governed by (2.14),
while the initial conditions for displacement and temperature are outlined in (2.15).

Remark 2.1 ( [13-15,48]). This remark provides an overview of two fundamen-
tal notions in nonsmooth analysis: the convex subgradient and Clarke subgradient.
These concepts are crucial in various applications, particularly in contact problems,
where hemivariational and variational methods are often required to handle uni-
lateral constraints and frictional effects. The convex subgradient is central to the
study of convex functions, offering a natural extension of the gradient for nondif-
ferentiable cases. Given a convex function f : X — R, its convex subdifferential at
a point z € X is the set

Of(x)={ceX*; fly)>fl@)+(y—1x), Vye X}

This set characterizes affine functions that provide global lower bounds for f, en-
suring that f remains convex in a generalized sense. The convex subdifferential
has a key role in variational inequalities and optimization problems, particularly in
contact mechanics where energy functionals often exhibit convexity.

The Clarke subgradient, on the other hand, extends the notion of convex sub-
gradients to nonsmooth, possibly nonconvex functions. Given a locally Lipschitz
function j : X — R, its Clarke subdifferential at a point v € X is defined as

9j(u) = {€ € X5 j°(wv) = (§v), Vve X},
where j°(u;v) is the Clarke directional derivative of j at v € X in the direction
v € X, given by
0 : J(w+ Av) — j(w)
7 (w;v) := limsup .

A—=01T, w—u A

Unlike the convex subgradient, the Clarke subgradient accounts for nonsmooth and
nonconvex behaviors, making it a powerful tool in quasidifferentiability, differen-
tial inclusions, and nonsmooth mechanics. In contact problems, it is particularly
useful for handling friction laws, where discontinuities in tangential forces require a
more general subdifferential framework. These two notions provide complementary
perspectives in nonsmooth analysis, enabling a rigorous formulation of variational
principles and optimality conditions in contact mechanics and beyond.

To derive the variational-hemivariational formulation of Problem (P), we first
introduce essential definitions and notations. We consider the following function

spaces:
H=1L*Q)¢ Z=H'Q)Y 2Z,=L*Q),

H={r=(rj); 1 =71 € L*(Q)}, Hi={oc€H;Dive € H}.

These are real Hilbert spaces, endowed with the following inner products and asso-
ciated norms:

(u,0) 51 = / wivsdz,  (u,0)7 = (u,0) + (£(w), £(0))an,
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(o,7)y = / 0T dr, (0,7)y, = (0,7)n + (Dive,Divr)y.
Q

Based on the boundary conditions, we also define the following corresponding vari-
ational subspaces:

VZ{UGHl(Q>d;U=0 on Ty}, W:{wEHl(Q);Q/):O on T},

Q={9€H1(Q);9:0 on Fl}.

These subspaces are Hilbert spaces for the following Euclidean structures:

(w,0)y = (e(u), e, Nully = (wu)y/?, Vu,veV, (2.16)
(. 0)w = (Vo,V)u, llellw = (.ol Yo, v eW, (2.17)

and
0.m)q = (VO, V), [I0llg=(0.0)g% Y0, neQ. (2.18)

Furthermore, we define the following locking constraint spaces:
Vi={veV; e(v(z) €L ae z€Q},

Wy={YeW; E(z)) € Ly ae. z€},

and
Qi={neQ; Vn(z) € L3 ae. zcQ}.

Since V is a closed subspace of Z and meas(T'1) > 0, Korn’s inequality ensures the
existence of a nonnegative constant ¢y, depending only on 2 and I'y, such that

[vllz < e lle()ll#, VveV. (2.19)

Thus, the two norms || - |1 and || - || are equivalent on V', ensuring that (V.|| - ||v)
forms a real Hilbert space. Additionally, by the Sobolev trace theorem, there exists
a nonnegative constant cg, depending only on 2, I's, and I'y, such that

vl 2y < collvllv, YoveV. (2.20)

Moreover, since meas(I'y) > 0, the Friedrichs-Poincaré inequality holds, guarantee-
ing the existence of a nonnegative constant cp that depends only on €2 and ', such
that

IVl 1) < cr [V, Ve W. (2.21)

From the relations (2.17) and (2.21), the norms || - [[w and || - || g1(q) are equivalent
on W, ensuring that (W, || - ||w) forms a real Hilbert space. Furthermore, by the
Sobolev trace theorem, there exists a nonnegative constant ¢; that depends on €2,
Ty, and I's such that

1€llL2(rg) < erll€llw, VEEW. (2.22)

Similarly, since meas(I';) > 0, the Friedrichs-Poincaré inequality ensures the exis-
tence of a nonnegative constant cg that depends only on € and I'y, such that

10l ey < cr VO, YO €Q. (2.23)
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Then, recalling (2.18) and (2.23), the norms || - |[¢ and || - |[g1(q) are equivalent
on @, guaranteeing that (@, || - ||g) forms a real Hilbert space. Additionally, the
Sobolev trace theorem implies that there exists a constant ¢y > 0 depending on €2,

I'y, and I's such that
[nllc2rs) < c2lnlle, Vn € Q.

Starting now from the constitutive law (2.1), we derive

o(u(t)) = e((t)) + Be(u(t)) — PTE(p(t)) — €O(t) + ((u),

where ((u) € 0Ip,e(u(t)) in Q.
Consequently, for all u, v € V4, we infer the following inequalities:

(C(ut),e(v) —e(u(t))) < Ir, (e(v)) — Ir, (e(u(t))) < 0.
Thus, from the above inequalities, we obtain
(o (u(t)), e(v) — e(u(t))n
< (@e(ult)) + Be(u(t)) — PTE(p(t)) — €O(t),e(v) — e(u(t)))n-
Similarly, by using the constitutive law (2.2), we write
D(t) = Ze(u(t)) + BE(p(t)) +0(t) + p(e(t)),
where p(p(t)) € I, E(p(t)) in Q.

Thus, for all ¢, ¥ € W7, we deduce that

{p(p(1), E(¥) = E(p(t))) < I, (E()) — I, (E(#(t))) <0,
which implies that for all ¢, ¥ € W7, we have

(D), Vot)~Veb(1)) oy < (Pelult) +BE(p()+99(1), Vo V) 10 g
Now, by utilizing the constitutive law (2.3), we write
0(t) = div A (VO(t))Me(u)(t) — A E(p(t)) + ho(t) + g(6(t)),
where g¢(6(t)) € IpVO(t) in Q.
Therefore, for all 8, n € Q1, we conclude that
(9(n), V0 —Vn) < Ip(VO) — Ip(Vn) <0,

leading subsequently, to the following inequality:

(6. V0= V1) gy < (div ot (V) + M e(u) + A E(p) +ho, VI =Vn) 1 o

(2.24)

(2.25)

(2.26)

. (2.27)

(2.28)

. (2:29)

At this step, the following assumptions are required to analyze the solvability of

Problem (P).

(H1) The viscous stress tensor & : Q x S — S? satisfies
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(a) for all ¢ € S¢, the mapping <7 (-, ¢) is measurable on €;
(b) there exists L, > 0 such that for all £1, g5 € S, a.e. 2 € Q, we have

1 (z,61) — o (x,€2)[| < Larller —ea; (2.30)
(c) there exists a,y > 0 such that for all £1, e5 € S, a.e. z € Q, we have
(o (z,61) — o (x,€9)) - (61 — £2) > vy [lo1 — 2] (2.31)
(d) for all z € Q, the condition o7 (x,0) = 0 holds.

(H2) The elastic stress tensor % : Q x S — S? satisfies
(a) for all € € S?, the mapping %(-, ) is measurable on €);

(b) there exists Lg > 0 such that for all 1, &5 € S and = € Q, we have
[|#(z,e1) — B(z,e2)|| < Lagller — e2; (2.32)
(¢) for all z € Q, the condition H(x,0) = 0 holds.

(Hs3) The piezoelectric tensor & = (e;;x) : Q x S¢ — RY verifies
(a) €ijk € LOO(Q);

(b) there exists Lg > 0 such that for all £1, e € S and z € 2, we have
|2 (x,e1) — P(x,p2,€2)|| < Laller — e2lf; (2.33)
(¢) for all z € , the condition & (z,0) = 0 holds.
(H4) The electrical permittivity tensor 8 = (8;;) : 2 x R? — R? verifies
(a) Bij = Bjs € L=(Q);
(b) there exists Lg > 0 such that for all &, & € R? and z € €, we have
18(x, &) — Bz, &) < Lp [1§1 — &2lf; (2.34)

(c) there exists ag > 0 such that for all &, & € R? and x € Q, we have

(B(z,&1) — B(x,£2)) - (&1 — &) > ag |6 — &% (2.35)
(d) for all z € Q, the condition (x,0) = 0 holds.

(Hs) The functions j, : T3 x R = R, j; : T3 x R - R and j,, jo: s x R = R
satisfy

(I)(a) for all r € R, the mapping j,(-,r) is measurable on I's;
(b) for all z € T'3, the mapping j,(z, -) is locally Lipschitz continuous on R;

(c) there exist cq,, ¢1, > 0 such that for all r € R and = € I's, we have
|c'9jl,(x,r)| < cop +c1v |7‘|; (236)
(d) there exists cj, > 0 such that for all 7, 7o € R and = € I's, we have

Jo(@,risre — 1) + o (@, rasr — r2) < agy [r — o (2.37)
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(IT)(a) for all ¢ € R?, the mapping j, (-, £) is measurable on I's;
(b) for all z € T'g, the mapping j.(x,-) is locally Lipschitz continuous on
R%;
(c) there exist cor, c1r > 0 such that for all ¢ € R? and z € I's, we have

1077 (2, )| < cor + 17 [1€]|ra; (2.38)
(d) there exists a;r > 0 such that for all {1, & € R¢ and x € T's, we have
3o, 1560 — &) + 52, £2;61 — &) < e |61 — ol Fa- (2-39)

(ITI)(a) for all r € R, the mapping j.(-,r) is measurable on I's;
(b) for all z € T's, the mapping j.(z, -) is locally Lipschitz continuous on R;

c¢)) there exist cge, ¢1 > 0 such that for all r € R and x € '3, we have
(c) 0e 3

|0Fe(z, )| < coe + c1e|7]; (2.40)

(d)) there exists aje > 0 such that for all 7, ro € R and x € I's, we have

jg(x,rl; ro —11) +jg(x,7“2;r1 —712) < Qe |y — 7“2|2. (2.41)

(IV)(a) for all r € R, the map jg(-,7) is measurable on I's;
(b) for all z € I's, the mapping jg(z, -) is locally Lipschitz continuous on R;

(c) there exist cog, c19 > 0 such that for all r € R and z € I's, we have
|070(z,7)] < cop + c1o|7|; (2.42)
(d) there exists ajp > 0 such that for all 1, ro € R and = € I'3, we have
Jo(@,miyme — 1) + o (z, e — 1) < ajg |rr — 1) (2.43)
(Hg) The function h, : I's x R — R satisfies the following conditions
(a) for all r € R, the mapping h.(-,r) is measurable on I's;
(b) for all z € I's, the mapping he(z, -) is continuous on R;
(c) there exists h. > 0 such that for all r € R and = € T's, we have
0 < he(z,7) < he. (2.44)
(H7) The thermal expansion tensor € : Q x R — S? verifies
(a) for all r € R, the mapping (-, ) is measurable on €;
(b) there exists Lg > 0 such that for all 71, ro € R and x € 2, we have

€ (x,71) — € (z,r2)|| < Leg |11 — 725 (2.45)
(¢) for all z € Q, the condition %' (x,0) = 0 holds.

(Hg) The thermo-mechanical coupling operator .# : 2 x R? — R verifies
(a) for all £ € RY, one has . (-,€) € L*°(Q);
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(b) there exists L_4 > 0 such that for all &1, & € R? and 2 € Q, we have

| (2, 61) — A (2, &) < Lalés — &l (2.46)
(Hg) The thermo-electrical coupling vector field .4 : Q x R? — R satisfies
(a) for all £ € R?, one has A/ (-, &) € L>®(Q);
(b) there exists L_4 > 0 such that for all &, & € R? and = € Q, we have
A (@, 61) = A (2,&2) | < Loy (1€ — &all; (2.47)
(¢) for all z € §, the condition .4 (z,0) = 0 holds.
(H10) The pyroelectric tensor & : Q x R — R? verifies
(a) for all r € R, one has 4(-,r) € L>=(£);
(b) there exists Ly > 0 such that for all 71, 72 € R and x € €2, we have

19 (z,r1) =Y (,r2)| < Lo [r1 — 72]. (2.48)

(H11) The thermal conductivity tensor ¢ : Q x R? — R? satisfies
(a) for all £ € R?, the map # (-, &) is measurable on €;
(b) there exists L > 0 such that for all £;, & € RY and o € Q, we have
[ (2,&1) — A (2,&)]] < Lo 161 — &l; (2.49)

(c) there exists . > 0 such that for all &1, & € R? and = € €2, we have

(A (2,&1) = H (2,€2)) - (61— &2) > ax||&r — &% (2.50)
(d) for all z € Q, the condition ¢ (x,0) = 0.

(H12) The forces, tractions, electrical charges, thermal source densities and the
initial data satisfy

(7’) fO S LZ(Q)d, f2 S LQ(F2)d» q0, hO € L2(Q)7 b € Lz(Fb)a hn S
L*(Ty);

(’LZ) Yo € LOO(F3), Ug € ‘/Y, 90 S Q

(H13) The subsets Ly C S¢, Ly C L?(Q) and L3 C L?(f2) are nonempty closed
convex such that
Ose € L1, Op2q) € LaN Ls.

By applying Riesz’s representation theorem, we define f € V, g € W, and h € Q
as follows:

(fsv)v = (fo,v)L2()a + (f2, V) L2(ryye, YV EV, (2.51)
(@, V)w = (0, V) r2() — (@ V) 22(r,), Y EW, (2.52)
(h,&)q = (ho,§)r2() — (hn, €) 12(ry), VE € Q. (2.53)
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Then, using standard arguments, the variational formulation of Problem (P) is
given by the following:

Problem (PV). Find a displacement u : [0,T] — Vi, an electric potential ¢ :
[0,T] — W1 and a temperature 0 : [0,T] — Q1 such that:

<ﬂ's(u( e(v—ul(t >7—t < () + PTVp(t) — €0(t),e(v — u(t))>H
T / J(8); vy — (1)) + 12 (8); 07 — 11r(1))) da (2.54)
s
> (f(t),v —a(t)),, YveW,
(BV(p(t) = Ze(u(t) —90(t), V(¢ — ¢(t)));,
L he(u(t)) j¢ (9 (t) = po; ¥ — @(t)) da (2.55)

> (g0 — (1)), V€W,
(0(), A = 0()),, + (AVO(), VA = 0(t))),,
— (Meu(t)) — A Tp(t), A~ (1)), + /F J20(1); A — 0(1)) da (2.56)

> (h(t), A= 0(t) . V1€ Q.

Building on these considerations, we establish the following existence and unique-
ness result.

Theorem 2.1. Assume that hypotheses (Hi)-(His) and the following smallness
conditions hold.

Qo > cf (o), + aj, )y/meas(T's), (2.57)
ag > heay, cd /meas(T'3), (2.58)
ay — ciag,\/meas(T3) > L 4T/2. (2.59)

Then, Problem (PV) has a unique solution.

The proof of this theorem follows the same approach as in [20, Theorem 2.1],
based on the following fixed-point result (see [39, Lemma 1] or [43, Lemma 2.1]).

Lemma 2.1. Let (X, |- ||x) be a Banach space and A : L*(0,T; X) — L?(0,T; X)
be an operator satisfying, for some nonnegative constant ¢ > 0, the following con-
dition:

[[(An)(t) — (An2)(t ||X<c/ 1) — m2(5)|| 5 ds, ¥, m2 € L2(0,T; X).

Then, A admits a unique fived point, i.e.; there exists a unique n* € L*(0,T;X)
such that An* = n*.

It is also based on results from the theory of hemivariational inequalities, namely
[15, Theorem 6.3.73], [31, Theorem 7], and [33, Lemma 9], [35, Theorem 8.6], [39,
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Lemma 11] for the existence and uniqueness analysis, as well as [34, Corollary 3.1]
and [34, Corollary 3.2] for the estimates.

Remark 2.2. It is important to note that the solvability of Problem (PV) is local
in time, as the smallness condition (2.59) imposes a restriction on the time interval
T. Therefore, the existence and uniqueness of a solution are guaranteed only for a
sufficiently small time interval. A global solution would require further analysis or
additional assumptions beyond those presented in this work.

3. Numerical analysis of Problem (P)

In this section, we introduce a fully discrete approach for solving Problem (PV)
and provide an error estimate for the approximate solution. We first use the finite
difference method to approximate the function’s derivatives. Specifically, we parti-
tion the interval [0, 7] uniformly as 0 = ¢ty < t; < ... < ty = T, with a time step
size k = T/N. Then, for any continuous function v, we define

Up — Un—1

k

V(tn) = Up, Wy = 0v, =

We also apply the finite element method for spatial discretization. For that, let
be a polygonal domain, and consider a regular family of partitions {7"} of € into
triangles, aligned with the boundary partition 92 into I' = I'y U IT's U I's, where
I'yul', =T, UTIy. Here, h > 0 represents the discretization parameter, and c is
a generic positive constant independent of the discretization parameters h and k.
To approximate the spaces V, W, and @, we introduce the following linear finite
element spaces corresponding to 7"

vh = {vh cC(Q); UlhT € P (T)¢ for T€T" and v" =0 on I},

Wt ={y" € C(Q); ¢l ePy(T)" for T€T", and ¢" =0 on T4},
Q"={0"eC@); o eP(T) for T€T", and 6" =0 on I'1}.

We also define the following subspaces approximating the locking constraints sub-
sets:
Vi ={v"eV; e("(2) € L1 ae. z€Q},

W = {wh eW; E®@"(z)) € Ly ae. z€Q},
Qt={0"ecQ; V()€ Ly ac. z€Q}.

Furthermore, we introduce the following piecewise constant finite element space for
the stress field:
HI = {Th eH; Tl}; e R for T e Th}.

Finally, let ul* = uf € V}* and 6% = 6 € Q" be appropriate approximation of the
initiale conditions uy and 6y, respectively, meaning that they satisfy:

luo = ugllvy < ch . 160 —65lq < ch. (3.1)
Thus, the discrete formulation for Problem (PV) is presented as follows.

Problem (PVyy). Find a displacement {ul*}N_ c V', an electric potential

n Jn=0
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{pFYN_ o c Wl and a temperature {00F}N_, € Q% such that for alln € {1,..N},
one has

(e(wyh), (v —wph)),, + (Be(uy®) + PTVEE —COLF (v —wyt))

H
4 / (O o, — wh) + 10(whks ol — wl®)) da
3

h hk h h
> frs vy —wi®), Yup e V",

(3.2)
(BT = Pe(un®) = 90,7,V (¥ — 015))y,
(3.3)
[ heul) o8 — ool — i) da > (= )y Yl €W,
s
hk \h _ phk hk h _ ghk
(861F N — 01F) 4 (VO V(L — 1))
= (M) + NV A = 008 )+ / 3 (037 X — 037 ) da (34)
s
>(hns An = 035 ) 5000 VAL € QF,
ub® =l and  O5F =0} (3.5)
Here, the sequences {u"*}N_  and {w"*}]_ are related by the following relations:
wh* = §ul* and w* :uquka?k (n=1,..,N). (3.6)

j=1

Under the assumptions (#1)-(H13), and applying reasoning similar to that used for
Problem (PV), we show that Problem (PVy,y) has a unique solution (u**, oh* k) ¢
Vi x Wh x Q". Next, the error estimates will be derived through the applica-
tion of the well known Céa inequalities. Before stating the result in the theorem
below, we strengthen hypothesis (#5) by assuming that the function j,(z,), for
p € {v,7,e,0}, is uniformly (globally) Lipschitz continuous rather than merely
locally Lipschitz. With this additional assumption, the corresponding Lipschitz
constants can be considered independent of .

Theorem 3.1. Given that the assumptions of Theorem 2.1 hold, along with the
condition (3.1), let (u,p,0) be the solution to Problem (PV), and (ul* phk k)
the solution to Problem (PVnk). Then, for each n = 1,..,N, the following error
estimate holds.

max {Jfwn = wiH 5+ = X3+ lon — @b R + 100 — 02412 }

< e max {llwa = b3 + o — VRl + lwn — ehllzay) + lon — Yl 2y |

1<n<
N N—-1
e S N80 = N2 4 1180 — Mellzqra) + ¢ S0 180 — ML) = (Bagr — ALy
n=1 n=1

+c([100— 05115 + 1100 = AM) + ¢ (? + K7).
(3.7)
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Proof. We first write the following relation

(e(wn) — e(wy?), e(wn —wy"))
= (e(wn) — Fe(wy"), e(wn — v3))u + (Fe(wn), (v —wn))u (3-8)

+ (o e(wn), e(wn — wi*))g + (Fe(w®), e(wy®) —e(vn)a.
We further substitute t = t,, and v = w!* into the inequality (2.54) to obtain

(oe(wn),e(wn — wzk»?-l
< (Be(un), e(Wh* — wy))ag + (P Von, (Wi —wn))p — (€0n, (Wi —wn))n
+ /F3 (]B(wnu, wﬁﬁ — W) +j2(wm—§ U’Zﬁ - an)) da + <fna Wn — wzk>v~
(3.9)

Then, by referencing the condition (3.2), the previous expression leads to

(e e(wp®), e(wp® —vp))n

n n

< (Be(uyh),e(vyy — wiF))w + (PTVE (v — W) — (€O e(v)y — wi))

n

4 /F (0wl ol — whk) + 0wtk of, — whh)) da + (o, wl® — ol .
3

(3.10)
Next, we apply hypothesis (2.31) along with inequalities (3.8)-(3.10) to infer

e

< e(wn) — Fe(wp®), e(wn — vp))n + (Fe(wn), e(vy — wn))n
+ (s wn = vm)v + (Be(un), e(wy —wn))a + (Be(un®), e(vy —wn®))n
+(PTVn,e(wy —wa)) +(PTVERF e — wi?)) e — (€00, e(wn® — wn))n

n n

— L (0l = ot [ (0wl =) + wlsol, — wl)) da
3

[ it = )+ Btk ol — wlh)) do
s
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Then, we can deduce that
o —
< (e(wn) — A e(wn®), e(wn — o)) + (Fe(wn), (v — wn))u
+(Be(up®), e (v — wn))w + (Be(un) — Ble(uy), e(wy® —wn))u
+(PTVpn = PTG e(wn® —wn))a + (PTG (v — wn))a

— (G0, — GO c(wh* —wy,)) — (GO, (0]} — W) + (o wn — V)
+ /F (70t W — 1) + O™ 08, — wl%)) da
3
+ /F (70w I — ) + 2w 08, — whh)) da
3
+ / (O (wh; v — w,) da+ / Otk ot — w,,) da.
T3 I's

Subsequently, we utilize (2.30), (2.32), (2.33), (2.37), (2.39), and (2.45) to establish
r |[wn — w3
< Loy |lwn — wi¥llv wn — v llv
+ L on = nFllw (lwn — wiFllv + lwn —vpllv)
+ Lag ||un — up®llv (o —wi*llv + [lwa = v} llv) + S1(un, on, 0n)
+11(2n* @y n) + Lo [0 = 03% @ (lwn = willv + lwn = vpllv)
+ g /meas(Ts) (ajy + ajr) [wn — wi |7,
where the terms S; and I; are defined as follows:
S1(tn; on, 0n)
= (A e(wn), (V] —wp))p + (Be(uy), (v —wp))n (3.11)
(P Vn,e(v)y — wi))p = (€n, (vy, — W) + {faswn —v3)v,

and
L (W w,, 0f) = / JO(wl®; ot — w,) da + / Pk o — w,,)da.  (3.12)
I's s

We recall that for almost every x € T's, the maps j,(x,-) and j.(x,-) are assumed
to be uniformly Lipschitz continuous. Then, their Lipschitz constants L; (5., and
L;j (x,) are independent of x. Consequently, there exists ¢ > 0 independent of x,

such that

jz/( lei’v’ZV - wTW) <c H’U)n - UZHLZ(FL%)’
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and

J7 (g e = wnr) < ¢ flwn — 0} |l 2(ry).

Therefore, we have
L (W wy, o) < e flwn — 0| L2(ry)- (3.13)
Next, by multiplying the equation (2.4) with an arbitrary element v € V;, we obtain
/ ov-e(v)da — / f-vda= / o-vda and ove L*(T3;RY).
Q Q I's

Therefore, it can be concluded that the following inequalities hold.

S1(Un,y @n, On) = / ov- (v —w,)da

I's
<cloll [wn = vpll 2y (3.14)
<ec ||wn — UZ||L2(F3)_

Moreover, by employing the Cauchy inequality for € > 0, we can derive
(e — cjv/mes(Ts) (o + ajr) — 5e) lwn — wiF|[}

<e{llwn = vnlly+llun = un®lI%+ 10 —2n* 3 + 10 = 03511G + llwn — vpllzz (g }-

(3.15)
Hence, using similar reasoning as in [9], we conclude
HunfquHf/ <c(h®+ k%) +ck Zle — w3, (3.16)
i=1
Subsequently, by combining the inequalities (3.15) and (3.16), we infer that
[[wn — wzk”%/
< e {llwn = vill3 + llon — on 5 + 100 — 035118 + [lwn — villz2ers) } (3.17)

+c (h2 + k2) + ck Z |wi — wi*||2.
i=1

Next, by applying the Gronwall inequality to (3.17), we derive
lwn — i[5
< e{llwn = oplly + llen — RF 1% + 100 = 03513 + lwn — villzers) ) (3.18)
+c(h* +&?).

We now combine the relations (3.16) and (3.18) to obtain a constant ¢ > 0 such
that

lwn = wp® I} + llun = u* |3

< e {llwn — ol + lon = ey + 160 = 0381 + llwm = willze)} (g 1)

n
e (h®+ 1) + ek Y (llws = w3+ lu —ul*[1}).
=1
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For simplicity of notation, let us assume
en = [lwn — wi |13 + [lun — i3, (3.20)

gn = [[wn — UZH%/ + [lon — @Zk”%/V + 1605 — HZng)

(3.21)
+ [lwn = vpll 2, + B2+ K.
Therefore, there exists a nonnegative constant ¢ such that
n
en<cgn+c Zej. (3.22)

j=1
Therefore, upon applying the Gronwall inequality once more, we obtain
lwn = w1 + llun —up® I3
< e {llwn = vplly + llon — onF I3 + 100 — 351G + llwn — vnllzas)}  (3.23)
+c(h* + K?).
Furthermore, based on the assumption (2.35), it follows that
aglien — @iF Iy < (BVen — BV, Vien = n))a + (BVen, VUL — ¢n))n

+ BV, V(pn — @) gy + (BVEIF, W (ohF — )y
(3.24)

By choosing t = t,, and ¢ = ¥ in the relation (2.55), we find
(BVon, V(pn = on")u
<A Pe(un), V(on — o2F)) 3 + (900, V (on — 01F)) 2 (3.25)

+/ he(tny) 52 (0n — 05 0" — on) da+ (gn, on — O0F )y
I's

Referring next to the inequality (3.3), we derive

BV, Y (eh" =)
<(Pe(u®), V(e — o)+ (90,7, V(W5 — i) (3.26)
b [ hul) S0 — o — by da + (ans b — 0,

s

Now, by combining the inequalities (3.24) to (3.26), we can infer that

agllon — |12
< (BVn — BVEEF Y (on — 0 + (BVon, V(U — on))n
—(Pe(un), V(el" — 0n))a — (Pe(ulF), V(W) — 00 ) — (G0, V(0hF — on))u
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(S0 T — o))+ /F T — 003 "% — on) da

+ [ Rl = il = e dat (gnvion = ¥y
s
< (BVon = BV, V(pn — ¥n))a + (BV0n, V(U] — on))u
+(Pe(un) — Pe(uF), V(eh* — on))u + (Pe(ulh), Vil — on))n
+ (G0, —G03* V(0 — @n))a + (GO NV (U = 0n)) + (Gns o — Vdw
+ /m he (32(on = @os PR — o) + 52 (00F = @oi n — 1")
+52(0h% — pos ¥l — ) da.
We now apply inequalities (2.33), (2.34), (2.41), and (2.48) to deduce
agllen — erFlly
< Lollon = @i lwlion = ¥nllw + Lollun — uiflvlien — onllw
+ Lo |lun — ulF|lvl|¥h — @nllw + Ly 100 — 02" lollon — @i lw
+ Lg|0, — 00" lollvh — enllw + heaj G llen — €3* I

+ SZ(um Pns on) + IZ(‘PZka Pns wn)v
where the quantities Sy and I are given by
S2(Uns Pn, On) = <ﬁV‘PmV(¢Z —on))H — <<@6(un)av(¢ﬁ —Pn))u

(3.27)
- <g9nav(w7}i - @n))?—l + <Qna§0n - QZ}Z>W7

L (@l o, tn) = A he §¢ (@h" — 0; 9l — o) da. (3.28)
3

On the other hand, multiplying (2.5) by an arbitrary element 1" € Wy, yields
[pvwh—ende - [ w@h-ede

Ty

s

Remembering the condition D - v € L%(0,T; L?(I'3)), we find that
SZ(“na@naen) < CH(Pn 71/}ZHL2(F3)' (329)

The mapping j.(z,-) is assumed to be uniformly Lipschitz continuous, then its
Lipschitz constant, denoted by ¢, is independent of x. Consequently, we can write

IQ(cpfzkaSDnﬂ/}n) < CHSDn 7,1/}Z||L2(F3)' (330)

Thus, by applying the Cauchy inequality, we derive the following estimate

hk||2
Pn — @
ion = 22 iy .

< c{llen = vl + lun = un®I% + 100 = 03515 + llon = Urllra g }-
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Furthermore, by employing the condition (2.50), we infer that
a||0n — O0F NG < (A VO, — VO V(0 — No)gy + (V0 V(AL — 0,))n

F (A0, V(O — O1F )3 + (HVORF V(0% — N2y
(3.32)

Next, by substituting ¢ = t,, and A = 6% into the inequality (2.56), we obtain
<<%/V9n7 V(Gn - 02k>’H

< (O, OFF — O3 — (M (), 00% — 0,)30 + (N Vi, 00F — 0,,)3, (3.33)

+/ 738 (0n; 02% — 0,,) da + (hy, 0, — 0"%) .

I

Moreover, it follows from the inequality (3.4) that
(VO (05F = A0

< (6ORF N — O8F gy — (A e(ulF), AL — 01F) (3.34)

LT = 0 [ RSN — 035 (03— N
s

Thus, by combining the preceding inequalities, we deduce
s |10 — 03" 115
(AN, — HVOE N0, — N Vg + (Y0, V(A —0,))n
+ (860, — 5O1F 0"k — 0,V 5, + (507F N—0,) 4

n Jo'n

— (M e(uy) — Me(ul®), 00F — 0,V 5 + (Me(uF), N0 —0,) 5

n

— NV py — NV O 0, )0+ (AN Vo, NI — 015,

rvn

+ (P, 0 — N1V +/ G906k N\ —9,) da
I's

b 800308 = 0.+ 3316136, — 611) da
I's
Therefore, we can obtain the following estimate
0t || — 038 |7, + (00 — 061", 6, — 01
<c{l16n = M21E + lun — wiFl3 + lon — @R 115} (3.35)

+ <602k - 69n; )\»Z - 9”>'H + SS(una Pn, en) + IS(eﬁka 9717 AZ)a
where the terms S3 and I3 are given as follows:

53(U7u Pn, en) = <9n> AZ - 9n>7—£ + <c%/v‘9n7 V(/\Z - 9n)>7—£
— (M (), Nl = O0n) 2 + (N Vpn, AL —0,)% (3.36)

+ <hn7 9n - )\Z>H’
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I3(00%, 6, M%) :/ Jo (OnF; Xl — 6,,) da. (3.37)
I's

Analogously to the relation (3.14), we can obtain
/ AN -v( A\ —6,) dr — / ho(A! —6,,) dx
Q Q

+/ (AP —0,)dT = [ VO -vw(\'—0,))dl, VA e Qb
FQ FS

Then, since #'V6 -v € L*(0,T; L?('3)), it yields that
S3(tn, on, ) < ¢ |00 = A%l oy - (3.38)

We recall that jg(z,-) is assumed to be uniformly Lipschitz continuous a.e. on
x € 'z, so that its Lipschitz constant ¢ > 0 is independent of x. Consequently, the
following estimate holds.

I3(0,%,0,770) < ¢[00 = A%l 2y - (3.39)
We then combine the inequalities (3.35), (3.38), and (3.39) to find
[0 — O2F1|3) + (60, — 661%,6, — 01F) 1)
< e {10 = NI + = w2513 + i — 2513 + 10 = Mol e} (340)
+ (800 — 60, Ak — Op) .
Next, the identity 2(a — b,a) = |la — b||? + ||a||* — ||b]|*> for @ = 6,, — 0% and

b=0,_1— 0" implies

o (160 = 62515, = 181 — 03, 7)< (36, — d6¥,0, — 62%) (3.41)

L)’

Then, by combining the inequalities (3.40) and (3.41), the following upper bound
yields:

2 1 2 2
o ||0n = 027 + 57 (102 = 025l = 101 — 6224 [15)
2 2 2
< C{H‘gn - )‘ZHQ + H“" - “ZkHV + ||90" - SDzkHQ + Han - )‘Z||L2(ra)} (3.42)
+ (000% — 66, Ak — 0,,).,,.

Replacing n with j in the above relation and summing from j = 1 to n, we obtain

16, — 01113 + 2k o > 110, — O1F (13,

j=1

<k Do {1165 = MG+ lluy — af IS + lles — @3 I1G + 187 = M ll2rgy b (3.43)
j=1

+2k Y (801% — 50, N —0,),, + |60 93”2.
j=1
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Following the same approach as in [4], we can derive the following upper bound

2kz<50;k 505, X —0;),,

< {110 = 031G + 100 = X311% + 1160 — 65115 + 1161 — X115} (3.44)

k n—1 9 T
5 20— 0o+ Z |0 = X)) = O51 = X0 20
j=1 j=1

For convenience, we consider the following notations

en = [0n — ORFIIZ + 2k > 116; — 07513, (3.45)
j=1
gn =k Z {116; = M IE + llws — ul™ 15 + llo; — 351G + 105 — Al L2(rs) }
Z 16 A (3.46)
k (6+1 — Aj+1 L2(Q)

2 2
+ 1160 = 511G + llex = MG + 16 = AillG

Thus, the preceding upper bounds imply to the existence of a constant ¢ > 0 such
that

n
en <cgn+c Z ej. (3.47)
j=1

We then apply the Gronwall inequality to establish that

[0 = 61l + D116 — 03l
j=1

< ck S {1105 = NI + Ny — w13 + oy — 212 + 1105 = Mellpag ) (3.48)

e 316 = A = Bra = Nian)llzegay + 1160 = 881l + 100 = M
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Based on the previous estimates (3.16), (3.18), and (3.48), we conclude
lwn = wiFI + llun = unfIl + llen — o015y + 102 — 03711
< c{llwn — 21 + lon — 813 + llwn — vhll oy + lon — iy
n n—1
) 105 = A E + 105 = M llzay) + D0 = M) = (0541 — M) 1220

j=1

j=1
n

> (lwy = w1 + lluy — @G5 + ey — €3 11G + 165 — 67*113)
j=1

+ 1160 = 6513 + 161 — X113 } + e (h2 + k).

(3.49)
Let us then define the following two quantities:
en = |lwn —wiF |3 + llun — iP5 + lon — eRF I + 110, — 03713, (3.50)
and
gn = llwn = opll% + llon = Ul + llwa — i llL2rg) + llon — ¥Rl L2y
n n—1
+ 3105 = NG + 165 = N lp2a) + D 1105 = A)) = (6541 = Ay ll72(0)
j=1 j=1
+ 1160 = 05117 + 101 = ALIG + h? + k2,
(3.51)

So, by using these notations, the inequality (3.49) can be rewritten as follows:

en <cgn+ec Zej. (3.52)

j=

Thus, applying the Gronwall inequality to the preceding result, we infer that

|wy, — wzk”%/ + [Jun — UZkll%/ + [lon — ‘/’ZkH%/V + 1|00 — QZkH?Q

< C{Hwn —oplI% + e — Unlliy + llwn — vl L2 sy + len — DhllL2 )
n n—1
) 10 = NG + 105 = M llzae) + D05 = M) = (0541 = M) 1220
=1 =1

+ 1160 — O51% + 18 = ALIIZ | + c(n? + K2).
(3.53)

Finally, by combining (3.23) and (3.53), we derive the estimate (3.7), which validates
Theorem 3.1.
O]
Using the finite element approximation (see [1,4-6, 11,23, 25]), the following
error estimate holds.
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Corollary 3.1. Under the conditions of Theorem 2.1, along with the following
regularities

u € L*([0,T]; V1) N CH[0,T]; H*(Q)), w € C([0,T]; H*(Q)) N L*([0, T); H*(T3)),

¢ € CU0,T) H(R)), 0 € C0,T): BAQ)NL0,T; HA(Ts)), 6 € L2(0,T: HA(%)),
the following first order error estimate is obtained.

_ phk . hk
(ax fwn —wplv + max lun —uply
(3.54)

hk hk
_ — <
+121na§Nll<pn ©n ||W+121na§XNH0n 0"l < c(h+k)

for some constant ¢ independent of the parameters h and k.

We now outline the key steps in the proof of this corollary. First, let H{}wn,
H(l,un, H’Iﬁvapn and Hg@n denote the finite element interpolants of wy,, u,, ¢, and 6,
respectively, where II% represents the standard interpolation operator over a given
set S. Next, under appropriate regularity conditions, we derive the corresponding
finite element interpolation error estimates (see [12, p. 133] for details). We then
utilize the same techniques as in [10, p. 126], [1, Theorem 3], and [11] to obtain the
desired error estimate.

4. Conclusion

This paper analyzed a thermo-electro-visco-elastic contact problem with locking
materials, formulating it as a coupled system of hemivariational inequalities and
a parabolic equation. We proved the existence and uniqueness of the solution,
addressing complex interactions involving non-monotone boundary conditions and
locking constraints. Additionally, a fully discrete scheme was developed using finite
elements for space and finite differences for time, with error estimates and conver-
gence results established. These findings extend the theoretical understanding and
numerical modeling of locking materials in contact problems. Future work could
explore non-convex constraints and optimal control applications for such systems.
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