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Spreading Speed for Some Cooperative Systems
with Nonlocal Diffusion and Free Boundaries,

Part 3: Rate of Shifting

Yihong Du1,† and Wenjie Ni1

Abstract This is the last part of our work series on a class of cooperative
reaction-diffusion systems with free boundaries in one space dimension, where
the diffusion terms are nonlocal, given by integral operators involving suit-
able kernel functions, and some of the equations in the system do not have a
diffusion term. Such a system covers various models arising from population
biology and epidemiology, including in particular a West Nile virus model [10]
and some epidemic models [22, 38], where a “spreading-vanishing” dichotomy
is known to govern the long time dynamical behaviour, but the spreading rate
was not well understood. In this work series, we develop a systematic approach
to determine the spreading profile of the system. In Part 1 [11], we obtained
threshold conditions on the kernel functions which decide exactly when the
spreading has finite speed c0, or infinite speed (accelerated spreading), and for
the case of finite speed, we determined its value c0 via semi-wave solutions. In
this paper, for some typical classes of kernel functions, we obtain more precise
descriptions of the spreading for the finite speed case by revealing the exact
rate of shifting of the spreading front from c0t; the infinite speed case is studied
separately in Part 2 [14].
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1. Introduction

We continue our efforts to determine the precise long-time behaviour of cooperative
systems with nonlocal diffusion and free boundaries of the following form:

†The corresponding author.
Email address: ydu@une.edu.au (Y. Du), wni2@une.edu.au (W. Ni)

1School of Science and Technology, University of New England, Armidale,
NSW 2351, Australia

http://dx.doi.org/10.12150/jnma.2025.1532


Cooperative Systems, Part 3 1533



∂tui = diLi[ui](t, x) + fi(u1, u2, · · · , um), t > 0, x ∈ (g(t), h(t)), 1 ≤ i ≤ m0,

∂tui = fi(u1, u2, · · · , um), t > 0, x ∈ (g(t), h(t)), m0 < i ≤ m,

ui(t, g(t)) = ui(t, h(t)) = 0, t > 0, 1 ≤ i ≤ m,

g′(t) = −
m0∑
i=1

µi

∫ h(t)

g(t)

∫ g(t)

−∞
Ji(x− y)ui(t, x)dydx, t > 0,

h′(t) =

m0∑
i=1

µi

∫ h(t)

g(t)

∫ ∞

h(t)

Ji(x− y)ui(t, x)dydx, t > 0,

ui(0, x) = ui0(x), x ∈ [−h0, h0], 1 ≤ i ≤ m,

(1.1)

where 1 ≤ m0 ≤ m, and for i ∈ {1, ...,m0},

Li[v](t, x) :=

∫ h(t)

g(t)

Ji(x− y)v(t, y)dy − v(t, x),

di > 0 and µi ≥ 0 are constants, with

m0∑
i=1

µi > 0.

The initial functions satisfy for 1 ≤ i ≤ m,

ui0 ∈ C([−h0, h0]), ui0(−h0) = ui0(h0) = 0, ui0(x) > 0 in (−h0, h0). (1.2)

The kernel functions satisfy, for J ∈ {Ji : 1 ≤ i ≤ m0},

(J): J ∈ C(R) ∩ L∞(R) is nonnegative, even, J(0) > 0,

∫
R
J(x)dx = 1.

As in Part 1 [11], we will write F = (f1, ..., fm) ∈ [C1(Rm
+ )]m with

Rm
+ := {x = (x1, ..., xm) ∈ Rm : xi ≥ 0 for i = 1, ...,m},

and use the following notations for vectors in Rm:

(i) For x = (x1, · · · , xm) ∈ Rm, we simply write (x1, · · · , xm) as (xi). For x =
(xi), y = (yi) ∈ Rm,

x ⪰ (⪯) y means xi ≥ (≤) yi for 1 ≤ i ≤ m,

x ≻ (≺) y means x ⪰ (⪯) y but x ̸= y,

x ≻≻(≺≺) y means xi > (<) yi for 1 ≤ i ≤ m.

(ii) If x ⪯ y, then [x, y] := {z ∈ Rm : x ⪯ z ⪯ y}.
(iii) Hadamard product: For x = (xi), y = (yi) ∈ Rm,

x ◦ y = (xiyi) ∈ Rm.

(iv) Any x ∈ Rm is viewed as a row vector, namely a 1×mmatrix, whose transpose
is denoted by xT .

Our basic assumptions on F are:
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(f1) (i) F (u) = 0 has only two roots in Rm
+ : 0 = (0, 0, · · · , 0) and u∗ =

(u∗1, u
∗
2, · · · , u∗m)≻≻0.

(ii) ∂jfi(u) ≥ 0 for i ̸= j and u ∈ [0, û], where either û = ∞meaning [0, û] =
Rm

+ , or u∗≺≺û ∈ Rm; which implies that (1.1) is a cooperative system in
[0, û].

(iii) The matrix∇F (0) is irreducible with positive principal eigenvalue, where
∇F (0) = (aij)m×m with aij = ∂jfi(0).

(iv) If m0 < m then ∂jfi(u) > 0 for 1 ≤ j ≤ m0 < i ≤ m and u ∈ [0,u∗].

(f2) F (ku) ≥ kF (u) for any 0 ≤ k ≤ 1 and u ∈ [0, û].

(f3) The matrix∇F (u∗) is invertible, u∗[∇F (u∗)]T ⪯ 0 and for each i ∈ {1, ...,m},
either

(i)

m∑
j=1

∂jfi(u
∗)u∗j < 0, or

(ii)
m∑
j=1

∂jfi(u
∗)u∗j = 0 and fi(u) is linear in [u∗ − ϵ01,u

∗] for some small

ϵ0 > 0, where 1 = (1, ..., 1) ∈ Rm.

(f4) The set [0, û] is invariant for

Ut = D ◦
∫
R
J(x− y) ◦ U(t, y)dy −D ◦ U + F (U) for t > 0, x ∈ R, (1.3)

and the equilibrium u∗ attracts all the nontrivial solutions in [0, û]; namely,
U(t, x) ∈ [0, û] for all t > 0, x ∈ R if U(0, x) ∈ [0, û] for all x ∈ R, and
limt→∞ U(t, ·) = u∗ in L∞

loc(R) if additionally U(0, x) ̸≡ 0.

In (1.3) we have used the convention that di = 0 and Ji ≡ 0 for m0 < i ≤ m,
and

D = (di), J(x) = (Ji(x)).

This convention will be used throughout the paper.
The above assumptions on F indicate that the system is cooperative in [0, û],

and of monostable type, with u∗ the unique stable equilibrium of (1.3), which is
also the global attractor of all the nontrivial nonnegative solutions of (1.3) in [0, û].

Problems (1.1) and (1.3) arise frequently in population and epidemic models.
For example, if m0 = m = 2, (1.1) contains the West Nile virus model in [10]
and the epidemic models in [22] as special cases, and with (m0,m) = (1, 2), it
covers the epidemic model in [38]. In these special cases, it is known that the long-
time dynamical behaviour of the solution to (1.1) exhibits a spreading-vanishing
dichotomy.

Similar to the special cases mentioned in the last paragraph, it can be shown
that (1.1) with initial data satisfying (1.2) and U(0, x) ∈ [0, û] has a unique positive
solution (U(t, x), g(t), h(t)) defined for all t > 0. We say spreading happens if, as
t→ ∞,

(g(t), h(t)) → (−∞,∞) and U(t, ·) → u∗ component-wise in L∞
loc(R),

and we say vanishing happens if

(g(t), h(t)) → (g∞, h∞) is a finite interval, and maxx∈[g(t),h(t)] |U(t, x)| → 0.
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1.1. Main results of Part 1

Since this paper is built upon the results in Part 1 [11], let us now recall the main
results obtained there. When spreading happens for (1.1), we proved in Part 1
that the spreading speed is finite if and only if the following additional condition is
satisfied by the kernel functions:

(J1):

∫ ∞

0

xJ(x)dx <∞ for J ∈ {Ji : 1 ≤ i ≤ m0, µi > 0}.

If (J1) is not satisfied, then the spreading speed is infinite, namely accelerated sprea-
ding happens, and this case was further investigated in Part 2 of this series [14].
Let us note that if for some i ∈ {1, ...,m0}, µi = 0, then no restriction on Ji
is imposed by (J1). For convenience of later discussions, we will introduce the
following notations:

A+ := {i : 1 ≤ i ≤ m0, µi > 0}, A0 := {i : 1 ≤ i ≤ m0, µi = 0}.

The proof of these conclusions rely on a complete understanding of the associated
semi-wave problem to (1.1), which consists of the following two equations (1.4) and
(1.5) with unknowns (c,Φ(x)):

D ◦
∫ 0

−∞
J(x− y) ◦ Φ(y)dy −D ◦ Φ+ cΦ′(x) + F (Φ(x)) = 0 for x < 0,

Φ(−∞) = u∗, Φ(0) = 0,

(1.4)

and

c =

m0∑
i=1

µi

∫ 0

−∞

∫ ∞

0

Ji(x− y)ϕi(x)dydx, (1.5)

where we recall D = (di), J = (Ji), Φ = (ϕi) and “◦” is the Hadamard product.
If (c,Φ) solves (1.4), we say that Φ is a semi-wave solution to (1.3) with speed c.

This is not to be confused with the semi-wave to (1.1), for which the extra equation
(1.5) should be satisfied, yielding a semi-wave solution of (1.3) with the desired
speed c = c0, which determines the spreading speed of (1.1).

We are interested in semi-waves which are monotone and with positive speed.
The following condition on the kernel functions will be used:

(J2):

∫ ∞

0

eλxJ(x)dx <∞ for some λ > 0 and every J ∈ {Ji : 1 ≤ i ≤ m0}.

Theorem A. Suppose the kernel functions satisfy (J) and F satisfies (f1)-(f4).
Then there exists C∗ ∈ (0,+∞] such that

(i) for 0 < c < C∗, (1.4) has a unique monotone solution Φc = (ϕci ), and

lim
c↗C∗

Φc(x) = 0 locally uniformly in (−∞, 0];

(ii) C∗ ̸= ∞ if and only if (J2) holds;

(iii) the system (1.4)-(1.5) has a solution pair (c,Φ) with Φ(x) monotone if and
only if (J1) holds, and when (J1) holds, there exists a unique c0 ∈ (0, C∗)
such that (c,Φ) = (c0,Φ

c0) solves (1.4) and (1.5).
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The spreading speed of (1.1) is determined by the following result:

Theorem B. Suppose the conditions in Theorem A are satisfied, (U, g, h) is the
solution of (1.1) with U(0, x) ∈ [0, û], and spreading happens. Then the following
conclusions hold for the spreading speed:

(i) If (J1) is satisfied, then the spreading speed is finite, and is determined by

− lim
t→∞

g(t)

t
= lim

t→∞

h(t)

t
= c0 with c0 given in Theorem A (iii).

(ii) If (J1) is not satisfied, then accelerated spreading happens, namely

− lim
t→∞

g(t)

t
= lim

t→∞

h(t)

t
= ∞.

Note that for (J1) to be violated, it only requires a single Ji with i ∈ A+ to

satisfy

∫ ∞

0

xJi(x)dx = ∞.

1.2. Main results of this paper

The main purpose of this paper is to sharpen the conclusion in Theorem B (i) for
some typical classes of kernel functions satisfying (J1). For the single species model
(namely (1.1) with m = m0 = 1), it was shown in [12] that the shift c0t− h(t) may
stay bounded or go to infinity as t→ ∞, depending on the behaviour of the kernel
function near infinity. We want to extend such estimate for a single equation in [12]
to a rather general system of the form (1.1), where diffusion need not appear in
every equation of the system.

Following [12], for α > 1 and a continuous nonnegative even kernel function J ,
we introduce the condition

(Jα):

∫ ∞

0

xα−1J(x)dx <∞.

Clearly (Jα2) implies (Jα1) if α2 > α1 > 1. Let us note that (J1) holds if and only
if every Ji with i ∈ A+ satisfies (J2). If (J2) holds, then (Jα) is satisfied for all
α > 1 by every Ji (i = 1, ...,m0).

Theorem 1.1. In Theorem B, suppose additionally that every Ji with i ∈ A+

satisfies (J3), every Ji with i ∈ A0 satisfies (Jα) for some α ∈ (2, 3), F is C2 and
u∗[∇F (u∗)]T≺≺0. Then there exist positive constants θ, C and t0 such that, for all
t > t0 and x ∈ [g(t), h(t)],

|h(t)− c0t|+ |g(t) + c0t| ≤ C,

U(t, x) ⪰ [1− ϵ(t)]
[
Φc0(x− c0t+ C) + Φc0(−x− c0t+ C)− u∗],

U(t, x) ⪯ [1 + ϵ(t)]min
{
Φc0(x− c0t− C), Φc0(−x− c0t− C)

}
,

where ϵ(t) := (t + θ)−α, and (c0,Φ
c0) is the unique pair solving (1.4) and (1.5)

obtained in Theorem A (iii), with Φc0(x) extended by 0 for x > 0.
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Further estimates on g(t) and h(t) can be obtained for some slightly more re-
strictive classes of kernel functions. We will write

η(t) ≈ ξ(t) if C1ξ(t) ≤ η(t) ≤ C2ξ(t)

for some positive constants C1 ≤ C2 and all t in a certain concerned range.
Our next result is about the situation that the kernel functions {Ji : i ∈ A+}

have a dominating one Ji∗ , by which we mean

Ji(x) ≤ CJi∗(x) for some C > 0 and all i ∈ A+, x ∈ R.

For γ > 0 and a continuous nonnegative even kernel function J , we introduce the
condition

(Jγ
∞): J(x) ≈ |x|−γ for |x| ≫ 1.

Note that for a kernel function satisfying (Jγ
∞), it satisfies the condition in (J)

only if γ > 1, and it satisfies the condition in (J1) only if γ > 2.
For a kernel function satisfying (Jγ

∞), clearly (Jα) holds if and only if γ > α.
Therefore the case γ > 3 is covered by Theorem 1.1. When γ ∈ (1, 2], (J1) does
not hold and accelerated spreading may happen; the precise rate of acceleration for
this case has been determined in [14]. The following theorem is concerned with the
remaining case γ ∈ (2, 3], which indicates that the result in Theorem 1.1 is sharp.

Theorem 1.2. In Theorem B, suppose additionally the kernel functions {Ji : i ∈
A+} have a dominating one Ji∗ which satisfies (Jγ

∞) for some γ ∈ (2, 3], every Ji
with i ∈ A0 satisfies (Jα) for some α ≥ γ − 1, F is C2 and

F (v)− v[∇F (v)]T≻≻0 for 0 ≺≺ v ⪯ u∗. (1.6)

Then for t≫ 1,

c0t+ g(t), c0t− h(t) ≈

{
ln t if γ = 3,

t3−γ if γ ∈ (2, 3).

Note that (f2) implies

F (v)− v[∇F (v)]T ⪰ 0 for v ∈ [0,u∗].

Therefore (1.6) is a strengthened version of (f2). If we take v = u∗ in (1.6), then
it yields u∗[∇F (u∗)]T≺≺0. When m = 1, (1.6) reduces to F (v) > F ′(v)v for
0 < v ≤ û, which is satisfied, for example, by F (v) = av − bvp with a, b > 0 and
p > 1.

The proofs of Theorems 1.1 and 1.2 rely on the following estimates for the semi-
wave solutions of (1.3), which are also of independent interests.

Theorem 1.3. Suppose that F satisfies (f1)-(f4) and the kernel functions satisfy
(J), and Φ(x) = (ϕi(x)) is a monotone solution of (1.4) for some c > 0. Then the
following conclusions hold:

(i) If (Jα) is satisfied by every Ji (i = 1, ...,m0) for some α > 1, then for every
i ∈ {1, ...,m}, ∫ −1

−∞

[
u∗i − ϕi(x)

]
|x|α−2dx <∞,
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which implies, by the monotonicity of ϕi(x),

0 < u∗i − ϕi(x) ≤ C|x|1−α for some C > 0 and all x < −1.

(ii) If (Jα) is not satisfied by some Ji for some α > 1, then

m∑
i=1

∫ −1

−∞

[
u∗i − ϕi(x)

]
|x|α−2dx = ∞.

1.3. Applications to epidemic models

Let us now see how the results above can be applied to the models in [10] and [22].
The West Nile virus model in [10] is given by

Ht = d1L1[H](t, x) + a1(e1 −H)V − b1H, x ∈ (g(t), h(t)), t > 0,

Vt = d2L2[V ](t, x) + a1(e2 − V )H − b2V, x ∈ (g(t), h(t)), t > 0,

H(t, x) = V (t, x) = 0, t > 0, x ∈ {g(t), h(t)},

g′(t) = −µ
∫ h(t)

g(t)

∫ g(t)

−∞
J1(x− y)V (t, x)dydx, t > 0,

h′(t) = µ

∫ h(t)

g(t)

∫ ∞

h(t)

J1(x− y)V (t, x)dydx, t > 0,

−g(0) = h(0) = h0, H(0, x) = u0
1(x), V (0, x) = u0

2(x), x ∈ [−h0, h0].

(1.7)

where ai, ei and bi (i = 1, 2) are positive constants satisfying a1a2e1e2 > b1b2
(which is necessary for spreading to happen). We thus have

F (u) = F1(u) :=
(
a1(e1 − u1)u2 − b1u1, a2(e2 − u2)u1 − b2u2

)
,

u∗ =

(
a1a2e1e2 − b1b2
a1a2e2 + a2b1

,
a1a2e1e2 − b1b2
a1a2e1 + a1b2

)
.

It is straightforward to check that conditions (f1)-(f3) are satisfied by F1 with
û = (e1, e2). Condition (f4) was shown to hold in [10]. It is easy to see that F1 is
C2 and

F1(u)− u[∇F1(u)]
T = (a1u1u2, a2u1u2).

Therefore (1.6) holds. Thus all our results apply to (1.7).
The epidemic model in [22] is given by

ut = d1L1[u]− au+H(v), t > 0, x ∈ (g(t), h(t)),

vt = d2L1[v]− bv +G(u), t > 0, x ∈ (g(t), h(t)),

u(t, x) = v(t, x) = 0, t > 0, x = g(t) or x = h(t),

g′(t) = −µ
∫ h(t)

g(t)

∫ g(t)

−∞
[J1(x− y)u(t, x) + ρJ2(x− y)v(t, x)]dydx, t > 0,

h′(t) = µ

∫ h(t)

g(t)

∫ +∞

h(t)

[J1(x− y)u(t, x) + ρJ2(x− y)v(t, x)]dydx, t > 0,

−g(0) = h(0) = h0, u(0, x) = u0(x), v(0, x) = v0(x), x ∈ [−h0, h0],

(1.8)

where a, b, d1, d2, µ, ρ and h0 are positive constants, and the functions G and
H satisfy
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(i) G,H ∈ C2([0,∞)), G(0) = H(0) = 0, G′(z), H ′(z) > 0,
G′′(z), H ′′(z) < 0 for z ≥ 0;

(ii) there exists z̄ > 0 such that G(H(z̄)/a) < bz̄.

In this example,

F (u) = F2(u) := (H(u2)− au1, G(u1)− bu2), u∗ = (K1,K2)

where (K1,K2)≻≻0 are uniquely determined by

K1 =
H(K2)

a
, K2 =

G(H(K2)/a)

b
.

One easily checks that F2 satisfies (f1)− (f3) with û = (K1,K2). In [22], it was
proved that (f4) also holds. Clearly F2 is C2 and

F2(u)− u[∇F2(u)]
T = (H(u2)− u2H

′(u2), G(u1)− u1G
′(u1)).

Hence (1.6) holds. Therefore all our results apply to (1.8). The above analysis
indicates that our results in this paper also apply to (1.8) in the degenerate case
d2 = ρ = 0, which is a slight variation of the model in [38].

1.4. Related works

Some variations of the model (1.8) have been studied recently in [6,13,28,29], where
the reaction term in the equation for v also contains a nonlocal term. The results
obtained in this paper do not apply to these problems due to the variations, and
vice versa.

Several local (random) diffusion versions of (1.1) or its variations have been
extensively studied in the past decade, starting from the work [7]. In these local
diffusion free boundary problems the spreading speed is always finite, and is deter-
mined by the associated semi-waves; see, for example, [1,7–9,15,19,21,30,31,37] as
a small sample. Note, however, that for systems of equations with free boundaries,
no sharp estimate for the shift is available except [31], where for the West Nile virus
model, convergence of the shift was proved.

A striking difference of nonlocal diffusion models of the form (1.1) to their local
diffusion counterparts is that accelerated spreading may occur. For the scalar case
of (1.3), namely for the Fisher-KPP equation with nonlocal diffusion, it follows from
the theory in [32] that accelerated spreading occurs exactly when the kernel function
does not satisfy (J2) described above. On the other hand, when (J2) is satisfied
by the kernel function (thin-tailed kernel) then there exists some c∗ > 0 such that
the associated traveling wave problem has a monotone traveling wave with speed
c if and only if c ≥ c∗, and c∗ is the asymptotic spreading speed determined by
the scalar nonlocal Fisher-KPP equation (1.3); see, for example, [20, 24–26, 32, 36].
Related works on accelerated spreading can be found in [2, 3, 16–18, 23, 34, 35] and
the references therein. It is well known that the local diffusion version of (1.3) with
compactly supported initial functions can only spread with finite speed, which is
determined by the associated traveling waves [20,32,33,39].

As already mentioned in Part 1 [11], there are two fundamental differences be-
tween the free boundary model (1.1) and the corresponding model (1.3) where no
free boundary appears. Firstly (1.1) provides the exact location of the spreading
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front, which is the free boundary, while the location of the front is not prescribed
in (1.3) – one usually uses suitable level sets of the solution to describe the front
behaviour. Secondly, the long time dynamical behaviour of (1.1) is often governed
by a spreading-vanishing dichotomy [4,10,38], but (1.3) predicts successful spread-
ing all the time. Let us also note that since (J2) implies (J1) but not the other way
round, (1.3) is more readily than (1.1) to give rise to accelerated spreading.

1.5. Organisation of the paper

The rest of the paper is organised as follows. In Section 2, we prove Theorem 1.3,
which will be used in Section 3 for the proof of Theorem 1.1. Sections 4 is devoted to
the proof of Theorems 1.2, where the dominating kernel function behaves like |x|−γ

near infinity, and we determine the exact growth rates of c0t − h(t) and c0t + g(t)
for γ in the range (2, 3]. Note that when γ > 3, the spreading behaviour is already
covered by Theorem 1.1 proved in Section 3.

2. Asymptotic behaviour of semi-wave solutions

The purpose of this section is to prove the following two theorems, which imply
Theorem 1.3.

Theorem 2.1. Suppose that F satisfies (f1)-(f4) and the kernel functions Ji (i =
1, ...,m0) satisfy (J) and (Jα) for some α > 1. If Φ(x) = (ϕi(x)) is a monotone
solution of (1.4) for some c > 0, then for every i ∈ {1, ...,m},∫ −1

−∞
[u∗i − ϕi(x)]|x|α−2dx <∞,

which implies, by the monotonicity of Φ(x),

0 < u∗i − ϕi(x) ≤ C|x|1−α for some C > 0 and all x < 0, i ∈ {1, ...,m}.

The next result shows that this estimate is sharp.

Theorem 2.2. Suppose that F satisfies (f1)-(f4) and the kernel functions satisfy
(J). If (Jα) is not satisfied for some α > 1 by some Ji, and Φ(x) = (ϕi(x)) is a
monotone solution of (1.4) for some c > 0, then

m∑
i=1

∫ −1

−∞
[u∗i − ϕi(x)]|x|α−2dx = ∞. (2.1)

The proof of Theorem 2.1 is based on the following two lemmas, with the first
taken from [11].

Lemma 2.1 ( Lemma 2.1, [11]). If (f1) holds, then there exist λ1 > 0, small ϵ > 0,
and vectors Θ = (θi)≻≻0, Θ̃ = (θ̃i)≻≻0 such that

Θ∇F (0)T = λ1Θ, Θ̃∇F (0) = λ1Θ̃, (2.2)

and {
fi(ϵΘ) ≥ ϵσ̂

∑m
j=1 θj for i = 1, ...,m,∑m

i=1 θ̃ifi(X) ≥
∑m

i=1 bixi for X = (xi) ∈ [0, ϵ1],
(2.3)
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where 1 = (1, · · · , 1) ∈ Rm and

σ̂ :=
λ1
2

min
1≤i≤m

θi

/ m∑
j=1

θi, bi :=
λ1θ̃i
2

> 0.

Proof. This is Lemma 2.1 in [11]. We reproduce its short proof below for conve-
nience of later use.

Let λ1 be the principal eigenvalue of ∇F (0). By the Perron-Frobenius theorem,
there exist positive eigenvectors Θ and Θ̃ such that the identities in (2.2) hold.

Moreover, in view of F ∈ [C1(Rm
+ )]m, for small ϵ > 0 and X = (xi) ∈ [0, ϵ1],

F (ϵΘ) = ϵΘ
[
∇F (0)T + o(1)Im

]
= ϵ[λ1 + o(1)]Θ,

m∑
i=1

θ̃ifi(X) = Θ̃
[
∇F (0) + oϵ(X)

]
XT = Θ̃[λ1Im + oϵ(X)]XT ,

with |oϵ(X)| → 0 as ϵ → 0 uniformly in X ∈ [0, ϵ1]. Hence (2.3) holds provided
that ϵ > 0 is small enough.

Denote

Ψ(x) = (ψi(x)) := u∗ − Φ(x) and G(u) = (gi(u)) := −F (u∗ − u).

Then Ψ satisfies
0 = D ◦

∫ 0

−∞
J(x− y) ◦Ψ(y)dy −D ◦Ψ+D ◦ u∗ ◦

∫ ∞

0

J(x− y)dy

+cΨ′(x) +G(Ψ(x)) for −∞ < x < 0,

Ψ(−∞) = 0, Ψ(0) = u∗.

(2.4)

Since u∗ is stable and ∇F (u∗) = ∇G(0) is invertible, the eigenvalues of ∇F (u∗) are
all negative. Therefore we can use the same reasoning as in the proof of Lemma 2.1
to find two vectors Ã = (ãi)≻≻0 and B̃ = (b̃i)≺≺0 such that, for U = (ui) ∈ [0, ϵ1]
with ϵ > 0 sufficiently small,

m∑
i=1

ãigi(U) ≤
m∑
i=1

b̃iui ≤ −b̂
m∑
j=1

ãiui,

for some b̂ > 0.
Since Ψ(−∞) = 0 and Ψ(x) = (ψi(x))≻≻0 for x < 0, we have 0 < ψi(x) < ϵ for

large negative x (denoted by x≪ −1), and so

m∑
i=1

ãigi(Ψ(x)) ≤ −b̂ψ̃(x) for x≪ −1, with (2.5)

ψ̃(x) :=

m∑
j=1

ãjψj(x). (2.6)

Lemma 2.2. Suppose (J) and (f1)-(f4) are satisfied. If (Jα) is satisfied by every
Ji (i = 1, ...,m0) for some α ≥ 1, then∫ 0

−∞
ψ̃(x)dx <∞.
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Proof. A simple calculation gives

D ◦
∫ 0

−∞
J(x− y) ◦Ψ(y)dy −D ◦Ψ+D ◦ u∗ ◦

∫ ∞

0

J(x− y)dy

=−D ◦
∫ 0

−∞
J(x− y) ◦ Φ(y)dy +D ◦ Φ.

Integrating the equation satisfied by ψ̃ over the interval (x, y) with x < y ≪ −1,
and making use of (2.5), we obtain

c(ψ̃(y)− ψ̃(x)) +

m∑
i=1

∫ y

x

ãidi

[∫ 0

−∞
Ji(z − w)ψi(w)dw − ψi(z)

]
dz

+

m∑
i=1

∫ y

x

ãidiu
∗
i

∫ ∞

0

Ji(z − w)dwdz

=c(ψ̃(y)− ψ̃(x))−
m∑
i=1

∫ y

x

ãidi

[∫ 0

−∞
Ji(z − w)ϕi(w)dw − ϕi(z)

]
dz

=−
∫ y

x

m∑
i=1

ãigi(Ψ(z))dz ≥ b̂

∫ y

x

ψ̃(z)dz.

We extend Φ to R by define ϕi(x) = 0 for x > 0. Then the new function Φ is
differentiable on R except at x = 0. Due to (Jα), we have, for i ∈ {1, ...,m0},∣∣∣∣∫ y

x

(∫ 0

−∞
Ji(z − w)ϕi(w)dw − ϕi(z)

)
dz

∣∣∣∣
=

∣∣∣∣∫ y

x

(∫
R
Ji(z − w)ϕi(w)dw − ϕi(z)

)
dz

∣∣∣∣
=

∣∣∣∣∫ y

x

∫
R
Ji(w)(ϕi(z + w)− ϕ(z))dwdz

∣∣∣∣ = ∣∣∣∣∫ y

x

∫
R
Ji(w)

∫ 1

0

wϕ′i(z + sw)dsdwdz

∣∣∣∣
=

∣∣∣∣∫
R
wJi(w)

∫ 1

0

[ϕi(y + sw)− ϕi(x+ sw)]dsdw

∣∣∣∣ ≤ a∗i

∫
R
|y|Ji(y)dy =:Mi <∞.

Thus, for x < y ≪ −1,

b̂

∫ y

x

ψ̃(z)dz ≤ c(ψ̃(y)− ψ̃(x)) +

m∑
i=1

ãidiMi ≤
m∑
i=1

ãi(cu
∗
i + diMi),

which implies

∫ 0

−∞
ψ̃(z)dz <∞.

Proof of Theorem 2.1.
Case 1. α ≥ 2.
With ψ̃ =

∑m
i=1 ãiψi given by (2.6), it suffices to show∫ 0

−∞
ψ̃(x)|x|α−2dx <∞.

By Lemma 2.2 we have∫ 0

−∞
ψ̃(x)dx <∞ and hence

∫ 0

−∞
ψi(x)dx <∞ for i ∈ {1, ...,m}.
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So there is nothing to prove if α = 2, and we only need to consider the case α > 2.
Suppose α > 2 and∫ 0

−∞
|x|γψ̃(x)dx <∞ for some γ ≥ 0. (2.7)

Then by Lemma 2.3 in [12], for any β satisfying 0 < β ≤ min{γ + 1, α − 1}, and
i ∈ {1, ...,m0}, ∫ 0

−M

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx ≤ C (2.8)

for some C > 0 and all M > 0.
Moreover, if we fix M0 > 1 so that (2.5) holds for x ≤ −M0, then for M > M0

and β as above, we have

b̂

∫ −M0

−M

ψ̃(x)|x|βdx ≤ −
m∑
i=1

∫ −M0

−M

ãigi(Ψ(x))|x|βdx

= c

∫ −M0

−M

ψ̃′(x)|x|βdx+

m0∑
i=1

ãidi

∫ −M0

−M

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx

+

m0∑
i=1

ãidiu
∗
i

∫ −M0

−M

∫ ∞

0

|x|βJi(x− y)dydx.

By (2.8),

m0∑
i=1

ãidi

∫ −M0

−M

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx

≤ C

m0∑
i=1

ãidi −
m0∑
i=1

ãidi

∫ 0

−M0

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx

:= C1 <∞ for all M > M0.

Moreover, if we assume additionally that β ≤ α − 2, then we have, for i ∈
{1, ...,m0},∫ −M0

−M

∫ ∞

0

|x|βJi(x− y)dydx

≤
∫ M

0

∫ ∞

0

xβJi(x+ y)dydx =

∫ M

0

∫ ∞

x

xβJi(y)dydx

≤
∫ ∞

0

∫ ∞

x

xβJi(y)dydx =
1

β + 1

∫ ∞

0

yβ+1Ji(y)dy := C2 <∞.

Therefore, for β ∈ (0,min{γ + 1, α− 2}] and M > M0,

b̂

∫ −M0

−M

ψ̃(x)|x|βdx ≤ c

∫ −M0

−M

ψ̃′(x)|x|βdx+ C1 +

m∑
i=1

ãidiu
∗
iC2

≤ c

∫ M

1

xβψ̃′(−x)dx+ C3 ≤ c

∫ M

1

xγ+1ψ̃′(−x)dx+ C3
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≤ cψ̃(−1) + c

∫ M

1

(γ + 1)xγψ̃(−x)dx+ C3 := C4 <∞ by (2.7).

It follows that ∫ 0

−∞
ψ̃(x)|x|βdx <∞. (2.9)

Thus we have proved that (2.7) implies (2.9) for every β ∈ (0,min{γ + 1, α− 2}].
If we write α − 2 = n + θ with n ≥ 0 an integer and θ ∈ (0, 1]. Then by the

above conclusion and an induction argument we see that (2.9) holds with β = n.
Thus (2.7) holds for γ = n. So applying the above conclusion once more we see
that (2.9) holds for every β ∈ (0,min{n+ 1, α− 2}] = (0, α− 2], as desired.

Case 2. α ∈ (1, 2).
Let β = α− 2. As in Case 1, for M > M0,

b̂

∫ −M0

−M

ψ̃(x)|x|βdx

≤ c

∫ −M0

−M

ψ̃′(x)|x|βdx+

m0∑
i=1

ãidi

∫ −M0

−M

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx

+

m0∑
i=1

ãidiu
∗
i

∫ −M0

−M

∫ ∞

0

|x|βJi(x− y)dydx

≤ c

∫ −M0

−M

ψ̃′(x)|x|βdx+ C̃1 +

m0∑
i=1

ãidiu
∗
i

∫ −M0

−M

∫ ∞

0

|x|βJi(x− y)dydx,

where C̃1 > 0 is obtained by observing β ≤ α − 1 and making use of Lemma 2.4
in [12]. By (Jα) and β + 2 = α,∫ −M0

−M

∫ ∞

0

|x|βJi(x− y)dydx ≤
∫ ∞

0

∫ ∞

x

xβJi(y)dydx

=
1

α

∫ ∞

0

yα−1Ji(y)dy := C̃2 <∞.

Due to β < 0, we have∫ −M0

−M

ψ̃′(x)|x|βdx =

∫ M

M0

ψ̃′(−x)xβdx

= ψ̃(−M0)M
β
0 − ψ̃(−M)Mβ + β

∫ M

M0

ψ̃(−x)xβ−1dx ≤ ψ̃(−M0)M
β
0 := C̃3 <∞.

Hence

b̂

∫ −M0

−M

ψ̃(x)|x|βdx ≤ C̃1 + C̃2

m0∑
i=1

ãidiu
∗
i + cC̃3 <∞

for all M > M0, which implies∫ −1

−∞
ψ̃(x)|x|α−2dx <∞.
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The proof is completed. □
Proof of Theorem 2.2.

We have

|gi(Ψ(x))| ≤ L

m∑
j=1

ψj(x) := Lψ̂(x) for some L > 0 and all x < 0, i ∈ {1, ...,m}.

Now for M > 1 and β = α− 2,

L

∫ −1

−M

ψ̂(x)|x|βdx ≥ −
m∑
i=1

∫ −1

−M

gi(Ψ(x))|x|βdx

= c

∫ −1

−M

ψ̂′(x)|x|βdx+

m0∑
i=1

di

∫ −1

−M

[∫ 0

−∞
Ji(x− y)ψi(y)dy − ψi(x)

]
|x|βdx

+

m0∑
i=1

diu
∗
i

∫ −1

−M

∫ ∞

0

|x|βJi(x− y)dydx

≥−
m0∑
i=1

di

∫ −1

−M

ψi(x)|x|βdx+

m0∑
i=1

diu
∗
i

∫ −1

−M

∫ ∞

0

|x|βJi(x− y)dydx

Therefore, with L̃ := L+
∑m0

i=1 di, we have

L̃

∫ −1

−M

ψ̂(x)|x|βdx ≥
m0∑
i=1

diu
∗
i

∫ −1

−M

∫ ∞

0

|x|βJi(x− y)dydx

=

m0∑
i=1

diu
∗
i

∫ M

1

∫ ∞

x

xβJi(y)dydx

=

m0∑
i=1

diu
∗
i

[ ∫ M

1

∫ ∞

1

−
∫ M

1

∫ x

1

]
xβJi(y)dydx

=

m0∑
i=1

diu
∗
i

β + 1

[ ∫ ∞

1

(Mβ+1 − 1)Ji(y)dy +

∫ M

1

(yβ+1 −Mβ+1)Ji(y)dy
]

≥
m0∑
i=1

diu
∗
i

β + 1

[ ∫ M

1

yβ+1Ji(y)dy −
∫ ∞

1

Ji(y)dy
]
→ ∞ as M → ∞,

since β + 2 = α. Therefore (2.1) holds, as we wanted. □

3. Bounds for c0t− h(t), c0t+ g(t) and U(t, x) for ker-
nels of type (Jα)

Let us first observe that it suffices to estimate h(t) − c0t, since that for g(t) + c0t
follows by considering (1.1) with initial function u0(−x).

Theorem 1.1 will follow easily from Lemmas 3.1, 3.3 below and their proofs,
where more general and stronger conclusions are proved.

3.1. Bound from below

Lemma 3.1. In Theorem B, if additionally (J1) holds and the kernel functions
Ji (i = 1, ...,m0) satisfy (Jα) for some α > 1, F is C2 and u∗∇F (u∗)≺≺0, then
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there exists C > 0 such that for t ≥ 0,

h(t)− c0t ≥ −C

[
1 +

∫ t

0

(1 + x)1−αdx+

∫ c0
2 t

0

x2Ĵ(x)dx+ t

∫ ∞

c0
2 t

xĴ(x)dx

]
,

where c0 > 0 is given in Theorem A and Ĵ(x) :=
∑m0

i=1 µiJi(x).

To prove Lemma 3.1, we will need the following result.

Lemma 3.2. Suppose that F = (fi) ∈ C2(Rm,Rm), u∗≻≻0 and

F (u∗) = 0, u∗[∇F (u∗)]T≺≺0.

Then there exists δ0 > 0 small such that for 0 < ϵ ≪ 1 and u, v ∈ [(1 − δ0]u
∗,u∗]

satisfying

(u∗i − ui)(u
∗
j − vj) ≤ Cδ0ϵ for some C > 0 and all i, j ∈ {1, ...,m},

we have

(1− ϵ)[F (u) + F (v)]− F ((1− ϵ)(u+ v − u∗)) ⪯ ϵ

2
u∗[∇F (u∗)]T .

Proof. Define

G(u, v) = (gi(u, v)) := (1− ϵ)[F (u) + F (v)]− F ((1− ϵ)(u+ v − u∗)), u, v ∈ Rm.

For u, v ∈ [(1 − δ0)u
∗,u∗] and each i ∈ {1, ...,m}, we may apply the mean value

theorem to the function

ξi(t) := gi(u
∗ + t(u− u∗),u∗ + t(v − u∗)

to obtain
ξi(1) = ξi(0) + ξ′i(ζi) for some ζi ∈ [0, 1].

Denote
ũ = ũi := u∗ + ζi(u− u∗), ṽ = ṽi := u∗ + ζi(v − u∗).

Then the above identity is equivalent to

gi(u, v) =gi(u
∗,u∗) +∇u gi(ũ, ṽ) · (u− u∗) +∇v gi(ũ, ṽ) · (v − u∗)

=− fi((1− ϵ)u∗) + (1− ϵ)∇fi(ũ) · (u− u∗) + (1− ϵ)∇fi(ṽ) · (v − u∗)

− (1− ϵ)∇fi
(
(1− ϵ)(ũ+ ṽ − u∗)

)
· (u− u∗)

− (1− ϵ)∇fi
(
(1− ϵ)(ũ+ ṽ − u∗)

)
· (v − u∗).

Let us note that ũ ∈ [u,u∗] and ṽ ∈ [v,u∗]. Since F ∈ C2, there is C1 such that

|∂jkfi(u)| ≤ C1 for u ∈ [0,u∗], i, j, k ∈ {1, ...,m}.

A simple calculation gives

(1− ϵ)∇fi(ũ)(u− u∗)− (1− ϵ)∇fi
(
(1− ϵ)(ũ+ ṽ − u∗)

)
· (u− u∗)

=(1− ϵ)
[
∇fi(ũ)−∇fi

(
(1− ϵ)(ũ+ ṽ − u∗)

)]
· (u− u∗) ≤ (1− ϵ)b1

m∑
j=1

(u∗j − uj),
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where

b1 := C1|ũ− (1− ϵ)(ũ+ ṽ − u∗)|

= C1|ϵũ− (1− ϵ)(ṽ − u∗)| ≤ C1

m∑
j=1

[ϵũj + (1− ϵ)(u∗j − ṽj)]

≤ C2ϵ+ C1

m∑
j=1

(u∗j − vj) with C2 := C1

∑m
j=1 u

∗
j .

Similarly,

(1− ϵ)∇fi(ũ) · (v − u∗)− (1− ϵ)∇fi
(
(1− ϵ)(ũ+ ṽ − u∗)

)
· (v − u∗)

≤ (1− ϵ)b2

m∑
j=1

(u∗j − vj),

where

b2 := C1|ϵũ− (1− ϵ)(ũ− u∗)| ≤ C2ϵ+ C1

m∑
j=1

(u∗j − uj).

Thus

gi(u, v) ≤− fi((1− ϵ)u∗) + (1− ϵ)b1

m∑
j=1

(u∗
j − vj) + (1− ϵ)b2

m∑
j=1

(u∗
j − uj)

≤− fi((1− ϵ)u∗) +
[
C2ϵ+ C1

m∑
j=1

(u∗
j − vj)

] m∑
k=1

(u∗
k − uk)

+
[
C2ϵ+ C1

m∑
j=1

(u∗
j − uj)

] m∑
k=1

(u∗
k − vk)

=− fi((1− ϵ)u∗) + C2ϵ

m∑
k=1

[
(u∗

k − uk) + (u∗
k − vk)

]
+ C1

m∑
j,k=1

(u∗
j − vj)(u

∗
k − uk) + C1

m∑
j,k=1

(u∗
j − uj)(u

∗
k − vk)

= ϵ∇fi(u∗) · u∗ + o(ϵ) + C2ϵ

m∑
k=1

[
(u∗

k − uk) + (u∗
k − vk)

]
+ 2C1

m∑
j,k=1

(u∗
j − vj)(u

∗
k − uk),

where o(ϵ)/ϵ→ 0 as ϵ→ 0.

If u, v ∈ [(1− δ0)u
∗,u∗], then

P = (pi) := u∗ − u, Q = (qi) := u∗ − v ∈ [0, δ0u
∗], (3.1)

and hence

gi(u, v) = gi(u
∗ − P,u∗ −Q)
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≤ ϵ∇fi(u∗) · u∗ + o(ϵ) + C2ϵ

m∑
k=1

(pk + qk) + 2C1

m∑
j,k=1

pjqk

≤ ϵ
[
u∗ · ∇fi(u∗) + o(1) + 2(C2 + C1)δ0

]
≤ ϵ

2
u∗ · ∇fi(u∗) for i ∈ {1, ...,m}, 0 < ϵ≪ 1

provided that δ0 > 0 is sufficiently small.

Proof of Lemma 3.1. Let (c0,Φ
c0) be the unique solution pair of (1.4)-(1.5) in

Theorem A. To simplify notations we write Φc0(x) = Φ(x) = (ϕi(x)). By Theorem
2.1 and (Jα), there is C > 0 such that for x < −1, i ∈ {1, ...,m},

m0∑
j=1

∫ ∞

0

Jj(y)|y|α−1dy ≤ C, 0 < u∗i − ϕi(x) ≤
C

xα−1
. (3.2)

Defineh(t) := c0t+ δ(t), t ≥ 0,

U(t, x) := (1− ϵ(t))[Φ(x− h(t)) + Φ(−x− h(t))− u∗], t ≥ 0, x ∈ [−h(t), h(t)],

where ϵ(t) := (t+ θ)1−α and

δ(t) :=K1 −K2

∫ t

0

ϵ(τ)dτ − 2

m0∑
i=1

µiu
∗
i

∫ t

0

∫ − c0
2 (τ+θ)

−∞

∫ ∞

0

Ji(x− y)dydxdτ,

with θ, K1 and K2 large positive constants to be determined.
For any M > 0 and i ∈ A+,∫ −M

−∞

∫ ∞

0

Ji(x− y)dydx =

∫ ∞

M

∫ ∞

x

Ji(y)dydx

=

∫ ∞

M

∫ y

M

Ji(y)dxdy =

∫ ∞

M

(y −M)Ji(y)dy ≤
∫ ∞

M

yJi(y)dy.

Hence, due to

∫ ∞

0

yJi(y)dy <∞ for i ∈ A+, we have

2

m0∑
i=1

µiu
∗
i

∫ t

0

∫ − c0
2 (τ+θ)

−∞

∫ ∞

0

Ji(x− y)dydxdτ

≤ 2

m0∑
i=1

µiu
∗
i

∫ t

0

∫ − c0
2 θ

−∞

∫ ∞

0

Ji(x− y)dydxdτ ≤
[
2

m0∑
i=1

µiu
∗
i

∫ ∞

c0
2 θ

yJi(y)dy
]
t ≤ c0

4
t

provided that θ > 0 is large enough, say θ ≥ θ0.
For any given small ϵ0 > 0, due to Φ(−∞) = u∗ there is K0 = K0(ϵ0) > 0 such

that

(1− ϵ0)u
∗ ⪯ Φ(−K0),

which implies that

Φ(x− h(t)),Φ(−x− h(t)) ∈ [(1− ϵ0)u
∗,u∗] for x∈ [−h(t) +K0, h(t)−K0], (3.3)
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where we have assumed h(0) = K1 > K0.
Clearly

K2

∫ t

0

(τ + θ)1−αdτ ≤ K2θ
1−αt ≤ c0

4
t

provided θ ≥ (4K2/c0)
1/(α−1). Therefore

h(t) ≥ c0
2
t+K1 ≥ c0

2
(t+ θ) > K0 for all t ≥ 0 provided that (3.4)

K1 ≥ c0
2
θ and θ ≥ max

{
(4K2/c0)

1/(α−1), θ0, 2K0/c0

}
. (3.5)

Define

ϵ1 := inf
1≤i≤m

inf
x∈[−K0,0]

|ϕ′i(x)| > 0.

Then Φ′(x− h(t)) < −ϵ11 for x ∈ [h(t)−K0, h(t)],

Φ′(−x− h(t)) < −ϵ11 for x ∈ [−h(t),−h(t) +K0].
(3.6)

Claim 1: With U = (ui), and suitably chosen θ, K1, K2, we have

h′(t) ≤
m∑
i=1

µi

∫ h(t)

−h(t)

∫ ∞

h(t)

Ji(x− y)ui(t, x)dy, t > 0 (3.7)

and

− h′(t) ≥ −
m∑
i=1

µi

∫ h(t)

−h(t)

∫ −h(t)

−∞
Ji(x− y)ui(t, x)dy, t > 0.

Due to U(t, x) = U(t,−x) and J(x) = J(−x), we just need to verify (3.7). We
calculate

m0∑
i=1

µi

∫ h(t)

−h(t)

∫ ∞

h(t)

Ji(x− y)ui(t, x)dydx

=(1− ϵ)

m0∑
i=1

µi

∫ 0

−2h(t)

∫ ∞

0

Ji(x− y)ϕi(x)dydx

+ (1− ϵ)

m0∑
i=1

µi

∫ 0

−2h(t)

∫ ∞

0

Ji(x− y)[ϕi(−x− 2h(t))− u∗i ]dydx

=(1− ϵ)c0 − (1− ϵ)

m0∑
i=1

µi

∫ −2h(t)

−∞

∫ ∞

0

Ji(x− y)ϕi(x)dydx

− (1− ϵ)

m0∑
i=1

µi

∫ 0

−2h(t)

∫ ∞

0

Ji(x− y)[u∗i − ϕi(−x− 2h(t))]dydx.

From (3.4), for t ≥ 0,

(1− ϵ)

m0∑
i=1

µi

∫ −2h(t)

−∞

∫ ∞

0

Ji(x− y)ϕi(x)dydx
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+ (1− ϵ)

m0∑
i=1

µi

∫ −h(t)

−2h(t)

∫ ∞

0

Ji(x− y)[u∗i − ϕi(−x− 2h(t))]dydx

≤ 2

m0∑
i=1

µiu
∗
i

∫ −h(t)

−∞

∫ ∞

0

Ji(x− y)dydx ≤ 2

m0∑
i=1

µiu
∗
i

∫ − c0
2 (t+θ)

−∞

∫ ∞

0

Ji(x− y)dydx.

And by (3.2), we have, for t > 0,

(1− ϵ)

m0∑
i=1

µi

∫ 0

−h(t)

∫ ∞

0

Ji(x− y)[u∗i − ϕi(−x− 2h(t))]dydx

≤
m0∑
i=1

µi[u
∗
i − ϕi(−h(t))]

∫ 0

−h(t)

∫ ∞

0

Ji(x− y)dydx

≤
m0∑
i=1

µi
C

h(t)α−1

∫ 0

−∞

∫ ∞

0

Ji(x− y)dydx

=

m0∑
i=1

µi
C

h(t)α−1

∫ ∞

0

yJi(y)dy ≤
m0∑
i=1

µi
C2

(c0/2)α−1(t+ θ)α−1
≤ K2 − c0

(t+ θ)α−1

if

K2 ≥ c0 +
C2

(c0/2)α−1

m∑
i=1

µi. (3.8)

Hence, when θ,K1 and K2 are chosen such that (3.5) and (3.8) hold, then

m∑
i=1

µi

∫ h(t)

−h(t)

∫ ∞

h(t)

Ji(x− y)ui(t, x)dydx

≥ (1− ϵ)c0 − 2

m∑
i=1

µiu
∗
i

∫ − c0
2 (t+θ)

−∞

∫ ∞

0

Ji(x− y)ϕi(x)dydx− K2 − c0
(t+ θ)α−1

= c0 −K2ϵ(t)− 2

m∑
i=1

µiu
∗
i

∫ − c0
2 (t+θ)

−∞

∫ ∞

0

Ji(x− y)ϕi(x)dydx

= h′(t) for all t > 0,

which finishes the proof of (3.7).
Claim 2: With θ, K1, K2 chosen such that (3.5) and (3.8) hold, and K2

suitably further enlarged (see (3.9) below), θ0 ≫ 1 and 0 < ϵ0 ≪ 1, we have, for all
t > 0 and x ∈ (−h(t), h(t)),

U t(t, x) ⪯D ◦
∫ h(t)

−h(t)

J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x)).

A simple calculation gives

U t =− ϵ′(t)[Φ(x− h(t)) + Φ(−x− h(t))− u∗]

− (1− ϵ)h′(t)[Φ′(x− h(t)) + Φ′(−x− h(t))]

= (α− 1)(t+ θ)−α[Φ(x− h(t)) + Φ(−x− h(t))− u∗]
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− (1− ϵ)[c0 + δ′(t)][Φ′(x− h(t)) + Φ′(−x− h(t))],

and using the equation satisfied by Φ we deduce

− (1− ϵ)c0[Φ
′(x− h(t)) + Φ′(−x− h(t))]

=(1− ϵ)

[
D ◦

∫ h(t)

−∞
J(x− y) ◦ Φ(y − h(t))dy −D ◦ Φ(x− h(t))

+D ◦
∫ ∞

−h(t)

J(−x− y) ◦ Φ(−y − h(t))dy −D ◦ Φ(−x− h(t))

]
+ (1− ϵ)

[
F (Φ(x− h(t))) + F (Φ(−x− h(t)))

]
=D ◦

[ ∫ h(t)

−h(t)

J(x− y) ◦ U(t, y)dy − U(t, x)
]

+ (1− ϵ)

[
D ◦

∫ −h(t)

−∞
J(x− y) ◦ [Φ(y − h(t))− u∗]dy

+D ◦
∫ ∞

h(t)

J(−x− y) ◦ [Φ(−y − h(t))dy − u∗]dy

]
+ (1− ϵ)

[
F (Φ(x− h(t))) + F (Φ(−x− h(t)))

]
⪯D ◦

[ ∫ h(t)

−h(t)

J(x− y) ◦ U(t, y)dy − U(t, x)
]

+ (1− ϵ)
[
F (Φ(x− h(t))) + F (Φ(−x− h(t)))

]
.

Hence

U t ⪯ D ◦
∫ h(t)

−h(t)

J(x− y) ◦ U(t, y)dy − U(t, x) + F (U(t, x)) +A1(t, x) +A2(t, x),

where

A1(t, x) :=(α− 1)(t+ θ)−α[Φ(x− h(t)) + Φ(−x− h(t))− u∗],

A2(t, x) :=− (1− ϵ)δ′(t)[Φ′(x− h(t)) + Φ′(−x− h(t))]

+ (1− ϵ)[F (Φ(x− h(t))) + F (Φ(−x− h(t)))]− F (U(t, x)).

To finish the proof of Claim 2, it remains to check that

A1(t, x) +A2(t, x) ⪯ 0 for t > 0, x ∈ (−h(t), h(t)).

We next prove this inequality for x in the following three intervals, separately:

I1(t) := [h(t)−K0, h(t)], I2(t) := [−h(t),−h(t)+K0], I3(t) := [−h(t)+K0, h(t)−K0].

For x ∈ I1(t), by (3.2),

0 ≻ Φ(−x− h(t))− u∗ ⪰ Φ(K0 − 2h(t))− u∗ ⪰ Φ(−h(t))− u∗ ⪰ −C
h(t)α−1

1

Then by (f2), there exists L > 0 such that

F (Φ(−x− h(t))) = F (Φ(−x− h(t)))− F (u∗) ⪯ L
C

h(t)α−1
1
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and

F (U(t, x)) ⪰(1− ϵ)F
[
Φ(x− h(t)) + Φ(−x− h(t))− u∗

]
⪰(1− ϵ)

[
F (Φ(x− h(t)))− L

C

h(t)α−1
1
]
.

Thus from the definition of δ(t), (3.4) and (3.6), we deduce

A2(t, x) ⪯(1− ϵ)
[
δ′(t)[Φ′(x− h(t)) + Φ′(−x− h(t))] + F (Φ(x− h(t)))

+ F (Φ(−x− h(t)))− F
(
Φ(x− h(t)) + Φ(−x− h(t))− u∗)]

⪯(1− ϵ)

[
−δ′(t)ϵ1 + 2L

C

h(t)α−1

]
1

⪯(1− ϵ)

[
−K2(t+ θ)1−αϵ1 +

2LC

h(t)α−1

]
1

⪯(1− ϵ)(t+ θ)1−α
[
−K2ϵ1 + 2LC(2/c0)

α−1
]
1.

Moreover,

A1(t, x) ⪯ (α− 1)(t+ θ)−αu∗ ≤ 2|u∗|(1− ϵ)(α− 1)(t+ θ)−α1,

where |u∗| := max1≤i≤m u∗i and by enlarging θ0 we have assumed that ϵ(t) ≤ θ−α
0 <

1/2. Hence

A1(t, x) +A2(t, x) ⪯ (1− ϵ)(t+ θ)1−α
[
−K2ϵ1 + 2LC(2/c0)

α−1 + 2|u∗|αθ−1
0

]
1 ⪯ 0

if additionally

K2 ≥ ϵ−1
1

[
2LC(2/c0)

α−1 + 2|u∗|αθ−1
0

]
. (3.9)

This proves the desired inequality for x ∈ I1(t).
Since A1(t, x) + A2(t, x) is even in x, the desired inequality is also valid for

x ∈ I2(t) = −I1(t). It remains to prove the desired inequality for x ∈ I3(t).
We apply Lemma 3.2 with u = Φ(x− h(t)) and v = Φ(−x− h(t)). Let

P (t, x) = (pi(t, x)) := u∗ − Φ(x− h(t)), Q(t, x) = (qi(t, x)) := u∗ − Φ(−x− h(t)).

Then by (3.3) we have

P (t, x), Q(t, x) ∈ [0, ϵ0u
∗] for x ∈ I3(t), t > 0. (3.10)

Moreover, since min{x− h(t),−x− h(t)} ≤ −h(t) always holds, by (3.2) and (3.4),
if we denote C3 := C(c0/2)

1−α, then for x ∈ I3(t), t > 0, j, k ∈ {1, ...,m},

pj(t, x)qk(t, x) ≤
Cϵ0

h(t)α−1
≤ C3ϵ0ϵ(t). (3.11)

Let Ai
2 denote the i-th component of A2. Now due to δ′(t) < 0 and Φ′≺≺0, we have,

by (3.10), (3.11) and Lemma 3.2, assuming ϵ0 > 0 is sufficiently small,

Ai
2(t, x) ≤ gi(u

∗ − P,u∗ −Q) ≤ ϵ

2
u∗ · ∇fi(u∗)
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for x ∈ I3(t), t > 0, i ∈ {1, ...,m} and all θ0 ≫ 1. Since

Ai
1(t, x) ≤ (α− 1)(t+ θ)−αu∗i ≤ α|u∗i |θ−1

0 ϵ(t),

we thus obtain

Ai
1+A

i
2 ≤ ϵ

(
u∗·∇fi(u∗)/2+αu∗i θ

−1
0

)
< 0 for x ∈ I3(t), t > 0, i ∈ {1, ...,m}, θ0 ≫ 1,

provided that ϵ0 is sufficiently small. The proof of Claim 2 is now complete.

Claim 3: There exists t0 > 0 such that g(t+ t0) ≤ −h(t), h(t+ t0) ≥ h(t) for t ≥ 0,

U(t+ t0, x) ⪰ U(t, x) for t ≥ 0, x ∈ [−h(t), h(t)].
(3.12)

It is clear that

U(t,±h(t)) = (1− ϵ(t))[Φ(−2h(t))− u∗] ≺ 0 for t ≥ 0.

Since spreading happens for (U, g, h), there exists a large constant t0 > 0 such that

g(t0) < −K1 = −h(0) and h(0) = K1 < h(t0),

U(t0, x) ⪰ (1− θ1−α)u∗ ⪰ U(0, x) for x ∈ [−h(0), h(0)].

which together with the inequalities proved in Claims 1 and 2 allows us to apply the
comparison principle (Lemma 2.3 and Remark 2.4 in [11]) to conclude that (3.12)
is valid.

Claim 4: There exists C > 0 such that

δ(t) ≥ −C
[
1 +

∫ t

0

(1 + x)1−αdx+

∫ c0
2 t

0

x2Ĵ(x)dx+ t

∫ ∞

c0
2 t

xĴ(x)dx
]
.

Clearly, for large θ,∫ t

0

ϵ(τ)dτ =

∫ t

0

(x+ θ)1−αdx <

∫ t

0

(x+ 1)1−αdx.

By changing order of integrations we have∫ t

0

∫ − c0
2 (τ+θ)

−∞

∫ ∞

0

Ji(x− y)dydxdτ ≤
∫ t

0

∫ − c0
2 τ

−∞

∫ ∞

0

Ji(x− y)dydxdτ

=

∫ t

0

∫ ∞

c0
2 τ

[
y − c0

2
τ
]
Ji(y)dydτ ≤

∫ t

0

∫ ∞

c0
2 τ

yJi(y)dydτ

=
c0
2

∫ c0
2 t

0

y2Ji(y)dy + t

∫ ∞

c0
2 t

yJi(y)dy.

The desired inequality now follows directly from the definition of δ(t). □
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3.2. Bound from above

Next we prove an upper bound for h(t)− c0t. Let us note that we do not need the
condition (Jα) (for Ji with i ∈ A0) in the following result.

Lemma 3.3. Under the assumptions of Theorem B (i), if (J1) holds, and addi-
tionally F is C2 and u∗[∇F (u∗)]T≺≺0, then there exists C > 0 such that

h(t)− c0t ≤ C for all t > 0. (3.13)

Proof. As in the proof of Lemma 3.1, (c0,Φ
c0) denotes the unique solution pair

of (1.4)-(1.5) in Theorem A, and to simplify notations we write Φc0(x) = Φ(x) =
(ϕi(x)).

For fixed β > 1, and some large constants θ > 0 and K1 > 0 to be determined,
define  h̄(t) := c0t+ δ(t), t ≥ 0,

U(t, x) := (1 + ϵ(t))Φ(x− h̄(t)), t ≥ 0, x ≤ h̄(t),

where ϵ(t) := (t+ θ)−β and

δ(t) := K1 +
c0

1− β
[(t+ θ)1−β − θ1−β ].

Clearly, there is a large constant t0 > 0 such that

U(t+ t0, x) ⪯ (1 +
1

2
ϵ(0))u∗ for t ≥ 0, x ∈ [g(t), h(t)].

Due to Φ(−∞) = u∗, we may choose sufficient large K1 > 0 such that h(0) = K1 >
2h(t0), −h(0) = −K1 < 2g(t0), and for x ∈ [g(t0), h(t0)],

U(0, x) = (1 + ϵ(0))Φ(−K1/2) ≻ (1 +
1

2
ϵ(0))u∗ ⪰ U(t0, x). (3.14)

Claim 1: We have, with U = (ūi),

h̄′(t) ≥
m∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)

Ji(x− y)ūi(t, x)dy for t > 0.

A direct calculation shows

m∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)

Ji(x− y)ūi(t, x)dy ≤
m∑
i=1

µi

∫ h̄(t)

−∞

∫ +∞

h̄(t)

Ji(x− y)ūi(t, x)dy

= (1 + ϵ)

m∑
i=1

µi

∫ 0

−∞

∫ +∞

0

Ji(x− y)ϕi(x)dy = (1 + ϵ)c0 = h̄′(t),

as desired.
Claim 2: If θ > 0 is sufficiently large, then for t > 0 and x ∈ (g(t + t0), h(t)),

we have

U t(t, x) ⪰D ◦
∫ h̄(t)

g(t+t0)

J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x)). (3.15)
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By (1.4), we have

U t(t, x) =− (1 + ϵ)[c0 + δ′(t)]Φ′(x− h̄(t)) + ϵ′(t)Φ(x− h(t))

=− (1 + ϵ)c0Φ
′(x− h̄(t))− (1 + ϵ)δ′(t)Φ′(x− h̄(t))

− β(t+ θ)−β−1Φ(x− h(t))

⪰D ◦
∫ h̄(t)

g(t0+t)

J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x)) +A(t, x)

with

A(t, x) :=(1 + ϵ)F (Φ(x− h̄(t)))− F ((1 + ϵ)Φ(x− h̄(t)))

− (1 + ϵ)δ′(t)Φ′(x− h̄(t))− β(t+ θ)−β−1Φ(x− h(t)).

To prove the claim, we need to show

A(t, x) ⪰ 0 for x ∈ [g(t0 + t), h̄(t)] and t > 0.

Let ϵ0, ϵ1 andK0 be given as in the proof of Lemma 3.1. For x ∈ [h̄(t)−K0, h̄(t)]
and t > 0, by (3.6), we have

A(t, x) ⪰− (1 + ϵ)δ′(t)Φ′(x− h̄(t))− β(t+ θ)−β−1Φ(x− h(t))

=− (1 + ϵ)c0(t+ θ)−βΦ′(x− h̄(t))− β(t+ θ)−β−1Φ(x− h(t))

⪰c0(t+ θ)−βϵ11− β(t+ θ)−β−1u∗ ⪰ (t+ θ)−β−1
[
c0θϵ11− βu∗] ⪰ 0,

provided θ is large enough.
We next estimate A(t, x) for x ∈ [g(t+ t0), h(t)−K0]. Define

G(u) = (gi(u)) := (1 + ϵ)F (u)− F ((1 + ϵ)u), u, v ∈ Rm.

Then for u, v ∈ [0,u∗] and i ∈ {1, ...,m},

gi(u) =gi(u
∗) +∇gi(ũ) · (u− u∗)

=− fi((1 + ϵ)u∗) + (1 + ϵ)∇fi(ũ) · (u− u∗)− (1 + ϵ)∇fi((1 + ϵ)ũ) · (u− u∗)

=− fi((1 + ϵ)u∗) + (1 + ϵ)

[
∇fi(ũ)−∇fi((1 + ϵ)ũ)

]
· (u− u∗)

for some ũ = ũi ∈ [u,u∗]. Since F ∈ C2, there exists C1 > 0 such that

|∂jkfi(u)| ≤ C1 for u ∈ [0, û], i, j, k ∈ {1, ...,m}.

Therefore

gi(u) ≥− fi((1 + ϵ)u∗)− (1 + ϵ)b1

m∑
j=1

(u∗j − uj)

with

b1 := C1|ϵũ| ≤ C1ϵ|u∗| := C2ϵ.
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Thus

gi(u) ≥− ϵ∇fi(u∗) · u∗ + o(ϵ)− 2C2ϵ

m∑
j=1

(u∗j − uj).

By (3.3) we have

−ϵ0u∗ ⪯ Φ(x− h̄(t))− u∗≺≺0 for x ∈ [g(t0 + t), h(t)−K0], t > 0. (3.16)

Using (3.3), δ′ > 0, Φ′ ⪯ 0 and ϵ = (t+ θ)−β ≤ θ−β , we obtain

Ai(t, x) ≥(1 + ϵ)fi(Φ(x− h̄(t)))− fi((1 + ϵ)Φ(x− h̄(t)))− β(t+ θ)−β−1ϕi(x− h(t))

= gi(Φ(x− h̄(t))− β(t+ θ)−β−1ϕi(x− h(t))

≥ ϵ

[
− u∗ · ∇fi(u∗) + o(1)− 2ϵ0C2

m∑
j=1

u∗j − βθ−β−1u∗i

]
> 0 for x ∈ [g(t0 + t), h(t)−K0], t > 0, i ∈ {1, ...,m},

provided θ is large enough and ϵ0 > 0 is small enough, since u∗[∇F (u∗)]T≺≺0. We
have now proved (3.15).

Due to the inequalities proved in Claims 1 and 2, (3.14) and

U(t, g(t+ t0)) > 0, U(t, h̄(t)) = (1 + ϵ)Φ(h̄(t)− h̄(t)) = 0 for t ≥ 0,

we are now able to apply the comparison principle (see Lemma 2.3 and Remark 2.4
in [11]) to conclude that

h(t+ t0) ≤ h̄(t), t ≥ 0,

U(t+ t0, x) ⪯ U(t, x), t ≥ 0, x ∈ [g(t+ t0), h(t)].

The desired inequality (3.13) follows directly from δ(t) ≤ K1 +
c0

β−1θ
1−β and h(t+

t0) ≤ h̄(t). The proof is complete.

3.3. Completion of the proof of Theorem 1.1

Proof of Theorem 1.1. Since every Ji with i ∈ A+ satisfies (J3) and every Ji
with i ∈ A0 satisfies (Jα) with α > 2, from the proof of Lemmas 3.1 and 3.3, it is
easily seen that

C0 := sup
t>0

[
|h̄(t)− c0t|+ |h(t)− c0t|

]
<∞. (3.17)

Hence for large fixed θ > 0 and all large t, say t ≥ t0,

[g(t), h(t)] ⊃ [−h(t− t0), h(t− t0)] ⊃ [−c0t+ C, c0t− C] with C := C0 + c0t0,

and

U(t, x) ⪰ U(t, x) ⪰ (1− ϵ(t)]
[
Φc0(x− c0t+ C) + Φc0(−x− c0t+ C)− u∗]

for x ∈ [−c0t+C, c0t−C], where ϵ(t) = (t+ θ)1−α. This inequality for U(t, x) also
holds for x ∈ [g(t), h(t)] if we assume that Φc0(x) = 0 for x > 0, since when x lies
outside of [−c0t+ C, c0t− C] the right side is ≺ 0.
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By considering (1.1) with initial function u0(−x), from the proof of Lemma 3.3
we see that the following analogous inequalities hold:

g(t) ≥ −h̄(t− t0), U(t, x) ⪯ (1 + ϵ(t))Φc0(−x− h̄(t− t0))

for t > t0 and x ∈ [g(t), h(t)]. We thus have

[g(t), h(t)] ⊂ [−h̄(t− t0), h̄(t− t0)] ⊂ [−c0t− C, c0t+ C],

and

U(t, x) ⪯ U(t, x) ⪯ (1− ϵ(t))min
{
Φc0(x− c0t− C),Φc0(−x− c0t− C)

}
for t > t0 and x ∈ [g(t), h(t)]. The proof is complete. □

4. Growth rate of c0t− h(t) and c0t+ g(t) for kernels
of type (Jγ∞)

Recall that (U(t, x), g(t), h(t)) is the unique positive solution of (1.1), and we assume
that spreading happens. Under the assumptions of Theorem B (i), we have

− lim
t→∞

g(t)

t
= lim

t→∞

h(t)

t
= c0 > 0.

In this section we determine the order of growth for c0t − h(t) and c0t + g(t)
when the kernel functions {Ji : i ∈ A+} have a dominating one Ji∗ , and there are
γ ∈ (2, 3] and ω ∈ [γ − 1,∞) such thatJi∗(x) ≈ |x|−γ for |x| ≫ 1,

Ji satisfies (J
ω) for all i ∈ A0,

(4.1)

Clearly, (4.1) implies that every Ji (i = 1, ...,m0) satisfies (J
ω). In particular, (J1)

holds.
The main result of this section is the following theorem.

Theorem 4.1. In Theorem B, if additionally {Ji : i ∈ A+} have a dominating one
Ji∗ and (4.1), (1.6) hold, then for t≫ 1,

c0t+ g(t), c0t− h(t) ≈

t
3−γ if γ ∈ (2, 3],

ln t if γ = 3.

It is clear that the conclusion of Theorem 1.2 follows directly from Theorem 4.1.
By (f1) and the Perron-Frobenius theorem, we know that the matrix ∇F (0) −

D̃ with D̃ = diag(d1, ..., dm) has a principal eigenvalue λ̃1 with a corresponding
eigenvector V ∗ = (v∗1 , · · · , v∗m)≻≻0, namely

V ∗
(
[∇F (0)]T − D̃

)
= λ̃1V

∗. (4.2)

To prove Theorem 4.1, the difficult part is to find the lower bound for c0t−h(t),
which will be established according to the following two cases: (i) λ̃1 < 0, (ii)
λ̃1 ≥ 0.

As before, we will only estimate c0t − h(t), since the estimate for c0t + g(t)
follows by making the variable change x→ −x in the initial functions.
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4.1. The case λ̃1 < 0

Lemma 4.1. Suppose that the conditions in Theorem 4.1 are satisfied. If λ̃1 < 0,
then there exists σ = σ(γ) > 0 such that for all large t > 0,

c0t− h(t) ≥

σ t
3−γ if γ ∈ (2, 3),

σ ln t if γ = 3.
(4.3)

Proof. Let β := γ − 2 ∈ (0, 1], and (c0,Φ) be the solution of (1.4)-(1.5). Defineh̄(t) := c0t+ δ(t), t ≥ 0,

U(t, x) := (1 + ϵ(t))Φ(x− h̄(t)) + ρ(t, x), t ≥ 0, x ≤ h̄(t),

where

ϵ(t) := K1(t+ θ)−β , δ(t) := K2 −K3

∫ t

0

ϵ(τ)dτ, ρ(t, x) := K4ξ(x− h(t))ϵ(t)V ∗,

with ξ ∈ C2(R) satisfying

0 ≤ ξ(x) ≤ 1, ξ(x) = 1 for |x| < ϵ̃, ξ(x) = 0 for |x| > 2ϵ̃, (4.4)

and the positive constants θ, K1,K2,K3,K4, ϵ̃ are to be determined.
We are going to show that, it is possible to choose these constants and some

t0 > 0 such that

U t(t, x) ⪰ D ◦
∫ h̄(t)

g(t+t0)

J(x− y) ◦ U(t, y)dy − U(t, x) + F (U(t, x)) (4.5)

for t > 0, x ∈ (g(t+ t0), h(t)),

h̄′(t) ≥
m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)

Ji(x− y)ūi(t, x)dy for t > 0, (4.6)

U(t, g(t+ t0)) ⪰ 0, U(t, h̄(t)) ⪰ 0 for t ≥ 0, (4.7)

U(0, x) ⪰ U(t0, x), h(0) ≥ h(t0) for x ∈ [g(t0), h(t0)]. (4.8)

If these inequalities are proved, then by the comparison principle (Lemma 2.3 in
[11]), we obtain

h(t) ≥ h(t+ t0), U(t, x) ⪰ U(t+ t0, x) for t > 0, x ∈ [g(t+ t0), h(t+ t0)],

and the desired inequality for c0t− h(t) follows easily from the definition of h(t).
Therefore, to complete the proof, it suffices to prove the above inequalities. We

divide the arguments below into several steps.
Firstly, by Theorem B, there is C1 > 1 such that

−g(t), h(t) ≤ (c0 + 1)t+ C1 for t ≥ 0. (4.9)

Let us also note that (4.7) holds trivially.
Step 1. Choose t0 = t0(θ) and K2 = K2(θ) so that (4.8) holds.
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For later analysis, we need to find t0 = t0(θ) and K2 = K2(θ) so that (4.8) holds
and at the same time they have less than linear growth in θ.

Let W ∗≻≻0 be an eigenvector corresponding to the maximal eigenvalue λ̃ of
∇F (u∗). By our assumptions on F , we have λ̃ < 0. Hence there exists small ϵ∗ > 0
such that for any k ∈ (0, ϵ∗],

F (u∗ + kW ∗) = kW ∗
(
[∇F (u∗)]T + o(1)Im

)
⪯ k

2
λ̃W ∗≺≺0,

F (u∗ − kW ∗) = −kW ∗
(
[∇F (u∗)]T + o(1)Im

)
⪰ −k

2
λ̃W ∗≻≻0.

It follows that, for σ̃ = λ̃/2,

W (t) = u∗ + ϵ∗e
σ̃tW ∗, W (t) = u∗ − ϵ∗e

σ̃tW ∗

are a pair of upper and lower solutions of the ODE system W ′ = F (W ) with initial
data W (0) ∈ [u∗ − ϵ∗W

∗,u∗ + ϵ∗W
∗].

By (f4), the unique solution of the ODE system

W ′ = F (W ), W (0) = (∥u10∥∞, · · · , ∥um0∥∞)

satisfies limt→∞W (t) = u∗. Hence there exists t∗ > 0 such that

W (t∗) ∈ [u∗ − ϵ∗W
∗,u∗ + ϵ∗W

∗].

Using the above defined upper solution W (t) we obtain

W (t+ t∗) ⪯ u∗ + ϵ∗e
σ̃tW ∗ ⪯ (1 + ϵ̃∗e

σ̃t)u∗ for t ≥ 0,

where ϵ̃∗ > 0 is chosen such that ϵ∗W
∗ ≤ ϵ̃∗u

∗. By the comparison principle we
deduce

U(t+ t∗, x) ⪯W (t+ t∗) ⪯ (1 + ϵ̃∗e
σ̃t)u∗ for t ≥ 0, x ∈ [g(t+ t∗), h(t+ t∗)].

Hence

U(t0, x) ⪯ (1 +
ϵ(0)

2
)u∗ for x ∈ [g(t0), h(t0)]

provided that

t0 = t0(θ) :=
β

|σ̃|
ln θ +

ln(2ϵ̃∗/K1)

|σ̃|
+ t∗.

By (4.1), we have ∫
R
J(x)|x|ω−1dx <∞.

Then by Theorem 1.3, there is C2 such that

u∗ − Φ(x) ≤ C2

|x|ω−1
u∗ for x ≤ −1.

Hence, for K > 1 we have

(1 + ϵ(0))Φ(−K)− (1 + ϵ(0)/2)u∗ ⪰ (1 + ϵ(0))
[
1− C2K

1−ω
]
u∗ − (1 + ϵ(0)/2)u∗
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=
[
K1θ

−β/2− C2K
1−ω(1 +K1θ

−β)
]
u∗ ⪰ 0

provided that

Kω−1 ≥ 2C2 +
2C2

K1
θβ .

Therefore, for all K1 ∈ (0, 1], θ ≥ 1 and K ≥ (4C2/K1)
1/(ω−1)θβ/(ω−1), we have

(1 + ϵ(0))Φ(−K)− (1 + ϵ(0)/2)u∗ ⪰ 0.

Now define

K2(θ) := 2max
{
(4C2/K1)

1/(ω−1)θβ/(ω−1), (c0 + 1)t0(θ) + C1

}
. (4.10)

Then for K2 = K2(θ) we have

h(0) = K2 > K2/2 ≥ (c0 + 1)t0 + C1 ≥ h(t0),

and for x ∈ [g(t0), h(t0)],

U(0, x) = (1 + ϵ(0))Φ(x−K2) ⪰ (1 + ϵ(0))Φ(−K2/2) ⪰ (1 + ϵ(0)/2)u∗.

Thus (4.8) holds if t0 and K2 are chosen as above, for any θ ≥ 1, K1 ∈ (0, 1].
Step 2. We verify that (4.6) holds if θ, K1,K3 and K4 are chosen suitably.
Denote

C3 :=

m0∑
i=1

µi

∫ 0

−∞

∫ +∞

0

Ji(x− y)dydx =

m0∑
i=1

µi

∫ +∞

0

Ji(y)ydy. (4.11)

With ρ = (ρi), a direct calculation shows

m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)

Ji(x− y)ūi(t, x)dydx

=

m0∑
i=1

µi

∫ h̄(t)

−∞

∫ +∞

h̄(t)

Ji(x− y)ūi(t, x)dydx

−
m0∑
i=1

µi

∫ g(t+t0)

−∞

∫ +∞

h̄(t)

Ji(x− y)ūi(t, x)dydx

=

m0∑
i=1

µi

∫ 0

−∞

∫ +∞

0

Ji(x− y)[(1 + ϵ)ϕi(x) + ρi(t, x+ h(t))]dydx

−
m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0

Ji(x− y)[(1 + ϵ)ϕi(x) + ρi(t, x+ h(t))]dydx

≤(1 + ϵ)c0 + C3K4ϵ|V ∗| −
m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0

Ji(x− y)(1 + ϵ)ϕi(x)dydx

≤(1 + ϵ)c0 + C3K4ϵ|V ∗| −
m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0

Ji(x− y)ϕi(x)dydx,

where
|V ∗| := max

1≤i≤m
v∗i .
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By elementary calculus, for any k > 1,∫ −k

−∞

∫ ∞

0

1

|x− y|2+β
dydx =

∫ −k

−∞

∫ ∞

−x

1

y2+β
dydx =

∫ ∞

k

∫ ∞

x

1

y2+β
dydx

=

∫ ∞

k

∫ y

k

1

y2+β
dxdy =

∫ ∞

k

y − k

y2+β
dy = β−1(1 + β)−1k−β .

(4.12)

From (4.1) and (4.9), there exists C4 > 0 such that

m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0

Ji(x− y)ϕi(x)dydx

≥C4

[
min

1≤i≤m
ϕi(g(t+ t0)− h̄(t))

] ∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0

1

|x− y|2+β
dydx

≥ϕ∗C4

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0

1

|x− y|2+β
dydx =

ϕ∗C4

β(1 + β)
(|g(t+ t0)|+ h̄(t))−β

≥ ϕ∗C4

β(1 + β)
[(c0 + 1)(t+ t0) + C1 + c0t+K2]

−β

=
ϕ∗C4

β(1 + β)(2c0 + 1)β

[
t+

(c0 + 1)t0 + C1 +K2

(2c0 + 1)

]−β

,

(4.13)

where ϕ∗ = min
1≤i≤m

ϕi(−1) ≤ min
1≤i≤m

ϕi(−K2) ≤ min
1≤i≤m

ϕi(g(t+t0)−h̄(t)). Therefore,
for all large θ > 0 so that

θ >
(c0 + 1)t0 + C1 +K2

(2c0 + 1)
, (4.14)

which is possible since t0(θ) and K2(θ) grow slower than linearly in θ, we have

m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)

Ji(x− y)ūi(t, x)dydx

≤(1 + ϵ(t))c0 + C4K4ϵ(t)|V ∗| − ϕ∗C4

β(1 + β)(2c0 + 1)β
(t+ θ)

−β

=c0 + ϵ(t)

[
c0 + C4K4|V ∗| − ϕ∗C4

K1β(1 + β)(2c0 + 1)β

]
≤ c0 −K3ϵ(t) = h′(t)

provided that K1,K3 and K4 are small enough so that

K1(c0 + C4K4|V ∗|+K3) ≤
ϕ∗C4

β(1 + β)(2c0 + 1)β
. (4.15)

Therefore (4.6) holds if we first fix K1,K3,K4 small so that (4.15) holds, and then
choose θ large such that (4.14) is satisfied.

Step 3. We show that (4.5) holds when K3 and K4 are chosen suitably small
and θ is large.

From (1.4), we deduce

U t(t, x) =− (1 + ϵ)[c0 + δ′(t)]Φ′(x− h̄(t)) + ϵ′(t)Φ(x− h(t)) + ρt(t, x),

and

− (1 + ϵ)c0Φ
′(x− h̄(t))
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=(1 + ϵ)
[
D ◦

∫ h̄(t)

−∞
J(x− y) ◦ Φ(y − h̄(t))dy −D ◦ Φ(x− h̄(t)) + F (Φ(x− h̄(t)))

]
=D ◦

∫ h̄(t)

−∞
J(x− y) ◦ [U(t, y)−ρ(t, y)]dy−D ◦ [U(t, x)− ρ(t, x)] + (1 + ϵ)F (Φ(x− h̄(t)))

=D ◦
∫ h̄(t)

g(t+t0)

J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x))

+D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ϵ)F (Φ(x− h̄(t)))− F (U(t, x)).

Hence

U t(t, x) =D ◦
∫ h̄(t)

g(t+t0)

J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x))

+A(t, x)

with

A(t, x) :=D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ϵ)F (Φ(x− h̄(t)))− F (U(t, x))

− (1 + ϵ)δ′(t)Φ′(x− h̄(t)) + ϵ′(t)Φ(x− h(t)) + ρt(t, x).

Therefore to complete this step, it suffices to show that we can choose K3,K4

and θ such that A(t, x) ⪰ 0. We will do that for x ∈ [h̄(t) − ϵ̃, h̄(t)] and for
x ∈ [g(t0 + t), h̄(t)− ϵ̃] separately.

Claim 1. If ϵ̃ > 0 in (4.4) is sufficiently small and θ is sufficiently large, then

D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ϵ)F (Φ(x− h̄(t)))− F (U(t, x))

⪰ |λ̃1|
4
ρ(t, x) ≻ 0 for x ∈ [h̄(t)− ϵ̃, h̄(t)].

(4.16)

Since λ̃1 < 0 and D ◦ V ∗ = V ∗D̃, using (4.2) we deduce, for x ∈ [h̄(t)− ϵ̃, h̄(t)],

D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
=K4ϵ(t)

[
D ◦ V ∗ −D ◦

∫ 0

−∞
J(x− h̄(t)− y) ◦ ξ(y)V ∗dy

]
⪰K4ϵ(t)

[
D ◦ V ∗ −D ◦

∫ 0

−2ϵ̃

J(x− h̄(t)− y) ◦ V ∗dy
]

=K4ϵ(t)
[
V ∗∇F (0)− λ̃1V

∗ −D ◦
∫ h̄(t)−x

h̄(t)−x−2ϵ̃

J(y) ◦ V ∗dy
]

⪰K4ϵ(t)
[
V ∗∇F (0)− λ̃1V

∗ −D ◦
∫ ϵ̃

−2ϵ̃

J(y) ◦ V ∗dy
]

⪰K4ϵ(t)
[
V ∗∇F (0)− λ̃1

2
V ∗

]
= ρ(t, x)∇F (0)− λ̃1

2
ρ(t, x),

provided ϵ̃ ∈ (0, ϵ1] for some small ϵ1 > 0.
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On the other hand, for x ∈ [h̄(t)− ϵ̃, h̄(t)], by (f2) we obtain

(1 + ϵ)F (Φ(x− h̄(t)))− F (U(t, x))

⪰ F ((1 + ϵ)Φ(x− h̄(t)))− F (U(t, x)) = F (U(t, x)− ρ(t, x))− F (U(t, x)),

and

0 ⪯ U(t, x) ⪯ (1 + ϵ)Φ(ϵ̃) +K4ϵV
∗ ⪯ 2Φ(ϵ̃) + θ−βV ∗,

So the components of U(t, x) and ρ(t, x) are small for small ϵ̃ and large θ. It follows
that

F (U(t, x)− ρ(t, x))− F (U(t, x)) = −ρ(t, x)[∇F (U(t, x)) + o(1)Im]

= −ρ(t, x)[∇F (0) + o(1)Im] ⪰ −ρ(t, x)∇F (0) + λ̃1
4
ρ(t, x)

for x ∈ [h̄(t)− ϵ̃, h̄(t)], provided that ϵ̃ is small and θ is large. Hence, (4.16) holds.
Denote

M := max
1≤i≤m

sup
x≤0

|ϕ′i(x)|.

For x ∈ [h̄− ϵ̃, h̄], by (4.16) we have

A(t, x) ⪰|λ̃1|
4
ρ(t, x)− (1 + ϵ)δ′(t)Φ′(x− h̄(t)) + ϵ′(t)Φ(x− h(t)) + ρt(t, x)

⪰ϵ(t)
[
|λ̃1|
4
K4V

∗ − 2K3M1− β(t+ θ)−1u∗ −K4β(t+ θ)−1V ∗
]

⪰ϵ(t)
[
|λ̃1|
4
K4V

∗ − 2K3M1− θ−1β
(
u∗ +K4V

∗
)]

⪰ 0

provided that we first fix K3 and K4 so that (4.15) holds and at the same time

|λ̃1|
4
K4V

∗ − 2K3M1≻≻0, (4.17)

and then choose θ sufficiently large.
Next, for fixed small ϵ̃ > 0, we estimate A(t, x) for x ∈ [g(t+ t0), h̄(t)− ϵ̃].
Claim 2. For any given 1 ≫ η > 0, there is c1 = c1(η) such that

(1 + ϵ)F (v)− F ((1 + ϵ)v) ⪰ c1ϵ1 for v ∈ [η1,u∗] and 0 < ϵ≪ 1. (4.18)

Indeed, by (1.6) there exists c1 > 0 depending on η such that

F (v)− v[∇F (v)]T ⪰ 2c11 for v ∈ [η1,u∗].

Since

lim
ϵ→0

(1 + ϵ)F (v)− F ((1 + ϵ)v)

ϵ
= lim

ϵ→0

ϵF (v)− [F (v + ϵv)− F (v)]

ϵ

=F (v)− v[∇F (v)]T ⪰ 2c11
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uniformly for v ∈ [η1,u∗], there exists ϵ0 > 0 small so that

(1 + ϵ)F (v)− F ((1 + ϵ)v)

ϵ
⪰ c11

for v ∈ [η1,u∗] and ϵ ∈ (0, ϵ0]. This proves Claim 2.
By Claim 2 and the Lipschitz continuity of F , there exist positive constants Cl

and Cf such that, for v = Φ(x− h̄(t)) ∈ [Φ(−ϵ̃),u∗],

(1 + ϵ)F (v)− F ((1 + ϵ)v + ρ)

= (1 + ϵ)F (v)− F ((1 + ϵ)v) + F ((1 + ϵ)v)− F ((1 + ϵ)v + ρ) ⪰ Clϵ1− CfK4ϵ1

when ϵ = ϵ(t) is small.
We also have

D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, x)dy

]
⪰ −D ◦

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, x)dy

⪰ −K4ϵ(t)D ◦ V ∗ ⪰ −CdK4ϵ(t)1 for some Cd > 0,

and

ρt(t, x) = −ξ′h̄′K4ϵ(t)V
∗ + ξK4ϵ

′(t)V ∗ ⪰ −ξ∗K4ϵ(t)V
∗ −K4β(t+ θ)−1ϵ(t)V ∗

⪰ −(ξ∗ + βθ−1)K4ϵ(t)V
∗ with ξ∗ := c0 maxx∈R |ξ′(x)|.

Using these we obtain, for x ∈ [g(t0 + t), h̄(t)− ϵ̃],

A(t, x) ⪰− CdK4ϵ(t)1+ (1 + ϵ)F (Φ(x− h̄(t)))− F (Ū(t, x)) + 2Mδ′(t)1+ ϵ′(t)u∗ + ρt(t, x)

⪰ Clϵ(t)1− (Cf + Cd)K4ϵ(t)1− 2MK3ϵ(t)1

− β(t+ θ)−1ϵ(t)u∗ − (ξ∗ + βθ−1)K4ϵ(t)V
∗

= ϵ(t)
[
Cl1−K4(Cf + Cd)1− 2MK31− β(t+ θ)−1u∗ − (ξ∗ + βθ−1)K4V

∗
]

⪰ ϵ(t)
[
Cl1−K4(Cf + Cd)1− 2MK31− ξ∗K4V

∗ − βθ−1(u∗ +K4V
∗)] ⪰ 0

provided that we first choose K3 and K4 small such that

Cl1−K4(Cf + Cd)1− 2MK31− ξ∗K4V
∗≻≻0

while keeping both (4.15) and (4.17) hold, and then choose θ > 0 sufficiently large.
Therefore, (4.5) holds when K3,K4 and θ are chosen as above. The proof of the

lemma is now complete.

4.2. The case λ̃1 ≥ 0

Lemma 4.2. Suppose that the conditions in Theorem 4.1 are satisfied. If λ̃1 ≥ 0,
then (4.3) still holds.

Proof. This is a modification of the proof of Lemma 4.1. We will use similar
notations. Let β = γ − 2 ∈ (0, 1], and (c0,Φ) be the solution of (1.4)-(1.5). For
fixed ϵ̃ > 0, let ξ ∈ C2(R) satisfy

0 ≤ ξ(x) ≤ 1, ξ(x) = 1 for |x| < ϵ̃, ξ(x) = 0 for |x| > 2ϵ̃.
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Defineh̄(t) := c0t+ δ(t), t ≥ 0,

U(t, x) := (1 + ϵ(t))Φ
(
x− h̄(t)− λ(t)

)
− ρ(t, x), t ≥ 0, x ≤ h̄(t),

where

ϵ(t) := K1(t+ θ)−β , δ(t) := K2 −K3

∫ t

0

ϵ(τ)dτ,

ρ(t, x) := K4ξ(x− h̄(t))ϵ(t)V ∗, λ(t) := K5ϵ(t),

and the positive constants θ and K1,K2,K3,K4,K5 are to be determined.
Let

Cϵ̃ := min
1≤i≤m

min
x∈[−2ϵ̃,0]

|ϕ′i(x)|.

Then for x ∈ [h̄(t)− 2ϵ̃, h̄(t)] and i ∈ {1, ...,m}, with ρ(t, x) = (ρi(t, x)),

ūi(t, x) ≥ϕi
(
− λ(t)

)
− ρi(t, x) ≥ Cϵ̃λ(t)−K4ϵ(t)v

∗
i ≥ ϵ(t)(Cϵ̃K5 −K4v

∗
i ) > 0

if
K4 = Cϵ̃K5/(2 max

1≤i≤m
v∗i ), (4.19)

which combined with ξ(x) = 0 for |x| ≥ 2ϵ̃ implies

U(t, x) ⪰ 0 for t ≥ 0, x ≤ h̄(t). (4.20)

Let t0 = t0(θ) and K2 = K2(θ) be given by Step 1 in the proof of Lemma 4.1. Then
[g(t0), h(t0)] ⊂ (−∞,K2/2), and due to ρ(0, x) = 0 for x ≤ h(t0) < K2/2 < K2 =
h̄(0), we have

U(0, x) =(1 + ϵ(0))Φ(x−K2 − λ) ⪰ (1 + ϵ(0))Φ(−K2/2)

⪰(1 + ϵ(0)/2)u∗ ⪰ U(t0, x) for x ∈ [g(t0), h(t0)].
(4.21)

Step 1. We verify that by choosing K1,K3 and K5 suitably small,

h̄′(t) ≥
m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)

Ji(x− y)ūi(t, x)dydx for all t > 0. (4.22)

By direct calculations we have

m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)

Ji(x− y)ūi(t, x)dydx

≤
m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)

Ji(x− y)(1 + ϵ)ϕi(x− h̄(t)− λ(t))dydx

=(1 + ϵ)

m0∑
i=1

µi

∫ 0

−∞

∫ +∞

0

Ji(x− y)ϕi(x− λ(t))dydx

− (1 + ϵ)

m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0

Ji(x− y)ϕi(x− λ(t))dydx
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≤(1 + ϵ)c0 + (1 + ϵ)

m0∑
i=1

µi

∫ 0

−∞

∫ +∞

0

Ji(x− y)[ϕi(x− λ)− ϕi(x)]dydx

− (1 + ϵ)

m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0

Ji(x− y)ϕi(x)dydx

Let M1 := max
1≤i≤m

sup
x≤0

|ϕ′i(x)| and C3 be given by (4.11). Then

(1 + ϵ)

m0∑
i=1

µi

∫ 0

−∞

∫ +∞

0

Ji(x− y)[ϕi(x− λ(t))− ϕi(x)]dydx ≤ 2C3M1λ(t).

By (4.13),

m0∑
i=1

µi

∫ g(t+t0)−h̄(t)

−∞

∫ +∞

0

Ji(x− y)ϕi(x)dydx

≥ ϕ∗C4

β(1 + β)(2c0 + 1)β

[
t+

(c0 + 1)t0 + C1 +K2

(2c0 + 1)

]−β

.

Therefore, as in the proof of Lemma 4.1, for sufficiently large θ so that

θ >
(c0 + 1)t0 + C1 +K2

(2c0 + 1)
(4.23)

holds, we have

m0∑
i=1

µi

∫ h̄(t)

g(t+t0)

∫ +∞

h̄(t)

Ji(x− y)ūi(t, x)dydx

≤ (1 + ϵ)c0 + 2C3M1λ(t)−
ϕ∗C4

β(1 + β)(2c0 + 1)β
(t+ θ)

−β

= c0 + ϵ(t)

[
c0 + 2C3M1K5 −

ϕ∗C4

K1β(1 + β)(2c0 + 1)β

]
≤ c0 −K3ϵ(t) = h̄′(t)

provided that K1,K3 and K5 are suitably small so that

K1(c0 + 2C3M1K5 +K3) ≤
ϕ∗C4

β(1 + β)(2c0 + 1)β
. (4.24)

Step 2. We show that by choosing K3,K5 suitably small and θ sufficiently
large, for t > 0, x ∈ [g(t+ t0), h̄(t)],

U t(t, x) ⪰D ◦
∫ h̄(t)

g(t+t0)

J(x− y) ◦ U(t, y)dy − U(t, x) + F (U(t, x)). (4.25)

Using the definition of U , we have

U t(t, x) =− (1 + ϵ)(h̄′ + λ′)Φ′(x− h̄− λ) + ϵ′Φ(x− h̄− λ)− ρt

=− (1 + ϵ)[c0 + δ′ + λ′]Φ′(x− h̄− λ) + ϵ′Φ(x− h̄− λ)− ρt
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and from (1.4), we obtain

− (1 + ϵ)c0Φ
′(x− h̄− λ)

=(1 + ϵ)
[
D ◦

∫ h̄+λ

−∞
J(x− y) ◦ Φ(y − h̄− λ)dy −D ◦ Φ(x− h̄− λ) + F (Φ(x− h̄− λ))

]
⪰(1 + ϵ)

[
D ◦

∫ h̄

−∞
J(x− y) ◦ Φ(y − h̄− λ)dy −D ◦ Φ(x− h̄− λ) + F (Φ(x− h̄− λ))

]
=D ◦

∫ h̄

−∞
J(x− y) ◦ [U(t, y) + ρ]dy −D ◦ [U(t, x) + ρ] + (1 + ϵ)F (Φ(x− h̄− λ))

=D ◦
∫ h̄(t)

−∞
J(x− y) ◦ U(t, y)dy −D ◦ U(t, x)

−D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ϵ)F (Φ(x− h̄− λ))

⪰D ◦
∫ h̄(t)

g(t+t0)

J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x))

−D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ϵ)F (Φ(x− h̄− λ))− F (U(t, x)).

Hence

U t(t, x) ⪰D ◦
∫ h̄(t)

g(t+t0)

J(x− y) ◦ U(t, y)dy −D ◦ U(t, x) + F (U(t, x))

+B(t, x)

with

B(t, x) :=−D ◦
[
ρ(t, x)−

∫ h̄

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ϵ)F (Φ(x− h̄− λ))− F (U)

− (1 + ϵ)(δ′ + λ′)Φ′(x− h̄− λ) + ϵ′Φ(x− h− λ)− ρt.

To show (4.25), it remains to choose suitable K3,K5 and θ such that B(t, x) ⪰ 0
for t > 0 and x ∈ [g(t+ t0), h̄(t)].

Claim: There exist small ϵ̃0 ∈ (0, ϵ̃/2) and some J̃0 > 0 depending on ϵ̃ but
independent of ϵ̃0, such that

−D ◦
[
ρ(t, x)−

∫ h̄

−∞
J(x− y) ◦ ρ(t, y)dy

]
+ (1 + ϵ)F (Φ(x− h̄− λ))− F (U(t, x))

⪰ J̃0 ρ(t, x) for x ∈ [h̄(t)− ϵ̃0, h̄(t)].

(4.26)

Indeed, for x ∈ [h̄(t)− ϵ̃0, h̄(t)],

D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, y)dy

]
= K4ϵ(t)

[
D ◦ V ∗ −D ◦

∫ h̄(t)

−∞
J(x− y) ◦ ξ(y − h̄(t))V ∗dy

]
⪯ K4ϵ(t)

[
D ◦ V ∗ −D ◦

∫ h̄(t)

h̄(t)−ϵ̃

J(x− y) ◦ V ∗dy
]
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= K4ϵ(t)
[
D ◦ V ∗ −D ◦

∫ h̄(t)−x

h̄(t)−ϵ̃−x

J(y) ◦ V ∗dy
]

⪯ D ◦ ρ
[
1−

∫ 0

−ϵ̃+ϵ̃0

J(y)dy
]
⪯ D ◦ ρ

[
1−

∫ 0

−ϵ̃/2

J(y)dy
]
.

On the other hand, for x ∈ [h̄(t)− ϵ̃0, h̄(t)], we have

(1 + ϵ)F (Φ(x− h̄− λ)− F (U) ⪰ F ((1 + ϵ)Φ(x− h̄− λ))− F (U)

= F (U + ρ)− F (U) = ρ
(
[∇F (U)]T + o(1)Im

)
= K4ϵ(t)V

∗
(
[∇F (0)]T + o(1)Im

)
= K4ϵ(t)[V

∗D̃ + λ̃1V
∗ + o(1)V ∗] = K4ϵ(t)[D ◦ V ∗ + λ̃1V

∗ + o(1)V ∗]

= D ◦ ρ+ λ̃1ρ+ o(1)ρ.

since both U(t, x) and ρ(t, x) are close to 0 for x ∈ [h̄(t)− ϵ̃0, h̄(t)] with ϵ̃0 small.
Hence, for such x and ϵ̃0, since λ̃1 ≥ 0,

−D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y)ρ(t, y)dy

]
+ (1 + ϵ)F (Φ(x− h̄(t)))− F (U(t, x))

⪰ D ◦ ρ
[
− 1 +

∫ 0

−ϵ̃/2

J(y)dy
]
+D ◦ ρ+ λ̃1ρ+ o(1)ρ

⪰ J̃0 ρ(t, x), with J̃0 :=
1

2
min

1≤i≤m
di

∫ 0

−ϵ̃/2

Ji(y)dy if m0 = m.

This proves (4.26) when m0 = m.
If m0 < m, we need to modify V ∗ in the definition of ρ slightly. In this case, for

δ̃ > 0 small we define
Ṽ ∗ := V ∗ + δ̃D = (v∗i + δ̃di).

Since di = 0 for i = m0 + 1, ...,m and di > 0 for i = 1, ...,m0, by (f1) (iv) we see
that

W = (wi) := D[∇F (0)]T

satisfies wi > 0 for i = m0 + 1, ...,m. Let us write

W =W 1 +W 2 = (w1
i ) + (w2

i ) with

{
w1

i = 0 for i = m0 + 1, ...,m,

w2
i = 0 for i = 1, ...,m0.

Then

Ṽ ∗
(
[∇F (0)]T − D̃

)
= λ̃1V

∗ + δ̃W̃ 1 + δ̃W 2 with W̃ 1 :=W 1 −DD̃.

It is important to observe that the vector W̃ 1 = (w̃1
i ) has its lastm−m0 components

0, namely w̃1
i = 0 for i = m0 + 1, ...,m.

Replacing V ∗ by Ṽ ∗ in the definition of ρ, we see that the analysis above is not
affected, except that, for ϵ̃0 > 0 small and x ∈ [h̄(t)− ϵ̃0, h̄(t)],

(1 + ϵ)F (Φ(x− h̄− λ)− F (U) ⪰ K4ϵ(t)Ṽ
∗
(
[∇F (0)]T + o(1)Im

)
= K4ϵ(t)

(
[Ṽ ∗D̃ + λ̃1V

∗ + o(1)V ∗] + δ̃W̃ 1 + δ̃W 2
)
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= K4ϵ(t)
(
D ◦ Ṽ ∗ + λ̃1V

∗ + o(1)V ∗ + δ̃W̃ 1 + δ̃W 2
)

⪰ D ◦ ρ+K4ϵ(t)
(
o(1)V ∗ + δ̃W̃ 1 + δ̃W 2

)
.

Hence, for such x and ϵ̃0, we now have

−D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y)ρ(t, y)dy

]
+ (1 + ϵ)F (Φ(x− h̄(t)))− F (U(t, x))

⪰ D ◦ ρ
[
− 1 +

∫ 0

−ϵ̃/2

J(y)dy
]
+D ◦ ρ+K4ϵ(t)

[
o(1)V ∗ + δ̃W̃ 1 + δ̃W 2

]
⪰ K4ϵ(t)

[
min

1≤i≤m0

v∗i

∫ 0

−ϵ̃/2

Ji(y)dyD + o(1)V ∗ + δ̃W̃ 1 + δ̃W 2
]
.

We now fix δ̃ > 0 small enough such that

−δ̃W̃ 1 ⪯ 1

2
min

1≤i≤m0

v∗i di

∫ 0

−ϵ̃/2

Ji(y)dy,

and notice that

Ŵ :=
1

2
min

1≤i≤m0

v∗i di

∫ 0

−ϵ̃/2

Ji(y)dy + δ̃W 2≻≻0.

Therefore there exists J̃0 > 0 such that

1

2
Ŵ ⪰ J̃0Ṽ

∗.

Then

K4ϵ(t)
[

min
1≤i≤m0

v∗i di

∫ 0

−ϵ̃/2

Ji(y)dy + o(1)V ∗ + δ̃W̃ 1 + δ̃W 2
]

⪰ K4ϵ(t)
[
Ŵ + o(1)V ∗

]
⪰ K4ϵ(t)

1

2
Ŵ ⪰ K4ϵ(t)J̃0Ṽ

∗ = J̃0ρ,

provided that ϵ̃0 > 0 is chosen sufficiently small.
Therefore for ϵ̃0 > 0 small and x ∈ [h̄(t)− ϵ̃0, h̄(t)], we finally have

−D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y)ρ(t, y)dy

]
+ (1 + ϵ)F (Φ(x− h̄(t)))− F (U(t, x))

⪰ J̃0 ρ(t, x), as desired.

With δ̃ > 0 chosen as above, we will from now on denote

V̂ ∗ :=

{
V ∗ if m0 = m,

Ṽ ∗ if m0 < m,

but keep the notation for ρ unchanged.
Clearly

−ρt(t, x) = βK4K1(t+ θ)−β−1V̂ ∗ ⪰ 0.
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Recalling M1 := max
1≤i≤m

sup
x≤0

|ϕ′i(x)|, we obtain, for x ∈ [h̄(t)− ϵ̃0, h̄(t)] and small ϵ̃0,

B(t, x) ⪰ J̃0K4ϵ(t)V̂
∗ + 2(δ′(t) + λ′(t))M11+ ϵ′(t)u∗

= J̃0K4ϵ(t)V̂
∗ + 2ϵ(t)(−K3 −K5β(t+ θ)−1)M11− β(t+ θ)−1ϵ(t)u∗

⪰ ϵ(t)
[
J̃0K4V̂

∗ − 2(K3 +K5βθ
−1)M11− βθ−1u∗

]
= ϵ(t)

[
J̃0K4V̂

∗ − 2K3M11− θ−1
(
K5βM11+ βu∗

)]
⪰ 0

provided that K3 is chosen small so that (4.24) holds,

J̃0K4V̂
∗ − 2K3M11≻≻0, (4.27)

and θ is chosen sufficiently large.
We next estimate B(t, x) for x ∈ [g(t+ t0), h̄(t)− ϵ̃0]. From Claim 2 in the proof

of Lemma 4.1, and the Lipschitz continuity of F , there exist positive constants
Cl = Cl(ϵ̃0) and Cf such that, for v = Φ(x− h̄(t− λ(t))) ∈ [Φ(−ϵ̃0),u∗],

(1 + ϵ)F (v)− F ((1 + ϵ)v − ρ)

= (1 + ϵ)F (v)− F ((1 + ϵ)v) + F ((1 + ϵ)v)− F ((1 + ϵ)v − ρ)

⪰ Clϵ1− Cfρ ⪰ Clϵ1− CfK4ϵV̂
∗

when ϵ = ϵ(t) is small. Hence

(1 + ϵ)F (Φ(x− h̄− λ))− F (Ū)

⪰ Clϵ1− CfK4ϵV̂
∗ for x ∈ [g(t+ t0), h̄(t)− ϵ̃0], 0 < ϵ̃0 ≪ 1.

Clearly,

−D ◦
[
ρ(t, x)−

∫ h̄(t)

−∞
J(x− y) ◦ ρ(t, x)dy

]
⪰ −K4ϵ(t)D ◦ V̂ ∗,

and

ρt(t, x) = −K4ξ
′h̄′(t)ϵ(t)V̂ ∗ +K4ξϵ

′(t)V̂ ∗ ⪯ ξ∗K4ϵ(t)V̂
∗

with ξ∗ := c0 maxx∈R |ξ′(x)|.
We thus obtain, for x ∈ [g(t+ t0), h̄(t)− ϵ̃0] and 0 < ϵ̃0 ≪ 1,

B(t, x) ⪰−K4ϵ(t)D ◦ V̂ ∗ + (1 + ϵ)F (ϕ(x− h̄))− F (U) + 2M1(δ
′ + λ′)1+ ϵ′u∗ − ρt

⪰ Clϵ(t)1−K4ϵ(t)(D ◦ V̂ ∗ + Cf V̂
∗ + ξ∗V̂

∗) + 2M1(−K3ϵ(t) +K5ϵ
′(t))1+ ϵ′(t)u∗

⪰ ϵ(t)
[
Cl1−K4(D ◦ V̂ ∗ + Cf V̂

∗ + ξ∗V̂
∗)

− 2M1(K3 +K5β(t+ θ)−1)1− β(t+ θ)−1u∗
]

⪰ ϵ(t)
[
Cl1−K4

(
D ◦ V̂ ∗ + Cf V̂

∗ + ξ∗V̂
∗
)
− 2M1K31− θ−1β

(
2M1K51+ u∗

)]
⪰0

if we choose K3 and K5 small so that (4.24) and (4.27) hold and at the same time,
due to (4.19)

Cl1−K4

(
D ◦ V̂ ∗ + Cf V̂

∗ + ξ∗V̂
∗
)
− 2M1K31≻≻0,
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and then choose θ sufficiently large. Hence, (4.25) is satisfied if K3 and K5 are
chosen small as above, and θ is sufficiently large.

From (4.20), we have

U(t, g(t+ t0)) ⪰ 0, U(t, h̄(t)) ⪰ 0 for t ≥ 0.

Together with (4.21), (4.22) and (4.25), this enables us to use the comparison prin-
ciple (Lemma 2.3 of [11]) to conclude that

h(t+ t0) ≤ h̄(t), U(t+ t0, x) ⪯ U(t, x) for t ≥ 0, x ∈ [g(t+ t0), h(t)],

which implies (4.3). The proof of the lemma is now complete.

4.3. Completion of the proof of Theorem 1.2

As already mentioned, Theorem 1.2 follows directly from Theorem 4.1. We now
prove the latter.

By (4.1) and Lemma 3.1, there exists C0 > 0 such that

h(t)− c0t ≥− C
[
1 +

∫ t

0

(1 + x)2−γdx+

∫ c0
2

t

0

x2Ĵ(x)dx+ t

∫ ∞

c0
2

t

xĴ(x)dx
]

≥− C
[
1 +

∫ 2t

1

x2−γdx+

∫ 1

0

Ĵ(x)dx+ C0

∫ c0
2

t

1

x2−γdx+ C0t

∫ ∞

c0
2

t

x1−γdx
]
.

Therefore when γ ∈ (2, 3) we have, for t ≥ 1,

h(t)− c0t ≥− C
[
C̃ + ln(t+ 1) + C̃1t

3−γ
]
≥ −Ĉ1t

3−γ

for some Ĉ1, C̃, C̃1 > 0, and when γ = 3, for t ≥ 1,

h(t)− c0t ≥− Ĉ2 ln t

for some Ĉ2 > 0. This combined with Lemmas 4.1 and 4.2 gives the desired con-
clusion of Theorem 4.1. The proof is completed. □

Acknowledgements

This research was supported by the Australian Research Council.

References

[1] I. Ahn, S. Baek, Z. Lin, The spreading fronts of an infective environment in a
man-environment-man epidemic model, Appl. Math. Model., 2016, 40, 7082–
7101.

[2] M. Alfaro and J. Coville, Propagation phenomena in monostable integro-
differential equations: Acceleration or not? J. Differ. Equ., 2017, 263(9), 5727–
5758.

[3] E. Bouin, J. Garnier, C. Henderson, F. Patout, Thin front limit of an integro-
differential Fisher-KPP equation with fat-tailed kernels, SIAM J. Math. Anal.,
2018, 50, 3365–3394.



1572 Y. Du & W. Ni

[4] J. Cao, Y. Du, F. Li, and W.-T. Li, The dynamics of a Fisher-KPP nonlocal
diffusion model with free boundaries, J. Functional Anal., 2019, 277, 2772–2814.

[5] Y. Du, F. Li and M. Zhou, Semi-wave and spreading speed of the nonlocal
Fisher-KPP equation with free boundaries, J. Math. Pure Appl., 2021, 154,
30–66.

[6] Y. Du, W.-T. Li, W. Ni and M. Zhao, Finite or infinite spreading speed of an
epidemic model with free boundary and double nonlocal effects, J. Dynam. Diff.
Eqns., 2024, 36, 1015–1063.

[7] Y. Du, Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model
with a free boundary, SIAM J. Math. Anal., 2010, 42, 377–405.

[8] Y. Du, B. Lou, Spreading and vanishing in nonlinear diffusion problems with
free boundaries, J. Eur. Math. Soc., 2015, 17, 2673–2724.

[9] Y. Du, H. Matsuzawa, M. Zhou, Sharp estimate of the spreading speed deter-
mined by nonlinear free boundary problems, SIAM J. Math. Anal., 2014, 46,
375–396.

[10] Y. Du, W. Ni, Analysis of a West Nile virus model with nonlocal diffusion and
free boundaries, Nonlinearity, 2020, 33, 4407–4448.

[11] Y. Du, W. Ni, Spreading speed for some cooperative systems with nonlocal
diffusion and free boundaries, part 1: Semi-wave and a threshold condition, J.
Differential Equations, 2022, 308, 369–420.

[12] Y. Du and W. Ni, Rate of propagation for the Fisher-KPP equation with non-
local diffusion and free boundaries, J. Eur. Math. Soc., 2025, 27, 1267–1319.

[13] Y. Du, W. Ni and R. Wang, Rate of accelerated expansion of the epidemic
region in a nonlocal epidemic model with free boundaries, Nonlinearity, 2023,
36, 5621–5660.

[14] Y. Du, W. Ni and R. Wang, Spreading speed for some cooperative systems with
nonlocal diffusion and free boundaries, part 2: Precise rates of acceleration, J.
Differ. Equ., 2025, to appear.

[15] Y. Du, M. Wang, M. Zhou, Semi-wave and spreading speed for the diffusive
competition model with a free boundary, J. Math. Pure Appl., 2017, 107, 253–
287.

[16] J. Fang, G. Faye, Monotone traveling waves for delayed neural field equations,
Math. Models Methods Appl. Sci., 2016, 26, 1919–1954.

[17] D. Finkelshtein, P. Tkachov, Accelerated nonlocal nonsymmetric dispersion for
monostable equations on the real line, Appl. Anal., 2019, 98, 756–780.

[18] J. Garnier, Accelerating solutions in integro-differential equations, SIAM J.
Math. Anal., 2011, 43, 1955–1974.

[19] X. Liang, Semi-wave solutions of KPP-Fisher equations with free boundaries
in spatially almost periodic media, J. Math. Pures Appl., 2019, 127, 299–308.

[20] X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract
monostable evolution systems, J. Funct. Anal., 2010, 259, 857–903.

[21] Z. Lin, H. Zhu, Spatial spreading model and dynamics of West Nile virus in
birds and mosquitoes with free boundary, J. Math. Biol., 2017, 75, 1381–1409.



Cooperative Systems, Part 3 1573

[22] T.-H. Nguyen, H.-H. Vo, Dynamics for a two-phase free boundary system in
an epidemiological model with couple nonlocal dispersals, J. Differ. Equ., 2022,
335, 398–463.

[23] P.E. Souganidis, A. Tarfulea, Front propagation for integro-differential KPP
reaction-diffusion equations in periodic media, Nonlinear Differential Equations
Appl., 2019, 26(4), 29–41.

[24] H.R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equa-
tions and asymptotic speeds for the spread of populations, J. Reine Angew.
Math., 1979, 306, 94–121.

[25] H.R. Thieme, Density-dependent regulation of spatially distributed populations
and their asymptotic speed of spread, J. Math. Biol., 1979, 8, 173–187.

[26] H.R. Thieme, X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for
integral equations and delayed reaction-diffusion models, J. Differential Equa-
tions, 2003, 195(2), 430–470.

[27] J.B. Wang, W.-T. Li, J.W. Sun, Global dynamics and spreading speeds for a
partially degenerate system with nonlocal dispersal in periodic habitats, Proc.
R. Soc. Edinb. A, 2018, 148, 849–880.

[28] R. Wang and Y. Du, Long-time dynamics of a nonlocal epidemic model with
free boundaries: spreading-vanishing dichotomy, J. Diff. Equations, 2022, 327,
322–381.

[29] R. Wang and Y. Du, Long-time dynamics of a nonlocal epidemic model with
free boundaries: spreading speed, Disc. Con. Dynam. Syst., 2023, 43, 121–161.

[30] Z.G. Wang, H. Nie, Y. Du, Spreading speed for a West Nile virus model with
free boundary, J. Math. Biol., 2019, 79(2), 433–466.

[31] Z.G. Wang, H. Nie, Y. Du, Sharp asymptotic profile of the solution to a West
Nile virus model with free boundary, Europ. J. Appl. Math., 2024, 35, 462–482.

[32] H. Weinberger, Long-time behavior of a class of biological models, SIAM J.
Math. Anal., 1982, 13, 353–396.

[33] S.L. Wu, Y.J. Sun, S.Y. Liu, Traveling fronts and entire solutions in partially
degenerate reaction-diffusion systems with monostable nonlinearity, Discrete
Contin. Dyn. Syst., 2013, 33, 921–946.

[34] W.B. Xu, W.-T. Li, G. Lin, Nonlocal dispersal cooperative systems: acceleration
propagation among species, J. Differential Equations, 2020, 268(3), 1081–1105.

[35] W.B. Xu, W.-T. Li, S. Ruan, Fast propagation for reaction-diffusion cooperative
systems, J. Differ. Equ., 2018, 265, 645–670.

[36] H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal
monostable equation, Publ. Res. Inst. Math. Sci., 2009, 45, 925–953.

[37] M. Zhao, W.-T. Li, W. Ni, Spreading speed of a degenerate and cooperative
epidemic model with free boundaries, Discrete Contin. Dyn. Syst., Ser. B, 2020,
25, 981–999.

[38] M. Zhao, Y. Zhang, W.-T. Li and Y. Du, The dynamics of a degenerate epi-
demic model with nonlocal diffusion and free boundaries, J. Diff. Eqns., 2020,
269, 3347–3386.



1574 Y. Du & W. Ni

[39] X.-Q. Zhao, W. Wang, Fisher waves in an epidemic model, Discrete Contin.
Dyn. Syst., Ser. B, 2004, 4, 1117–1128.


	Introduction
	Main results of Part 1
	Main results of this paper
	Applications to epidemic models
	Related works
	Organisation of the paper

	Asymptotic behaviour of semi-wave solutions
	Bounds for c0t-h(t), c0t+g(t) and U(t,x) for kernels of type (J)
	Bound from below
	Bound from above
	Completion of the proof of Theorem 1.1

	Growth rate of c0t-h(t) and c0t+g(t) for kernels of type (J)
	The case 1<0
	The case 10
	Completion of the proof of Theorem 1.2


