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Blowing-Up Solutions of the Shallow Water

Equations∗
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Abstract In the paper, we study the question about global unsolvability of 
the Kawahara and Kaup-Kupershmidt shallow water equations in a bounded 
domain. For certain initial-boundary-value problems of the shallow-water 
equations, we establish the necessary conditions for the existence of global 
solutions. The proof of the results is based on the nonlinear capacity method. 
In closing, we provide some examples.
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1. Introduction

In the paper, we consider some shallow water equations as follows

∂tu+ α∂5xu+ β∂3xu+ γ∂xu+ u∂xu = 0, (x, t) ∈ (a, b)× (0, T ), (1.1)

∂tu+ α∂5xu+ β∂3xu+ γ∂xu− ∂xu∂
2
xu = 0, (x, t) ∈ (a, b)× (0, T ), (1.2)

with the initial data
u(x, 0) = u0(x), (1.3)

where −∞ < a < b < +∞, α ≠ 0, β, γ are real numbers.
The model (1.1) is also called the Kawahara equation [9]. It arises in the study

of the water waves with surface tension, in which the Bond number takes on the
critical value, where the Bond number represents a dimensionless magnitude of
surface tension in the shallow water regime (see [3, 10]). Equation (1.2) is often
called the Kaup-Kupershmidt equation [8]. This model has arisen from the study
of the capillary-gravity waves [2, 6, 7, 21].

If α = 0, then the model (1.1) reduces to the well-known Korteweg-de Vries
equation [4]

∂tu+ β∂3xu+ γ∂xu+ u∂xu.

The local and global well-posedness of problems (1.1) - (1.3) for α = −1, β = 1, γ =
0, with the boundary conditions

u(0, t) = 0, u(1, t) = 0, t ≥ 0,
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∂xu(0, t) = 0, ∂xu(1, t) = 0, t ≥ 0,

∂2xu(1, t) = 0, t ≥ 0,

were studied by Larkin et al. in [12–14]. Note that the local well-posedness of the
equations (1.1)-(1.2) with the initial data (1.3) and several boundary conditions was
investigated in [1, 5, 15,18,20,22,23].

The main aim of this paper is to obtain the blowing-up solutions of the above
equations, more precisely, solutions that blow up in finite time for the large class of
boundary conditions. Our approach is based on the Mitidieri-Pohozhaev nonlinear
capacity method (see [16,17], also [11,19]), more precisely, on the choice of specific
functions corresponding to the initial and boundary conditions.

A small difference in our approach is that we will study shallow-water equations
without boundary conditions. We suppose the boundary conditions are such that
there exists a sufficiently smooth function φ, for which the functional B(u, ϕ), con-
taining u and φ and their k-derivatives, is lower bounds by a certain functional of
φ. This allows us to study some classes of boundary conditions.

2. Blow-up of solution of the Kawahara equation

Let us consider the function φ ∈ C5([a, b]) defined on the domain a < x < b with
arbitrary parameters a, b ∈ R and monotonically nondecreasing:

φ′(x) ≥ 0 for x ∈ [a, b], (2.1)

and let φ satisfy the following properties:
θ1 :=

b∫
a

(αφ(5)+βφ′′′+γφ′)2

φ′ dx <∞;

θ2 :=
b∫
a

φ2

φ′ dx <∞.

(2.2)

Suppose that there is a classical solution u(x, t) ∈ C1,5
t,x (R× (0, T )) .

Multiplying Kawahara shallow water equation (1.1) by φ, we have

b∫
a

∂tu(x, t)φ(x)dx =− α

b∫
a

∂5xu(x, t)φ(x)dx− β

b∫
a

∂3xu(x, t)φ(x)dx

− γ

b∫
a

∂xu(x, t)φ(x)dx−
b∫

a

u(x, t)∂xu(x, t)φ(x)dx.

Applying integration by parts, we arrive at

∂t

b∫
a

u(x, t)φ(x)dx =α

b∫
a

u(x, t)φ(5)(x)dx+ β

b∫
a

u(x, t)φ′′′(x)dx

+ γ

b∫
a

u(x, t)φ′(x)dx+
1

2

b∫
a

u2(x, t)φ′(x)dx

+ B(u(x, t), φ(x))
∣∣∣x=b

x=a
,

(2.3)
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where

B(u(x, t), φ(x)) =α
(
∂4xuφ− ∂3xuφ

′ + ∂2xuφ
′′ − ∂xuφ

′′′ + uφ(4)
)

+ β
(
∂2xuφ− ∂xuφ

′ + uφ′′)+ γuφ+
1

2
u2φ.

Then, using properties (2.1), we find

b∫
a

(
2u(x, t)

(
αφ(5)(x) + βφ′′′(x) + γφ′(x)

)
+ u2(x, t)φ′(x)

)
dx

=

b∫
a

(
u(x, t) +

αφ(5)(x) + βφ′′′(x) + γφ′(x)

φ′(x)

)2

φ′(x)dx

−
b∫

a

(
αφ(5)(x) + βφ′′′(x) + γφ′(x)

)2
φ′(x)

dx.

We introduce a new functional:

F (t) =

b∫
a

w(x, t)φ(x)dx,

where

w(x, t) = u(x, t) +
αφ(5)(x) + βφ′′′(x) + γφ′(x)

φ′(x)
.

Using the Hölder inequality, we obtain the following estimate b∫
a

w(x, t)φ(x)dx

2

≤
b∫

a

w2(x, t)φ′(x)dx

b∫
a

φ2(x)

φ′(x)
dx.

Then, due to properties (2.2), expression (2.3) takes the form

F ′(t) ≥ θ−1
2

2
F 2(t) + Φ(t)− θ1

2
, (2.4)

with the initial condition

F (0) =

b∫
a

(
u0(x) +

αφ(5)(x) + βφ′′′(x) + γφ′(x)

φ′(x)

)
φ(x)dx,

where Φ(t) = B(u(b, t), φ(b))− B(u(a, t), φ(a)).
Then the following results are true.

Theorem 2.1. Let u0(x) ∈ L1([a, b]) and u be the solution of the equation (2.1)
such that u ∈ C1,5

t,x (R× (0, T )) . Let a function φ satisfy conditions (2.1), (2.2) and
let

2Φ(t) ≥ σ, for all t > 0, (2.5)

where σ is a constant.
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(A) If σ > θ1 and F (0) > 0, then

F (t) → +∞ for t→ T ∗
1 ,

where

T ∗
1 =

2
√
θ2√

σ − θ1

(
π

2
− arctan

F (0)

2
√
θ2(σ − θ1)

)
.

(B) If σ = θ1 and F (0) > 0, then

F (t) → +∞ for t→ T ∗
2 ,

where T ∗
2 = 4θ2

F (0) .

(C) If σ < θ1 and F (0) > 2
√
θ2(θ1 − σ), then

F (t) → +∞ for t→ T ∗
3 ,

where

T ∗
3 =

√
θ2√

θ1 − σ
ln
F (0) + 2

√
θ2(θ1 − σ)

F (0)− 2
√
θ2(θ1 − σ)

.

Proof. Applying the theory of ordinary differential inequalities, we can prove
Theorem 2.1. Indeed, let us consider the following differential equation

E′(t) = E2(t) + λ. (2.6)

(A) If λ > 0, then E(t) → +∞ at t→ 1√
λ

(
π
2 − arctan E(0)√

λ)

)
;

(B) If λ = 0 and E(0) > 0, then E(t) → +∞ at t→ 1
E(0) ;

(C) If λ < 0 and E(0) >
√
λ, then E(t) → +∞ at t→ 1√

λ
ln E(0)+

√
λ

F (0)−
√
λ
.

Since the function F (t) is an upper solution of equation (2.6), by comparison prin-
ciple we have F (t) → +∞ at the same time with E(t).

Remark 2.1. If α = 0, β = 1 and γ = 0 then Kawahara equation (1.1) coinsides
with Korteweg-de Vries equation

∂tu+ ∂3xu+ ∂xu+ u∂xu = 0.

Then our result in Theorem 2.1 implies the blow-up results for the Korteweg-de
Vries equation obtained by Pohozhaev in [19].

Below, we give some examples for different classes of boundary conditions.

Example 2.1. Note that the nonlinear capacity method has great practical con-
venience. For example, let problem (1.1), (1.3) with β = 0, γ > 0, on [0, 1] satisfy
Dirichlet type boundary conditions

u(0, t) = 0, u(1, t) = 0,

∂2xu(0, t) = 0, ∂2xu(1, t) = 0,

∂4xu(0, t) + 4∂3xu(0, t) + 24∂xu(0, t) = 0, t ≥ 0.
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Then, by taking φ(x) = −(1− x)4, we obtain

θ1 := 4γ2, θ2 :=
1

24

and

Φ(t) = 0, for all t > 0.

Hence it follows from Theorem 2.1, that under condition

1∫
0

u0(x)(1− x)4dx < −γ
5

the solution of problem (1.1), (1.3) blows up in finite time

T ∗ = 2
√
6γ ln

√
6F (0) + γ√
6F (0)− γ

.

Example 2.2. Let α = 1, β = 1, γ > 0, and [a, b] = [0, 1]. Consider the problem
(1.1), (1.3) with nonlocal boundary conditions

u(0, t) = 0, u(1, t) = 0,

∂xu(0, t) = 0, ∂xu(1, t) = 0,

∂4xu(1, t)− ∂3xu(1, t) + ∂2xu(1, t) + ∂3xu(0, t) = f(t) ≥ 4

3
, t ≥ 0.

Letting φ(x) = x, we have

θ1 := γ2, θ2 :=
1

3
,

and

Φ(t) ≥ 4

3
, for all t > 0.

Therefore, if
1∫

0

u0(x)xdx > −γ
2
,

then from Theorem 2.1 it follows that the solution of problem (1.1), (1.3) blows-up
in finite

T ∗ = 2

(
π

2
− arctan

F (0)

2γ

)
.

3. Gradient blow-up of solution of the Kaup-Kuper-
shmidt equation

In this section, we obtain a result on the ”soft blow-up” for the initial problem
(1.2), (1.3) in the bounded domain. Suppose that there exists a smooth bounded
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classical solution. Differentiating equation (1.2) with respect to space variable, we
obtain

∂2txu+ α∂5xu+ β∂4xu+ γ∂2xu− ∂xu∂
3
xu− ∂2xu∂

2
xu = 0, a < x < b, t > 0. (3.1)

We consider a function ϕ ∈ C5([a, b]) defined on the domain a < x < b with
arbitrary parameters a, b ∈ R and nonconvex:

ϕ′′(x) ≥ 0 for x ∈ [a, b], (3.2)

and let function φ satisfy the following properties:
ω1 :=

b∫
a

(αϕ(5)+βϕ′′′+γφ′)2

ϕ′′ dx <∞;

ω2 :=
b∫
a

ϕ2

ϕ′′ dx <∞.

(3.3)

Multiplying equation (3.1) by ϕ(x) and letting ∂xu = v, we have

d

dt

∫ b

a

v(x, t)ϕ(x)dx =α

∫ b

a

v(x, t)ϕ(5)(x)dx

+ β

∫ b

a

v(x, t)ϕ′′′(x)dx+ γ

∫ b

a

v(x, t)ϕ′(x)dx

+
1

2

∫ b

a

v2(x, t)ϕ′′(x)dx

+M(v(x, t), ϕ(x))
∣∣∣x=b

x=a
,

(3.4)

where

M(v(x, t), ϕ(x)) =− α∂4xv(x, t)ϕ(x) + α∂3xv(x, t)ϕ
′(x)

− α∂2xv(x, t)ϕ
′′(x) + α∂xv(x, t)ϕ

′′′(x)

− αv(x, t)ϕ(4)(x)− β∂2xv(x, t)ϕ(x) + β∂xv(x, t)ϕ
′(x)

− βv(x, t)ϕ′′(x)− γv(x, t)ϕ(x)

+
1

2
∂xv

2(x, t)ϕ(x)− 1

2
v2(x, t)ϕ′(x).

We denote by w(x, t) as follows

w(x, t) = v(x, t) +
αϕ(5)(x) + βϕ′′′(x) + γϕ′(x)

ϕ′′(x)
.

By using the Hölder inequality for the functional

H(t) =

b∫
a

w(x, t)ϕ(x)dx,

we obtain the following estimate b∫
a

w(x, t)ϕ(x)dx

2

≤
b∫

a

w2(x, t)ϕ′′(x)dx

b∫
a

ϕ2(x)

ϕ′′(x)
dx.
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We introduce the notation

Φ(t) = M(v(b, t), ϕ(b))−M(v(a, t), ϕ(a)).

Suppose that there exists a function ϕ(x) for which Φ(t) is independent of time. If
there is no such a function, then Φ(t) must be considered separately, for example,
by assuming that the constant independent of t is bounded above.

Consequently, by properties (3.2) and (3.3) for the function H(t) we obtain the
following ordinary differential inequality

H ′(t) ≥ ω−1
2

2
H2(t)− ω2, (3.5)

where ω = ω1

2 − Φ(t).
Applying the theory of ordinary differential inequalities, we obtain the following

result.

Theorem 3.1. Let u0(x) ∈ H1([a, b]) and the solution u ∈ C1,5
t,x (R× (0, T )) of

the equation (3.1) be such that there exists a function ϕ satisfying conditions (3.2),
(3.3) such that

H(0) =

b∫
a

(
u′0(x) +

αϕ(5)(x) + βϕ′′′(x) + γϕ′(x)

ϕ′(x)

)
ϕ(x)dx > ω

√
2ω2.

Then the gradient solution of equation (1.2) blows up in finite time and the following
estimate holds:

H(t) ≥ ω
√
2ω2

1 + h0 exp
(
2h0

√
2ω2

−1
t
)

1− h0 exp
(
2h0

√
2ω2

−1
t
) , h0 =

√
2ω2

−1
H(0)− ω

√
2ω2

−1
H(0) + ω

,

and hence
lim

t→T∗
H(t) = +∞,

where T ∗ = −
√
2ω2

2ω lnh0.

Theorem 3.1 can be proved in a similar way to Theorem 2.1.

Acknowledgements

The author thanks the anonymous reviewer and the editors for their helpful com-
ments that made the paper better.

References

[1] F. D. Araruna, R. A. Capistrano-Filho and G. G. Doronin, Energy decay for
the modified Kawahara equation posed in a bounded domain, J. Math. Anal.
Appl., 2012, 385(2), 743–756.

[2] E. S. Benilov, R. Grimshaw and E. P. Kuznetsova, The generation of radiating
waves in a singularly-perturbed Korteweg-de Vries equation, Phys. D., 1993, 69,
270–278.



1530 N. Koshkarbayev

[3] J. L. Bona and R. S. Smith, A model for the two-ways propagation of water
waves in a channel, Math. Proc. Cambridge Philos. Soc., 1976, 79, 167–182.

[4] J. L. Bona and R. Smith, The initial value problem for the Korteweg-de Vries
equation, Philos. Trans. Roy. Soc. London Ser. A, 1975, 278, 555–601.

[5] A. V. Faminskii and R. V. Kuvshinov, Initial-boundary value problems for the
generalized Kawahara equation, Russian Math. Surveys, 2011, 66(4), 819–821.

[6] J. K. Hunter and J. Scheurle, Existence of perturbed solitary wave solutions to
a model equation for water waves, Phys. D., 1988, 32(2), 253–268.

[7] B. Karaagac, A. Esen, K. M. Owolabi, and E. Pindza, A Trigonometric Quintic
B-Spline Basis Collocation Method for the KdV–Kawahara Equation, Numeri-
cal Analysis and Applications, 2023, 16(3), 216–228.

[8] D.J. Kaup, On the inverse scattering problem for cubic eigenvalue problems of
the class ψxxx + 6Qψx + 6Rψ = λψ, Stud. Appl. Math., 1980, 62(3), 189–216.

[9] T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc.
Japan., 1972, 33, 260–264.

[10] S. Kichenassamy and P. J. Olver, Existence and nonexistence of solitary wave
solutions to higher-order model evolution equations, SIAM J. Math. Anal.,
1992, 23, 1141–1166.

[11] M. Kirane, B. T. Torebek, On a nonlinear problem of the breaking water waves,
Bulletin of the South Ural State University. Mathematical Modelling, Program-
ming and Computer Software, 2019, 12(2), 37–46.

[12] N. A. Larkin and G. G. Doronin, Kawahara equation in a quarter-plane and in
a finite domain, Bol. Soc. Parana. Mat., 2007, 25(1-2), 9–16.

[13] N. A. Larkin and G. G. Doronin, Kawahara equation in a bounded domain,
Discrete Contin. Dyn. Syst. Ser. B, 2008, 10(4), 783–799.

[14] N. A. Larkin and M. H. Simões, The Kawahara equation on bounded intervals
and on a half-line, Nonlinear Anal., 2015, 127, 397–412.

[15] N. A. Larkin and M. H. Simões, General boundary conditions for the Kawahara
equation on bounded intervals, Electron. J. Differential Equations, 2013, 159,
1–21.

[16] E. Mitidieri and S. I. Pohozhaev, A priori estimates and blow-up of solutions
of nonlinear partial differential equations and inequalities, Proc. Steklov Inst.
Math., 2001, 234, 1–362.

[17] E. Mitidieri and S. I. Pohozhaev. Towards a unified approach to nonexistence
of solutions for a class of differential inequalities, Milan J. Math., 2004, 72,
129–162.

[18] X. Pan and L. Zhang, A novel conservative numerical approximation scheme
for the Rosenau-Kawahara equation, Demonstratio Mathematica, 2023, 56(1).

[19] S. I. Pohozaev, Blow-up of smooth solutions of the Korteweg-de Vries equation,
Nonlinear Anal., 2012, 75(12), 4688–4698.

[20] P. Sprenger, T. J. Bridges and M. Shearer, Traveling Wave Solutions of the
Kawahara Equation Joining Distinct Periodic Waves, Journal of Nonlinear
Science, 2023, 33(79), 1–39.



Blowing-up Solutions of the Shallow Water Equations 1531

[21] M. Sriskandasingam, S. Sun and B. Zhang, Non-homogeneous boundary value
problems of the Kawahara equation posed on a finite interval, Nonlinear Anal-
ysis, 2023, 277, 1–28.

[22] X. Zhao, X. Zhang and H. Feng, Global well-posedness and exponential decay
for fifth-order Korteweg-de Vries equation posed on the finite domain, J. Math.
Anal. Appl., 2018, 468(2), 976–997.

[23] D. Zhou and B.-Y. Zhang, Initial boundary value problem of the Hamiltonian
fifth-order KdV equation on a bounded domain, Adv. Differential Equations,
2016, 21(9-10), 977–1000.


	Introduction
	Blow-up of solution of the Kawahara equation
	Gradient blow-up of solution of the Kaup-Kuper-shmidt equation

