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Abstract Our focus in this work is the proposition of a fractional order
model based on Caputo fractional derivatives for the understanding of how
coronavirus disease is transmitted in a community, using Nigeria as a case
study. By using Laplace transform, we show that the state variables of the
model are non-negative at all times and show the existence and uniqueness of
solutions for the model. Thorough analysis of the model shows that the model
is Ulam-Hyers-Rassias stable and that its disease-free equilibrium is locally
and globally asymptotically stable whenever the reproduction number of the
disease is less than unity. By gathering real-life data about the disease in Nige-
ria from accredited authority, Nigerian Centre for Disease Control (NCDC), we
estimate parameters driving the spread of the disease by fitting this data to our
model. By adopting these parameter estimates, using MATLAB, we per-form
the numerical simulation of the model with a view to validating results from
qualitative analysis of the model. Numerical results show that plots for the
model at different fractional orders have major determining influence on various
compartments of the model as it varies. Various distinct results were observed
for each of the compartments in different fractional orders, highlight-ing the
importance of consideration of the fractional order in modelling the highly
contagious COVID-19 disease. This work highlights the advantage of fractional
order model over the classical integer order model in the sense that the solution
obtained for the fractional order model possesses a higher degree of freedom that
enables variation of the system so as to obtain as many prefer-able responses of
the different classes as desired since variation of fractional order & can be done
at any preferable fractional rate 0.7, 0.4, 0.2 etc.
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1. Introduction

The origin of COVID-19 which is a deadly, highly contagious disease caused by
Severe Acute Respiratory Syndrome coronavirus 2 (SARS-COV-2) is Wuhan city of
China [1]. It has its mode of transmission from human to human through direct con-
tact with infected persons and surfaces that are contaminated droplets from infected
individuals [2]. Tt is revealed through clinical evidences that COVID-19 has its in-
cubation period of 2 to 14 days [3-5,8], the period during which infected individuals
with the disease start showing clinical symptoms of the highly communicable dis-
ease. The infected individuals with the disease during this period of incubation may
or may not show symptoms of the disease; regrettably, they are capable of trans-
mitting the disease to other individuals that they come in contact with. Coughing,
breathing difficulties, and fever are the symptoms of the disease [9]. It is reported
that as of November 6th, 2022, with 6.5 million reported deaths globally [4,10]. For
now, the deadly disease do not have a clinically proven drug to combat its spread,
though there are lots of control measures to combat the spread of the disease, such
as regular usage of nose masks while in public, regular hand washing with soap or
sanitizers and observance of social distances while in public space [5,11,12]. The
good news is that there is availability of clinically proven vaccines to combat the
spread of the disease, which include: the mRNA-1273 Moderna vaccine, BNT162b2
Pfizer-BioNtech vaccine and a highly efficacious vaccine against different variants
of CPVID-19 developed in the United States, Johnson and Johnson vaccine [6,7].

As soon as the COVID-19 pandemic started ravaging the whole world, math-
ematical epidemiologists went to their studying table to complement the works of
the healthcare providers and policy makers in health sectors to combat the spread
of the deadly disease by developing several mathematical models including the ones
in [10,11,13-18,20-26]. In the work of Gumel et al. [16], a primer for COVID-19
was established. Their work was used to have an understanding of how the disease
was transmitted in the early stage of the pandemic in the USA. Okunoghae and
Omame [18], in the works on modelling of the transmission dynamics of disease
in Nigeria, they incorporated three COVID-19 safety protocols: use of face masks
while in public, regular hand washing with soap and hand sanitizers and mainte-
nance of social distance while in public into their model and obtain thresholds for
the percentage of the usage of these safety protocols to ensure that the affliction
arising from the pandemic is mitigated in the community. Sowole et al. [25] in their
work explored and incorporated a linear regression method into the model they pro-
posed and used this to make forecast about the early stage of the disease. Omame
et al. [20] in their work proposed a model formulated using fractional calculus with
fractional order to study the spread of the co-infection of COVID-19 and Hepatitis
B virus, using real-life data from Wuhan city of China. They illustrated that trans-
mission rate for each of the two diseases can have a great impact on the dynamics
of the co-infection of the two diseases and to have adequate and effective control of
the interaction between the two disease in the population under reference, there is
need for concerted efforts to be exerted towards the prevention of infection of either
or both diseases.

Due to limitation of classical integer order derivatives, its inability to capture the
memory effect, modelling of communicable diseases using fractional order deriva-
tives incorporating fractional differential operators with its merit being that it can
capture memory effects which is the major motivation for the development of such
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fractional differential operators, is the current vogue and it is of considerable in-
terest to mathematical epidemiology. In literature, many researchers have made
significant contributions to the concept of fractional calculus, giving definitions of
fractional-order operators that are applicable in modelling of epidemiological model
in terms of system of non-linear fractional order differential equation, these in-
clude Reimann-Liouville [28], Weyl [30], Davidson and Essex [34], Coimbra [21],
Jumarie [32, 33|, Riesz [27], Hadamard [29] and Atagana [27]. Each of these re-
searchers gave definitions to derivative of functions in fractional order in their unique
ways, though some of their works are with limitations (see the work of Omame et
al. [20]). To step over the drawbacks of the limitations inherent in the works of re-
searchers in Ref. [?,15-19] mentioned above, Atangana and Baleanu (AB) [27] and
Caputo and Fabrizio (CF) [35] in their works provided us with a more improved
definitions of fractional-order operators that will help in obtaining fractional order
epidemiological model. Their works are based on the generalized Mittag-LefHler
function and exponential kernel respectively [20]. Also, El-Mesady et al. [53] pre-
sented a fractional order model for TB transmission focusing on individuals with
underlying ailments. Their study highlights vaccination and awareness as key con-
trol measures which offer useful insights for TB intervention strategies. Peter et
al. [54] developed a measles model separating first- and second-dose vaccinations
and used fractional calculus for analysis. The study highlights that increasing vac-
cination coverage effectively reduces measles spread and disease burden. Addai et
al. [55] developed a fractal-fractional age-structured smoking model with govern-
ment intervention, proving existence, uniqueness, and stability of solutions. Their
study showed that changes in fractal-fractional orders and interventions signifi-
cantly affect smoking dynamics across age groups. Yadav et al. [56] developed a
fractional order diabetes mellitus model using the ABC derivative, proving existence
and uniqueness of solutions via Picard’s theorem. Numerical simulations revealed
that decreasing the fractional order increases diabetes prevalence. Their study
offers valuable insights into diabetes dynamics and potential extensions to coexist-
ing diseases like tuberculosis. Abioye et al. [57] modelled malaria and COVID-19
co-infection with fractional derivatives, proving solution uniqueness and stability.
Simulations showed that preventive measures can reduce and potentially eliminate
the co-infection of these diseases. Peter et al. [58] developed a fractional ABC
derivative model for meningitis, analyzed the stability and backward bifurcation,
and examined vaccination and treatment effects on disease control. Peter et al. [59]
developed a fractional monkeypox model, fitted it to Nigerian data, proved stability
for the basic reproduction number being less than unity and used simulations to
suggest control strategies. Abioye et al. [59] developed a fractional-order mathe-
matical model to analyze COVID-19 transmission dynamics in Nigeria using the
Atangana-Baleanu fractional derivative operator. They investigated the stability
analysis of the disease-free and endemic equilibrium points, performed sensitivity
analysis to identify key parameters affecting disease spread, and demonstrated that
the fractional-order model provides better fitting to real COVID-19 data compared
to classical integer-order models. Peter et al. [61] formulated a fractional-order
mathematical model for pneumococcal pneumonia infection dynamics using the
Caputo-Fabrizio fractional derivative operator. They analyzed the stability of equi-
librium points, investigated the basic reproduction number, and demonstrated that
the fractional-order model with Caputo-Fabrizio operator provides more realistic
disease dynamics compared to classical integer-order models, offering better insights
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into the transmission patterns of pneumococcal pneumonia. Ojo et al. [62] developed
a fractional-order epidemiological model to study brucellosis transmission dynamics
using the Caputo-Fabrizio fractional derivative operator. They performed a com-
prehensive mathematical analysis including existence and uniqueness of solutions,
stability analysis of disease-free and endemic equilibria, and numerical simulations
to demonstrate that the fractional-order approach captures the memory effects and
hereditary properties inherent in brucellosis transmission better than conventional
integer-order models. Preference is now being given to the adoption of any of these
methods in modelling of fractional order epidemiological models; consequently, we
are motivated to choose Caputo and Fabrizio in this our study.

Researchers in applied sciences and mathematical epidemiology are formulating
and deploying Caputo based and Atagana Baleanu fractional order models governed
by systems of non-linear differential equations to study the transmission dynamics of
highly contagious diseases, in the works such as those in [43-47]. We are motivated
by these works. This model improves upon existing models by utilizing Caputo
fractional derivatives to account for memory effects, by incorporating parameter
estimates derived from real data from Nigeria, and by allowing for fractional-order
variation to explore diverse system dynamics. These enhancements contribute to
improved accuracy, relevance, and flexibility in simulating and understanding the
spread of COVID-19 within the Nigerian context.

The importance of this study stems from its focus on applying fractional-order
calculus, particularly Caputo derivatives, to model the spread of COVID-19 in Nige-
ria. The use of fractional-order models offers significant advantages over classical
integer-order models, especially in capturing memory effects and long-term depen-
dencies typical of real epidemics. By fitting the model to actual data obtained
from the Nigerian Centre for Disease Control (NCDC), the study enhances the
practical relevance of the results, ensuring that the findings are data-driven and
context-specific. Furthermore, this work demonstrates that the fractional order
& plays a crucial role in shaping the system’s behavior, thereby offering a flexi-
ble tool for exploring various transmission dynamics and control scenarios. This
modeling approach serves as a powerful framework for understanding, predicting,
and ultimately managing infectious diseases like COVID-19 in real-world settings,
particularly in resource-constrained environments. Fractional differential operators,
particularly those in the Caputo sense, allow for the incorporation of memory ef-
fects into the system, thereby enhancing the realism of epidemiological models.
This is essential for diseases like COVID-19, where the disease progression and
transmission dynamics are influenced not only by the current state but also by
the historical interactions and delays in response or treatment. The flexibility in
varying the fractional order enables the capture of a wider spectrum of dynamic
behaviors, making fractional-order models more adaptable and effective than their
classical counterparts. The results from this study stand out in several key aspects
compared with existing models of COVID-19. First, the model demonstrates that
changes in the fractional order ¢ lead to significantly different disease progression
profiles across compartments, emphasizing the sensitivity of the system to memory
effects inherent in fractional-order systems. This dynamic behavior is largely ab-
sent in traditional integer-order models. Second, the proof of Ulam-Hyers-Rassias
stability adds mathematical depth, ensuring the robustness of the model against
perturbations—a feature rarely addressed in similar studies. Furthermore, the use
of the Laplace transform to establish non-negativity and uniqueness of solutions
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enhances the mathematical validity of the model. By incorporating real data from
the Nigerian Centre for Disease Control (NCDC) for parameter estimation, the
study bridges theoretical modeling with practical relevance. Together, these results
highlight the advantages and innovations of adopting a fractional-order modeling
approach in analyzing and managing the spread of infectious diseases like COVID-
19. By incorporating memory-dependent terms, fractional-order models like the
one proposed in this work offer more accurate reflections of the temporal nature
of infectious disease transmission and control. Unlike classical integer-order deriva-
tives that describe instantaneous rates of change based only on the present state,
the Caputo fractional derivative incorporates the historical states of the system via
a singular kernel. This enables the model to capture memory effects inherent in
the spread and control of infectious diseases such as COVID-19, allowing a more
accurate reflection of real-life epidemic dynamics.

We structure the rest of the article as follows: in Section 2, we presented the
preliminaries and how the fractional order model is formulated. In Section 3, we
adopt Laplace transform to show that the state variables for the model are positive
at all times, local and global stability of the model. In Section 4, we did the data
fitting to model and we presented the numerical simulations of the fractional order
model, while in Section 5 we present the summary, findings, recommendations and
the conclusion for this work.

2. Preliminaries and how the fractional order model
was formulated

Here in this section, we look at the preliminary information about what Caputo
fractional order derivative is, giving necessary definitions associated with the con-
cept.

Definition 2.1. We can define Caputo fractional order derivative of a function f
(t) on the interval [0, 7] as:

t
1 e

th:"*ﬁD”t:i/tf”f””) d 2.1

[DiF)] = a7 D (1) fog | 70T N0 e

where n is an integer given by n — 1 < £ < n. Whenever 0 < £ < 1, from the

derivative above, where ¢ > 0, the Caputo derivative becomes:

[D510)] = 5= [ -0 (@
0

Definition 2.2. We define the fractional integral of order ¢ > 0 of a function
feCH0,7T) as:

JEF(t) = % / (t— QA F(O)dC, >0,

0

given that the integral exists in R". For convenience, supposef(t) = K, where K is
a constant. Then:
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Definition 2.3. The Laplace transform of Caputo fractional derivative is defines
as:
L{Dfrt)} = € f(s) - 55 £(0), (2.3)

0 < & <1, where L is the Laplace transform operator.

Lemma 2.1. Suppose that & € RS is such that ¥1(t)and V5 (t)represent positive
functions and V3(t) represents an increasing and positive function for 0 <t < T,
with T > 0 and 93(t) < N for N being a constant. Given that:

t
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In the work of Omede et al. [10], the authors proposed a mathematical model
carefully designed to understand of the transmission dynamics of COVID-19 where
demographic parameters are not incorporated.

The proposed model is as given below:

%wé%@&GMU

dS — Be(l—p1)A=p2)A—7)(c1A+T+cM)S
at N
djzBc(l—Pl)(l—pQ)(l—71)(C1A+I+02M)S_(OH_U)E’
dt N

dQ_
o = eE -+ e,

A =koE — (w+ea)A,
dt (2.4)

dl
i (1—-k)oE —(q+6r+e5)1,
dM
dt
dly
dt
dR
pr =ecaA+el +eyM+~Ig+vS,
where the total human population at time ¢, is denoted by N (¢) and divided into
eight mutually exclusive compartments of: Susceptible humans S (¢), Exposed hu-
mans E (t), Quarantined humans @ (t), Undetected asymptomatic infectious hu-
mans A (t), Undetected symptomatic infectious humans T (¢), Undetected symp-
tomatic infectious humans under self-medication M (t), Detected and Hospitalized

7’US+‘LLQ,

=1 —71¢)qgl — (0 + 0 +em) M,

=nQ + wA+ 1odpgql + OM — (v+ 6p) Iy,
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infectious humans (via testing) Iy (f)and Recovered humans R (t). So we have:
NH)=SHO+EB+QM) +AWM)+I(t)+ M)+ Iu(t)+R().

The underlying assumptions supporting the formulation of the COVID-19 model
in (2.4) are presented below:

1. COVID-19 transmission is primarily driven by contact with infectious indi-
viduals. Susceptible individuals contract the virus through effective contact
with both symptomatic and asymptomatic infectious individuals. This is con-
sistent with the established epidemiology of COVID-19, where asymptomatic
and presymptomatic carriers contribute significantly to community transmis-
sion [48].

2. Asymptomatic and self-medicating individuals transmit the virus at a reduced

rate.
The model incorporates modification parameters ¢; and co to represent re-
duced infectivity from the asymptomatic A(t) and self-medicating M (t) classes.
Studies have shown that while these individuals can transmit SARS-CoV-2,
their viral load and transmission likelihood are generally lower than those of
symptomatic individuals receiving no intervention [49,50].

3. Quarantine and early detection reduce disease progression and community
spread.
Exposed individuals are quarantined at rate «, and infectious individuals are
detected through testing or monitoring at rates w and ¢q. Quarantine and
detection are widely adopted public health measures that reduce secondary
infections and allow timely clinical intervention [51].

4. Non-pharmaceutical interventions (NPIs) effectively reduce the force of infec-
tion.
The model accounts for population-level compliance with NPIs such as mask
usage p1, hand hygiene ps, and social distancing 71. These interventions are
proven to significantly reduce SARS-CoV-2 transmission, especially before
widespread vaccine availability [52].

The susceptible individuals make contact with COVID-19 infected individuals
at the rate B..They comply with wearing of face masks at the rate p;, and they
comply with to frequent washing of hands with soap and hand sanitizers at the
rate po, while they comply with the maintenance of social distancing at the rate
T1. Vaccinate rate for those vaccinated against the disease is v; exposed humans
that are quarantined occur at rate «, the rate at which latently infected humans
that are quarantined and do not develop symptoms that progress to susceptible
class again is p, while ¢1(c2) is the modification parameter that accounts for a
reduced transmission from A(M) class respectively. The rate of progression from
exposed class to infectious class is given by ¢ The rate of death arising from the
disease for those symptomatic infected individuals that are undetected, those in-
fectious individuals that are detected, hospitalized and those individuals that are
treating themselves is € 4 (e7)respectively. The rate at which disease-induced death
occur for individuals that are symptomatically infectious but undetected, infectious
individuals that are detected and receiving treatment in the hospital, individuals
that are treating themselves is d;(0p) respectively. Those individuals that are on
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self-medication progressed to hospitals treatment at the rate 0, sensitization against
self-medication occur at the rate ¢, while the rate at which detection via testing
occurs for infectious individuals that are asymptomatic but undetected is w. The
rate of transition for infectious individuals that are undetected symptomatic is g;
the individuals that are quarantine progress to the class of detected infectious hos-
pitalized at the rate 7, the rate at which the fraction of those infectious individuals
that are symptomatic adhere strictly to safety protocols associated with COVID-19
and avoid self-medication is 79 while those infectious individuals that are detected
and hospitalized recovered at the rate 7.

Figure 1. Schematic diagram of the COVID-19 model

The description of parameters of model (2.1) is as given in the table below.
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Parameters Description Values References

Be Effective contact rate. 0.4 Fitted

p1 Rate at which individuals comply with wearing of face 0.1 [5]
mask.

D2 Rate at which individuals comply with washing of 0.2 [20]
hands with soap and hand sanitizer

T Rate at which individuals comply with maintenance 0.2 [20]
of social distancing.

v Vaccination rate. 0.1582 [12]

@ Rate at which latently infected individuals are quar- 1/7 Estimated
antined through contact tracing.

m Rate at which latently infected asymptomatic individ-  0.025 Assumed
uals that are quarantined progress back to susceptible
class.

c1 Modification parameter that accounts for a reduced 0.5 [23]
transmission from A class.

Co Modification parameter that accounts for increased 0.4341 Assumed
transmission from M class.

o Rate at which latently infected individuals progress 1/5 [21]
to infected class

k Part of new individuals that are infectious but not 0.25 [23]
showing symptoms.

ealer) Rate of disease-induced death for undetected asymp- 1/7 (1/7) [34,35]
tomatic, detected hospitalized, and self-medicated in-
fectious individuals.

em Rate at which individuals progress from self- 1/7 [34,35]
medicated class to infected hospitalized class.

or Disease-induced death rate for undetected symp- 0.015 [33]
tomatic infectious individuals.

3% Disease-induced death rate for hospitalized infectious 0.21 Assumed
individuals.

O Disease-induced death rate for individuals on self- 0.015 [33]
medication.

4 Rate of progression from self-medication to hospital- 0.164 Fitted
ized class.
Rate of sensitization on the danger of self-medication. 0.01 Assumed

w Detection rate for undetected asymptomatic infec- 2.2719 x 10~ Fitted
tious individuals.

q Transition rate for undetected symptomatic infectious  0.04 Fitted

individuals.

Table 1. Description of parameters in the model (2.4).
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n  Rate of progression of quarantined individuals to hos- 0.514 Fitted

pitalized detected infectious class.

v Treatment-induced recovery rate for hospitalized de- 1/15 [23,32]
tected infectious individuals.

7o Fraction of undetected symptomatic infectious indi- 0.0135 [20]
viduals complying with safety protocols.

Table 2. Description of parameters in the model (2.4).

On the adoption of definition 2.1, 2.2 and 2.3 above on model (2.4) so as to
reformulate it as a system of fractional order £ for 0 < £ < 1 differential equations,
we obtained:

Be(l—p1)(X—p2) (L —71) (1 A+ 1+ c2M)S

DES(t) = — ~ —vS+pQ = Q(t,5(),
DgE(t) = Lellmp) Uz p) Um) @A TGS (4 oy p a1 B,
QU)=aE—-Mm+p)Q=U(t,QQ)),

DEA(t) =koE — (w+ea) A2V (t,A(t)),

DiI(t)=(1—k)oE — (q+ 061 +er) [ =W (t,1(t)),

DgM(t) (1—mp)gl —(0+0m +em) M =X (t,M(t)),

D5y (t) =nQ + wA + Topql + OM — (v + 6u) Iu =Y (t, Iu (1)),

DSR(t) = eaA+erl +enM +~Iw —vS = Z (t, R(t)),

(2.5)
where
NO=SH+EO)+QM)+AX)+IT{)+M(@)+ Iy (t)+ R(t)

and ¢ € (0, 1].

With initial conditions:
S(0) >0, £(0) >0, Q(0) >0 A() 0, 1(0) > 0,
M(0) >0, Ig(0) >0 and R(0 ) >0

3. Basic properties analysis of the model (2.5)

It is pertinent to examine the basic properties of the proposed fractional order model
(2.4), this is what we do in this section.

3.1. Positive invariance

Theorem 3.1. Given that the solution of the fractional order model (2.5) is S(t),
E(t),Q(t), A(t), I(t), M(t), Iy, R(t), then the set:
Q={(S(), E(1),Q(t), A(t), I(t), M(t), Iu, R(t)) €
RE :S(t) +E(t) +Q(t) + A(t) + I(t) + M(t) + Iy + R(t) <

}. (3.1)

=13
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Consequently, this set of solution is positively invariant.
Proof. In addition, all the equations of the proposed model (2.5) give:

D¢N
=D;S(t) + D;E(t) + D;Q(t) + D; A(t) + D; I(t) + D; M (t) + DI + D; R(t)
=t —(S+E+Q+A+I+M+Ig+R)pu— (0;1+0pM+0uly)
<m — uN.

By applying Laplace transform to both sides of this, we obtain:

sSN(s) — sS7IN(0) < T_ uN(s),
S
Simplifying this, we obtain:
. ™ s¢1
N(s) < —+ N(0 .
(s) < s (s€+p) +N( )55+u

By resolving the fractions on the right hand side of this into its components, we
have:

)

N(s)< = (i) - (2 -n) i i;‘i)l .

i—0

By taking the inverse Laplace transform of this we have:

N <5 = (5 - N ) Be ().

as t — oo and the inequality above becomes:

N(t) < = (32)

T
7

Showing that the equations in the fractional order co-infection model (2.5) are
bounded, thus, the co-infection model is said to be mathematically well-posed and
biologically meaningful. O

3.2. Positivity of solution to the equations in the co-infection
model (2.5)

By logical inconsistency, suppose that we accept that the fourth condition of the
model is not true in the spirit of the thoughts of Ugochukwu et al. [37].

Let t; = min {t : S(¢), E(t), Q(¢), A(t), I(t), M(t), [z, R(t)}. Given that A(t;) =
0, it gives rise to S(t) > 0, E(t) > 0,Q(t) > 0, A(t) > 0,I(t) > 0, M(t) > 0,1y >
OandR(t) > 0 for all [0,¢1]. Given that the following expression holds:

’191 = min. {kOAE‘—(w—f—EA)}

This gives rise to

DSA(L) — 01 A(t) > 0. (3.3)
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The following equation is established since A; is a continuous function
D; A(t) — 91 A(t) = A1(2).
By taking the Laplace transform of this we obtain:
sSA(s) — s5T1A(0) — 91 A(s) = —Ay (1),

Arising from here we got:

Als) =A(0) -2~ M _ AQ) (1-“)1 _ M) <1_ ?91>1

s&€—191  s&— 5 s& s& 5¢
=A(0) Z ST}H —Mi(s) Z sgz:lu :
i=0 i=0

By utilizing the Mittag Leffler function and by taking the inverse Laplace trans-
form of this produced solution to (3.3) where, the following expression is obtained:

a0y

=0

(911)"
&+ 1

A(0)E¢ (01t°) .

—

Consequently, the solution to A(t) positivity gives rise to:
A(t) > A(0)E¢ (91t°) > 0.
This is a contradiction to A(t1) = 0. Likewise, assuming that I(¢;) = 0 implies that

S(t) > 0,E(t) > 0,Q(t) > 0, A(t) > 0, M(t) > 0, g > OandR(t) > 0 for all [0,#].
Given that the following expression holds:

L{(l_k)UE(quélJrel)}.

This gives rise to

DSI(t) — 01(t) > 0. (3.4)

The following equation is established since As is a continuous function:
D;I(t) —92I(t) = —Aa(2).
By taking the Laplace transform of this we obtain:
s$1(s) — s57H(0) — 9 I(s) = —Aa(t).

From here we obtain:

I(s) :1(0)5586__;2 - 5?1_(31;2 _ 10 (1 B 192) U As(s) <1 B i)l

s s

W 0 )

= (O)Z 851'11 - AQ(S)Z sgfu

1=0 =0
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By utilizing the Mittag-Leffler function and taking the inverse Laplace transform of
this produced solution to (3.3) where, the following expression is obtained:

= I(0)E¢ (92t°) .

Consequently, the solution to I(t) positivity gives rise to:
I(t) > I(0)E¢ (92t°) > 0,

which is a contradiction to I(t;) = 0.

Likewise, by following the same approach as we did above, it can be shown that
the positivity of solutions S(t), E(t), Q(t), M (t), Iy and R(t ) is given respectively
by:

S(t) > S(0)Ee (U5t°) > 0, E(t) > E(0)E¢ (94t°) > 0, Q(t) > Q(0)E¢ (U5t°) >
0,

M(t)>M(0)E¢ (96t°) >0, I (t) > I (0)Ee (971%) >0, R(t) > R(0)E¢ (Ist°) >0

3.3. Existence and uniqueness of solution to the equations of
the co-infection model (2.5)

To establish the existence and uniqueness of a solution to the model, we adopt
Schaefer’s fixed point theorem, which requires that the system satisfy continuity
and Lipschitz conditions, and that the associated solution operator be compact
and map a closed, bounded, convex subset of a Banach space into itself. These
conditions ensure that the model possesses at least one unique solution that is bi-
ologically feasible and mathematically stable. For our fractional order co-infection
model (2.5), it becomes imperative to show the existence and uniqueness of its solu-
tion. By making use of the technique adopted by Ndolane [38] which involves using
Banach fixed point theorem together with Schaefer’s fixed point theorem we shall
establish the existence of a solution to the proposed model and show the bounded-
ness of the model. This method is characterized by applying the fractional integral
to Caputo fractional order derivatives model (2.5) of order £ > 0 together with its
respective initial conditions so that the process leads to Volterra-integral equations
that will serve as the basis for the solution to the proposed model (2.5). Suppose
that Q,T,U,V,W, X,Y and Z are the right-hand sides of each of the model equa-
tions in (2.5). Then,
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t §-1
S-S0 = 75| t=9 Q.50
t §-1
E(t)—E<o>=% / (t—0) Tt E®)d,
t §-1
Q(t)*Q(O):% / (t—0) U LQW)d,

t -1
At) — A(0) = % / (t-0)  V(tA®)d,

o (3.5)

1 t
10 -10 = g | 10 W)

1 t §-1

MO =MO) = 5 [ -0 X (M)
1 t §-1

Tn(0) = 1) = 75 [ =0 Y (. T(0)dc.
1 t §-1

R = RO) = 55 [ 1-0 Z(.5()d0).

Functions (Q,T,U,V,W, X,Y, Z) : [0,T] x B — B are assumed to be continuous
and (B, ||.||) is a Banach space and provided that all the continuous functions that
are defined in [0,7] — B shaped with Chebyshev norm have their Banach space
beingA* ([0, T7).

Our task is to show that the continuous functions Q,T,U,V,W, XY, and Z
satisfy the Lipchitz condition if:

sup ||+ | <,

o<t<r I NV®)
E(t) Q(t)
sup < Q , Sup H H < Q37
o<t<r IV ? o<t<r IV
<t<
I(t) M(t)
e, 465 < 0 sup 565 <
Iu(t) ‘ R(t)
sup < Qr, sup H—’SQS.
o<t<r Il VO ! o<t<r IV
Hence,

1Q(S1) — Q (S2)l

:H{iﬂc(l—Pl)(l—P2)(1]—V71)(01A+I+C2M)57@5] S+ 10
N {_&(1*91)(1*1)2)(1 ]*VTl)(ClAJrHCzM)S _US} SQ+MQH
— B s - 0 - B 51 - ) - B s )

(I—p1)(I—p2)(1—71)
- N (S1 — 52) — U(Sl — 52)
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ClA t

<Be sup H [S1 — Sa| +Bc sup H [S1 — Sa|
0<t<T N(t)
M 1
we s |20 s, - S||+( ) Q) O2m) s, ) 4w - 55
0<t<T
<Jgl|S1 — 52H7 (3.6)

where Jg = (5694 + .05 + 8.0 + (17ﬂ1)(1;\]p2)(1,n) + U) > 0.
Secondly, we have:

1T (S1) =T (S2)l

:H[_ﬂcum)(lpg)(l —nllad+Tral)Ss (QH)E}

B [_ﬁc(l—m)(l—m)(l —er)(c1A+I+62M)52 _(a+g)EH
_ H_BCJCVIA (51— 55) = 2L (5, 5y - M (5, )

(I=p)( ;VPQ) (1- Tl) (1 — S)
<p, sup [ 429 H 10l + 5: s |44 sy - saf

0<t<T 0<t<T (t
+ B sup — sy Lo 1oy,
0<t<T

<Jr[[S1 = Saff, (3.7)

where Jr = (5594 + B85 + Bs + (1_01)(1;\,’)2)(1_71)) > 0.
Likewise, other functions U, V, W, XY and Z can be shown to satisfy Lipchitz
condition in the same way.

Theorem 3.2. Suppose (Jo, Jr, Ju, Jv, Jw, Jx, Jy, Jz) "O=LEDTE g - ppyg
implies that the newly proposed model (2.5) has a unique solution on [0,T] given
that (Q,T,U,V,W,X,Y,Z) : [0,T] x B — B are continuous and satisfy Lipchitz
Criteria.

Proof. Let mapping 7: A ([0,7],B) — A'([0,T], B), given that 7 is defined
n (Q,T,UV,W, XY, Z) : [0,T] x B — B. By using (3.5)-(3.7) and for all
(S1 — So) €A1 ([0,T],B) and 0 < t < T, we obtain:

1 (T o1
7 (S1(8) — 7S5 ()] = [[S(0) + = / (t— Q) F (t,5,() dC

I'(€)

- (szw) + % /0 (t- o“F(t,S(t))dc) H

/ OFSTHF (¢, 51(8)) — F (t, So(t))||d¢

IN IN
’—_J ’1
(O m =

O IS1(t) — Sa(t)]|d¢
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3
= 7 (5100 = 7520V < Jo (s ) 1510~ Se(O)L

The same process yields:
§
= (510 = TS < Jr (s ) IS0 - S0l (38)

Clearly,(Jo, Jr, Ju, Jv, Jw, Jx, Jy, Jz) W@z% < 1. The application of
Banach contraction mapping reveals that on the interval 0 <t < T'| the operator
has a distinct fixed point since because it is a contraction mapping.

O

This theorem guarantees the existence and uniqueness of a solution to the
fractional-order epidemiological model proposed in the paper. From a biological
perspective, this result confirms that the model behaves well-posedly; that is, for
a given set of initial conditions and parameter values, the disease dynamics evolve
in a predictable and consistent manner over time without ambiguity. In epidemio-
logical modeling, such mathematical rigor is crucial. It ensures that the projected
trajectories of infection, recovery, and other compartments are not artifacts of math-
ematical inconsistency but reflect the true underlying dynamics of disease spread.
This reliability is essential when using the model for forecasting outbreaks, assessing
intervention strategies, or conducting sensitivity analysis. Moreover, the involve-
ment of the fractional operator and Mittag-Leffler-type kernel through the condition
wimplies that the model incorporates memory effects—a biologically
realistic feature in infectious disease transmission, where the current state depends
not only on the present but also on the past history of the system. The Lipschitz
condition and continuity of the operators reflect biological stability in the response
of the disease model to changes in state variables over time. This ensures that small
changes in initial infection levels or control interventions do not cause unpredictable
or explosive changes in model output.

Next we investigate the existence of solutions to the proposed model (2.5) by
using Schaefer’s fixed point theorem.

Theorem 3.3. Let (Q,T,U,V,W,X,Y,Z) : [0,T] x B — B be continuous and
Suppose that there exist constants (Jo1, Jr1, Ju1, Jvi, Jwi, Ix1, Jy1, Jz1) > 0 such
that:

|1F (¢, 9] < Jg1 (c+ IS,

1E (¢ E)| < Jro (e + [[E]), [[F (¢ Q) < Jua (¢ + Q)

1E (& Al < Jva e+ A, [1F @& DI < Jwi (e + (1)),

|F(t, M)|| < Jx1 (e + [|M]),

|F (t,Ig)|| < Jyi(c+ [Igl|)and ||F (¢, R)|| < Jz1(c+ ||R]|), with arbitrary
r(zg;n)ber 0 < ¢ < 1. Then there is at least one solution for our proposed model

Proof. From (3.8), the operator 7 is continuous. Suppose that {5+ }OO,{EiJrl }007
(@] LAY ) (0 (17 and (R}, avesiquences
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Sitl o §UETH o B QI QY AT — AT T s T MY MO T T,
and R — R?in A'([0,T], B). Given that 0 <t < T, we have:

s ) = vs°(0)
gl e-ors -0 .5 0)
=== — F(t, 87 (t)) d¢ - —Q)SIR(t,5(t)) d
| =0T P s @) ac- [ -0 s 0)
1t ‘
<mg [ €= O P (s @) - F(es') | ac
Jon T
—F(§1+1 HSZH Sz( )H
Té ) )
<Jon (557 ) 1570 = SO (39
with HS“rl (t)—S*(t ||A — 0 as n — oco. By following the same procedure, we
obtain:
B @) = 7B ()] < I (miy ) 1B () = B )] o,
6@ (8) = 6Q D] < Jon (e ) 197 () = @ (1) -
H¢Ai+1 (t) - d)AZ (t)H < Jvi (F(gil)) HAH_I (t) — A (t)HAl
H‘fﬂwrl (t)_”bp (t)H < Jw1 (F(£+1)) Hp+1 t) — p(t)”Al’
oA+t (8) — 921 (]| < Jxr (s ) M7+ (@0) = M ()
lorit @) = o1 )] < I (ke ) 1757 () = Ty ()]s
and
[6R (6) = 6B ()] < Tor (s IR (6) = B ()],
where
[B7 () — B HA1 %0 Q7 () = Q" (®)]| 11 — O,
[AE (1) — AT (@) 1o — (t) = I ()| i =0,
[T+ ) - HA1 MZ“ (t) - _HA1 =0,
|1 @) — 1y (t)||A1 — 0, and R () — R (t)]| ;o — O,

as n — oo. Therefore, the operator 7 is continuous.
We then wish to show that operator 7 is bounded on the set A ([0,7], B).
For each S € Ag, E € Ag,

QEAQ,AEAA,IEA[,MGAM,
IH 61411-151%6/1R7

and for d > 0, there corresponds a value e > 0 where

TS| <e |TE| <e, [7Q| <e, [7A]| <e,
ITIl <e, [lTM| <e, |7lul <e, |7R[ <e,

and the subset of Banach space of all continuous function on the interval 0 < ¢ < T
is defined as follows:
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As={Se A ([0,T],B): ||S| < d},

Ap={S € A ([0,T],B): |E| < d},
Ag={Se A ([0,T],B):||Q|| <d}, Aa = {S € A ([0,T],B) : ||A]| < d},
Ar={Se A ([0,7],B): ||| <d}, Ay = {S € A*([0,T],B) : |M|| < d},
Ar, ={S € A ([0,T],B) : |[Iu| < d}, Ar = {S € A*([0,T],B) : |R| < d}.

For any 0 <t < T,

IS < IS Ol + g5 | (6= IP (5O

<ts o+ LSO [ getagg

3
<O+ Jea (e + 15D 577 )

3
7SI <18 Ol + a1 e +) (s ).

Similarly, we obtain:

I Eell < 1B O+ Jru (e + d) (i )
17Q1 < 1Q )] + Jirs (e + d) (55 )

I7AI < A Q)]+ v (e +d) (v
I 11 < M)+ Jwa (e + d) (i
M < M )]+ Tx (e + d) (wsm )
(

(
£
I all < T O+ Jy1 (e + d) (7).

and

13
I7RI < IR O)] + Tz (e +d) (i )-

Let A map bounded sets into equal continuous sets in A! ([0, 7], B).
Whenever 0 <ty <ty <T,then S € Ags, F € Ap, Q € Ag, A€ Ay, I € Aj,
M e Ay, Iy € A]H,R € AR, where t1,t5 € [O,T] Then

|75 (t1) — 7S (t2)]]

Sl e-oraso- [Tt res (t))H 40

T
1

Si

[ 6-07 -0 Fes o+ [ e - o Fasoao|

Jai (c+d) /Otl (= O = (12— 0] d(0) +/: (t2 — C)Hd(C)H

Jo1 (c+d)T¢
rE+1)

= |78 (1) = 75 (t2)]| < (- 6 +2(t2 — 11)°) .

Adopting similar approach gives:
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]Tl Cer)T

CT(E+D)

13
| < Dl (6 — i+ 2(t2 — 10)°

I7M (1) = M ()] < ZHED (85 - 15 + 22 — 1)

I7E (1) = 7B (t2)]| < 25T (8 = 15 + 2t — 1)),
c 3
I7Q (t1) = 7Q (t2)]| < ZuREPT (t§ 5 4 2(to — tl)f)
13
A () = TA (|| < 2HERT (6 - 8 + 202 - 0)°).
|

)
)

N

)

( 1
13
|71 (t1) = 71a (t2)] < JYI(Zi?)T' (t§ — 15+ 2(to —-t1)£)7
c 3
TR (t1) = TR(t2)] < % (t% — 15+ 2(t2 _tl)f)-

)
)
)
|71 (t1) — 7 (t2)
)
)
)

As t; — to, by following Arzela-Ascoli theorem, each of the inequalities above tends
to zero. It becomes imperative to wish to show that:

U(r)=(S(t),B(), Q) At), I(t), M(t), In(t), R(t)) €A ([0,T], B),

AY([0,71, B) : (S(t), B(£), Q(1), A(t), (1), M(t), Iu(t), R(t))
=A (S(t)’E(t)aQ(t 7A(t)71(t)7M(t)7IH(t)7R(t))

)
is bounded for some A € (0,1).
Given that( ( ) ( ) ) ( )7 ( )al(t)vM(t)aIHa (t
E(t), Q(t), A(t), I(t), M(t), I (t), R(t)) = AT (S(t), E(?)
R(t)), for each to € [0,T] it follows that:

€ U (1), such that (S(¢),

) €U (7),
;Q1), At), I(2), M (1), I,

1 (T 1
1S (D)l §5(0)+F(§>/0 (t— O HIF (S 1) d ()

<5(0)+ Ja! / (= e+ IS (DI d (<)

GEA
T T
SO+ FE [ =00+ S [ =0Tt Iswla©
§ 3 T
<50+ (Jarpg ) + (Jarpgg ) [ 6-0 Is @140
3
=S @) < <S (0) + J1?Z§T) D, (VGle)) < 0. (3.10)

Similarly, we obtain the following by applying the same approach:

DIl < (E(0) + 254 De (JT9)) < o0,
0) + H5De (JnT9)) < o0,
0) + 205 De (1 T9) )
121 < (1(0) + 445" De (JwiT9) )
IM (1)) < (M (0) + %55 De (JxaT9) ) < o0,
)
) <

121 () < (L (0) + 5 De (3 T7€)) < o,
IR @) < (R(0) + %5-De (JnT?)) < oc.
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Having shown that U (7) is bounded, then, by Schaefer’s fixed point theorem, 7
possesses a fixed point and consequently, it is the solution of the model.
O
Theorem 3.3 establishes the existence of at least one solution to the proposed
COVID-19 model formulated in system (2.4). From an epidemiological perspective,
this result ensures that the mathematical formulation of the model reliably captures
the real-world disease dynamics over time. The existence of a solution guarantees
that for every initial state of the population and parameter set, the model will gen-
erate a meaningful trajectory describing how the disease spreads, progresses, and
recovers in the population. This is crucial for validating the model as a tool for
understanding the behavior of the epidemic under various control strategies and
interventions. It confirms that the model is not only mathematically sound but also
dependable for simulating the outbreaks and guiding public health decisions.

3.4. Reproduction number of the COVID-19 model

The basic reproduction number, denoted by R, represents the average number of
secondary infections produced by a single infectious individual in a completely sus-
ceptible population. Biologically, it serves as a threshold indicator that determines
whether an infectious disease can invade and persist within a population. When
Ry < 1, each infected individual generates fewer than one new case on average, lead-
ing to disease elimination over time. Conversely, when Ry > 1, the infection can
spread in the population, potentially leading to an outbreak or endemicity. In the
context of COVID-19, Ry provides critical insights into the intensity of transmission
and guides the implementation of control strategies such as vaccination, quarantine,
public sensitization, and adherence to non-pharmaceutical interventions. Therefore,
reducing R below unity is a fundamental goal in the design of public health inter-
ventions aimed at controlling and eventually eradicating the disease.
The disease free equilibrium of the COVID-19 model (2.4) is given by:

g0 = (S™(t), B (1), Q7 (t), A™(¢), I"(t), M (t), I" u (t), B"(£))

- <Z,0,0,0,0,0,0,0) : (3.11)

By adopting the approach proposed by [33], the F' and V' matrices which cor-
respond to the new infection terms and other transfer terms of the disease respec-
tively as captured in the fractional order model (2.5) respectively are given by:

00 B8Te¢; BT BTey 0 P, 00 0 00
00 O 0 0 0 -« P, 0 0 0 0
00 O 0 0 O —ko 0 P; 0 0 0
F= and V = ,
00 0 0 0 0 ~(1-k)o 0 0 P 00
00 O 0 0 O 0 0 0 —P5 P O
o0 0 O 0 O 0 —n —w —Tops 0 Pz
where T = (1—p1)(1—p2)(1—11), Pr=(a+0), Po = (n+u), Ps = (w+ea),

Py = (q+51 +eé1), P5 = (1 77‘290),]36 = (9+5]w +€M), and P7 = (")/+5H).

~
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The reproduction number is given by Ry = p{F V’l} where p is the largest
absolute value of the Eigen value of (F V’l).
Consequently,

_ _BA=p1)A=p2)(A=71) | c1ko (I-k)o | c1(l1—k)ogPs
Ry = - == [1691193 + r T TR }

3.5. Local stability of the model (2.5)

It is highly imperative to investigate the local asymptotic stability of the new epi-
demiological model, which we accomplish by adopting Ulam-Hyers-Rassias (UHR)
stability method in line with the work of Liu [40].

Definition 3.1. For A (t) € A ([0,7T], B), assume there exists E, > 0 for v > 0.
Then the proposed model (2.5) is generalized Ulam-Hyers-Rassias (UHR) Stable
and for all solution

(S(t), E(t), Q(t), A(t), I(t), M (t), In (t), R(t)) € A' ([0, T], B)
of the model (2.5), and is the existence of the following inequalities:

|DiS(t) = F(t,5(t)| < A1), Dy E() — F(t, E(t)] < A(t),
[DiQ(t) — F(t,Q(1))] < A (D),
|DFA(t) — F(t, A(t)| < A(t), [DyI(E) — F(t, I(t)] < A (),
‘ | Dy M(t) — F(t, M(#))] < A(t),
|Di I (t) = F(t, In(t)] < A (t)and | D} R(t) — F(¢, R(t))| < A ().
The solution (S(t), E(t), Q(t), A(t), I(t), M(t), Irr(t), R(t)) € A'([0,T],B) exists
for the new model (2.5) with
|S(t) — S()]<EA() E(t) - E(t)| < E,A (1), |Q(t) - Q)] < E,A (1),
|A(t) — A()]<EA () I()]<EA() (t)—M(t)\gEUA(t),
[Ta(t) = In(t )y < E,A(t), and |R(t) — R(t)| < E,A(2).

Theorem 3.4. With respect to A (t) € Al ([0,T],B), the fractional order model
(2.5) is generalized Ulam-Hyers-Rassias (UHR) table given that

(VGa VHa VL7VQ7VR7V55 VT) T < 1.

Proof. Using definition 3.1, by denoting A as a non-decreasing function of t, then
there exists v > 0, given that:

Fre— A @ dc < v (1)

for every ¢ € [0,T]. Whereas, it has been demonstrated that the functions Q, T, U, V,
W,X,Y,Z are continuous and (Jo, Jr,Ju, Jv,Jw, Jx,Jy,Jz) > 0 satisfies the
Lipchitz condition as it has been shown in the preceding section. From 3.2, the
unique solution to fractional order model (2.5), is given by:

_ ‘ -1
S(t) = S(0) + tgy Jo (t F(t,S(t)dC.
On integrating the inequalities in definition 3.1, we obtain:
£—1

1 t
T / (t-¢)  Al)dC

1 ¢t

5= 50) - 55 / (t—C)  F(t.5(t)dc
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< vA(t)T¢

S (3.12)

Using Lemma 2.1 and equation (3.12), yields

c—1

<5(t) <S<0>+F(1§) / (t—0)

<[5~ 5(0) ~ (5(0) + ﬁ / (t - O F (L, 5(1)) de

F(t, S@))@’C)

Lo R
+F(§)/O(t QFF(E S(1) dC F(&)/o(t QSR S() dC )|

S‘S(t)—S(O)ﬁ-%/O (t—C)f‘lF(uS(thC\

LT e Pt S
+ g | (= O R S0) - P50 dc

UA(t)T£ JQT5 ¢ _ _
SF(5+1) NS / (t= O HF(t 5(1) = (¢, 5(1)] dC

vA(t
15050l < 1

E¢(JoT*).

By settingFe = F(é—f)—l) ¢ (JQT*®), we obtain:

|S(t) = S(t)| < EeA(t),t € [0,T].
Similarly, by following the same approach, we obtain:

|E(t) — E(t)| < Es 1), |Q(t) = Q(1)] < BeA(t), |A(t) — A(t)| < EeA(t),
|I(t)7[(t)| SEg }M M( )| <E§ ’IH IH(t)| §E§A(t)
and |R(t) )| <E ,t€[0,T].

From the foregoing, with regards to A(t), generally, the indication is that the frac-
tional order model (2.5) is Ulam-Hyers-Rassias (UHR) stable.
O
Theorem 3.4 demonstrates that the proposed fractional-order COVID-19 model
(2.5) is generalized Ulam-Hyers-Rassias (UHR) stable under a specific condition
on the model constants. Biologically, this means that small perturbations or un-
certainties in the initial conditions, input data, or parameter values will not lead
to large deviations in the model’s solution. In the context of disease modeling,
such stability ensures that the predicted disease dynamics (e.g., infection levels,
recovery trends) remain robust and reliable, even if the data used for simulations
are slightly imprecise due to measurement errors or incomplete reporting. This
property is particularly important in real-world epidemiology, where data imperfec-
tions are common. Thus, UHR stability provides confidence in the model’s use for
forecasting and policy-making under uncertain conditions.



A Caputo-Based Fractional Order Modelling of COVID-19 in Nigeria

1597

3.6. Global asymptotic stability of the fractional order model

(2.5).

Theorem 3.5. Whenever the reproduction number of the disease is greater than
unity, Ry > 1, the disease free equilibrium is globally asymptotically stable in domain

D.

Proof. We investigate the global asymptotic stability of the model (2.5) by using
the method adopted by Castillo-Chavez [41].

DEX =F(X,W)=

AW =

(1= — —71)(c1A+I4+caM)S
_ Be(1—p)(1 ,,2)(1N1)(1 +I+ca M) — 08+ uQ

_ﬁc(l—m)(1—p2)(17V71)(C1A+I+62M)S _ (a —i—o‘)E

eaA+e Il +eyM+~Ig —oS
aFE—(n+p)Q

—vS + @
—(a+o0)E
eaA+e Il +eyM+~Ig —vS
af —(n+p)Q

koFE — (w+ea)A
aw (1—-k)oE—(q+01+¢er)]

dt (L=m20)ql = (04 m +en) M
NQ +wA+ gl + OM — (v+6p) Iy

—(w+ea) 0 0 0
Ao 0 —(q+6r+¢e1)0 0 .
0 (1—72p)q 0 —(0+6n+enr)
w T2q 0 —(v+dm)

ABQ=p ) (=)A= )(S ko E-(wreald) _ 4 (4 ¢ ko)

Iﬁ(l—pl)(1—p2)(1—7’]1\])(5+ka'E—(w+6A)A) _ I(q+51 +€1)

Mﬁ(lfpl)(1*P2)(1*‘1f\})(5+k¢7E*(w+6A)A) _ M(QJFO‘M +5M)

Aw + Itopqg — (v + og) M

Aw

G(X,W) =AW — G(X7W) = | Topql

0

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Therefore, since G (X, W) > 0, it shows that the disease free equilibrium of the
proposed model (2.5) is globally asymptotically stable. O

Theorem 3.3 establishes that the disease-free equilibrium (DFE) of the proposed
COVID-19 model is globally asymptotically stable in the feasible domain D when-
ever the basic reproduction number Ry > 1. Biologically, this implies that when
each infected individual generates more than one secondary case (i.e., the disease is
spreading), the system does not return to the disease-free state regardless of initial
population conditions. This means that the infection will persist in the popula-
tion over time unless effective intervention strategies—such as mass vaccination,
increased testing, social distancing, and public health education—are implemented
to reduce Ry below 1. This result underlines the importance of controlling trans-
mission parameters to eliminate the disease and informs health policymakers that
without sufficient control, the disease will remain endemic.

3.7. Numerical scheme and algorithm

Given that ¢t; = jh for j = 0,1,2,...n, is a uniformed grid point represented by some
integer n for the step size given by h=™M / »- By using the piece-wise interpolation,
knots and nodes located at ¢ for k =0,1,2,...5 + 1, the one-step Adam-Moulton’s

method for fractional order version reduces to corrector formula as described in
Diethelm et al. [43] given by equation (3.18) below:

hé
S(tjt1) —S5(0) = W <Z771w+1Q tes S (t)) + Q (tj4+1, 57 (tj41))
J
E(tjy1) - E(0) = £+2 (Z%,;HT tiey S (t)) + T (tj41, B (tj41))

Q(tj+1) —Q(0 M, j+1U (tk, S (tk)) + U (tj41, Q (tj41))

(
=0
(

M“ wM“

)= @+m<
hé
)= T(E+2) ( M j+1V (t, S (tx)) +V (tj41, AT (tj41))

el
Il

0

M“’

I(ty4n) ~1(0) = 5+2<

k=0
q
M (tq+1) -M (0) = m < i 7q+1X (tl’ICP( )) +X( q+17 q+1
=0
hs d
Ig (tg41) —Im (0) = m ( Niqr1Y (ti,Iep (8:)) +Y ( a1, 18 ( q+1
=0
hs

MQ

R(tg+1) — R(0) = 12 < Nig+1Z (tiy Lep (8)) + Z (tgi1, BY (tg41

(=)

1=

MW (tk, S (tk)) + W (Ej41, 17 (t41) )
3>

18)
with the weight:
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-G -93G+1)5, k=0,
Mejt1 =G —k+2) T+ (G- D =20 —k+ D, 1<k <,

The predictor formula which is based on the famous one-step Adams-Bashforth
method is given by:

Uk, j+1Q (e, S(tr)),

vk, j1 T (t, E(tr)),

Uk j+1V (te, Atr)),
(3.19)

Uk, i1 W (tk, I(tr)),

>
k=0
>
k=0
Q1 (tj+1) —Q(0) = L > k41Ut Qtr)),
k=0
>
k=0
>

I () — Lt (0) = % > vienY 1 (1)
1 J
R (tj41) — = NG kz::“k 41 Z (b, I(tr)),

together with weight:
Vi1 = ETHE(G — K+ 1) — (j — k)"

3.8. Numerical simulations

In this study, we adopt the nonstandard finite difference (NSFD) scheme to nu-
merically approximate the solution of the Caputo-based fractional-order COVID-19
model. The choice of the NSFD scheme is motivated by its ability to preserve es-
sential qualitative features of the original continuous model, including the positivity
and boundedness of the state variables, which are crucial in modeling epidemiologi-
cal dynamics. Traditional numerical methods such as Euler or Runge-Kutta schemes
may fail to retain these biological properties, especially when dealing with nonlinear
fractional-order systems. The NSFD scheme, through its non-local discretization
and flexible denominator functions, ensures numerical stability, convergence, and
adherence to the inherent memory effect of the fractional derivative. This makes



1600 B. Bolaji, B. I. Omede, G. O. Acheneje, W. Atokolo & U. B. Odionyenma

it a more robust and accurate method for simulating the long-term behavior of in-
fectious disease models, particularly those involving memory-dependent processes
like COVID-19. From qualitative analysis of the new model (2.5), some vital results
were obtained. It becomes highly imperative to validate these results; consequently,
there is the need to do numerical simulation of the model. In addition, numerical
simulation of the model is a necessity in the sense that it is the basis for generating
empirical-based epidemiological findings that will assist policy makers in the health
sector to procure measures that will help in combatting the scourge of the disease.
We employ the predictor-corrector method derived from Adams-Bashforth linear
multistep method which is based on the famous Caputo fractional order deriva-
tives.

4. Data fitting to model for estimation of parameter
values

We performed the data fitting to our model by using the fmincon algorithm con-
tained in the optimization tool box of MATLAB computation programming soft-
ware. The procedure of using this routine is by minimization of the squared differ-
ences between observed cumulative active cases data point and the corresponding
case point as obtained from our model (2.5). Our data fitting to model was im-
plemented for epidemic period in Nigeria from 9th July 2021 to 17th September
2021 by using the daily cumulative number of active-cases of the disease as ob-
tained from Nigeria authority, NCDC. In the spirits of the work of Okunoghae and
Omame [18] that modelled the dynamics of the COVID-19 pandemic in Lagos Nige-
ria, some of our parameters were estimated as o = 0.015 per day, o = !/ per day,
§1 = 0y = 0.015 and 6y = 0.21 per day, v = /15 per day. In addition, other
parameters such as ., 6, ¢,n and w were estimated via fitting the model (2.5) with
the daily number of active cases and cumulative number of reported cases. On
the other hand, E(0), Eqg(0)and Iy (0); the numbers of those individuals latently
infected, those quarantined and infectious individuals that were detected and hos-
pitalized on the 1st of December 2021 will be estimated from the data fitting. We
noted that the population of Nigeria is 206,603,134 consequently. We took this num-
ber as the starting point, that is, the initial condition for our simulation, hence we
set S(0)= 206,603,134, F (0) = 200000, @ (0) = 7000,A (0) = 30000, I (0) = 150000,
M (0) = 50000, while we set Iy (0) = 1719 and R (0) = 164415. It should be noted
that this is done considering the date of index case. It is pertinent to note that
we performed the model fitting by using the fmincon algorithm in MATLAB and
we implemented the model fitting for a period of new wave of the epidemic from
9th July to 17th September, 2021 when the sub-Saharan country of Nigeria came
heavily affected by the deadly disease.

In the table below is the real life data pertaining to the deadly disease obtained
from Nigerian authority, Nigeria Centre for Disease Control (NCDC) for the period
when the third wave of the pandemic pervaded the air in Nigeria from 9th July
2021 to 17th September 2021.
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Figure 2. Model fitting

Date|July 9|July 10{July 11|July 12|July 13|July 14|July 15|July 16|July 17
Case|1897 [1987 [1989 |2113 |2119 (2138 (2286 |2414 |2531

Date|July 18|July 19({July 20(July 21|July 22{July 23|July 24|July 25|July 26
Case|2706 |2840 3023 3251 (3404 |3712 |3975 |4190 |4392

Date|July 27|July 28(July 29(July 30{July 31|Aug 1|Aug 2|Aug 3|Aug 4
Case|4757 5238 |5750 |6284 |6765 |7161 |7562 (7979 |8636

Date|Aug 5|Aug 6|Aug 7|Aug 8|Aug 9|Aug 10|Aug 12|Aug 13|Aug 14
Case[9076 (9090 |10003|10136|10334{10793 |11510 |11901 |12377

Date|Aug 15|Aug 16|Aug 17|Aug 18|Aug 19|Aug 20|Aug 21|Aug 22|Aug 23
Case|12917 [13152 [13554 |13756 |14619 [15100 (15200 |16055 [16300

Date|Aug 24|Aug 25|Aug 26|Aug 27|Aug 28|Aug 29|Aug 30|Aug 31|Sep 1
Case|16927 (17210 |17791 |18210 (10575 (10608 [10858 |10608 |10858

Date|Sep 2|Sep 3 |Sep 4|Sep 5|Sep 6 |Sep 7|Sep 8|Sep 9|Sep 10
Case|11203|11533|11862|11914|10067(8430 |8452 |8755 |9089

Date|Sep 11|Sep 12|Sep 13|Sep 14|Sep 15|Sep 16|Sep 17
Case|9591 (9871 |10121 |10135 (8492 [8701 (8799

Table 3. Cumulative active COVID-19 cases for Nigeria from July 9, 2021 to September 17, 2021.
Source: [19].
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Figure 3. The plot of the approximate solution of susceptible humans with different fractional values
of £
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Figure 4. The plot of the approximate solution of exposed humans with different fractional values of &
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Figure 5. The plot of the approximate solution of quarantined humans with different fractional values
of &
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Undetected Syrmptomatic Infectious Humans 1)
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Figure 6. The plot of the approximate solution of the undetected symptomatic infectious humans with
different fractional values of &

Undetected Asym ptomatic Infectious Humans Af)

3 . . \ \ . \ \ . .
0 05 1 15 2 25 3 35 4 45 5
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Figure 7. The plot of the approximate solution of the undetected asymptomatic infectious humans with
different fractional values of &

Humans Under Self-medication M ()

0 05 1 15 2 25 3 35 4 45 5
Time (in weeks)

Figure 8. The plot of the approximate solution of the humans under self-medication with different
fractional values of &
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Detected and Hospitalized Infectious Humans \H(I)
o

0 05 1 15 2 25 3 35 4 45 5
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Figure 9. The plot of the approximate solution of the detected and hospitalized humans with different
fractional values of &

@ N o w
=

Recoversd Humans R(t)
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0 05 1 15 2 25 3 35 4 45 5
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Figure 10. The plot of the approximate solution the recovered class with different fractional values of

3

We present results for simulation of the model over a period of 5 weeks using
different fractional orders £ = 0.25, 0.5, 0.75, 0.98. From Figure 3, observe that as
the fractional order of the fractional derivative £ increases the number of individuals
that are susceptible to the disease decreases proportionately. It shows that this is a
good result in the control of the disease. From Figure 4, it could be seen that as the
order of the fractional derivative £ is increasing, it leads to proportional decrease in
the number of the individuals exposed to the deadly disease. Figure 5 and Figure
6 show the same results as that in Figure 4. In Figure 7, looking at each of the
curves on the figure, observe that there is a downward trend meaning that number
of undetected asymptomatic individuals decreases over time as from the first day of
the third wave of the pandemic. By considering the curves on the figure as a whole,
observe that as the fractional order £ increases, it leads to a proportional increase
in undetected asymptomatic individuals over time.

In Figure 8, the number of individuals under self-medication for each of the
curves on the figure starts decreasing in value from the first day when the third
wave of the disease started in Nigeria till about the fifth day to two and half weeks
before their values start going up again. From Figure 9, it can be seen that for all
the curves, the number of detected and hospitalized infectious individuals is in the
upward trend, meaning that their number starts going up as from the first day that
the third wave of COVID-19 pandemic started for each of the fractional order &.
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Generally, it can be seen from Figure 9 that as the fractional order £ increases, the
number of detected and hospitalized infectious individuals keeps increasing too.
From Figure 10, each of the curves is on the upward trend, meaning that the
number of recovered individuals increases over time. And generally, as the fractional
order £ increases, it leads to a proportional increase in the number of recovered indi-
viduals. The observed variation in the size of infected compartments under different
fractional orders can be attributed to the nature of the Caputo fractional operator
with singular kernel used in this study. This operator incorporates memory effects
through its non-local integral structure, allowing the model to consider the histor-
ical states of the system in determining the present dynamics. This characteristic
introduces a smoothing and stabilizing influence on the infection spread, especially
under long-term interventions. Notably, the results show that as the fractional or-
der ¢ decreases, indicating stronger memory, the infected populations are reduced
accordingly. This demonstrates that the Caputo operator enhances the stability of
infected compartments by tempering abrupt changes and allowing gradual transi-
tions, which aligns better with real-world disease behavior. Therefore, the memory
effect inherent in the fractional operator plays a crucial role in capturing the pro-
longed impact of prior exposures and interventions on current disease dynamics.

5. Conclusion

Motivated by the merits of fractional order models consisting systems of fractional
order differential equations over the classical order integer models which are of
non-linear differential equations in classical order integer, we extended the work of
Omede et al. [10] by reformulating their classical order integer model as fractional
order model. By adopting Laplace transform, we showed that the state variables of
the model are positive at all times and showed the existence and uniqueness of so-
lution for the model by Schaefer’s fixed point theorem. We went further in analysis
of the model and showed that the model is Ulam-Hyers-Rassias stable and that its
disease-free equilibrium is locally and globally asymptotically stable whenever the
reproduction number of the disease is less than unity. The implication of this is
that the disease will be brought under control when measures are taken to keep the
reproduction of the disease at a value less than unity. The novelty of our work is
that we did the parameters estimates for the fractional order model by fitting our
model to real-life data obtained about the disease under study, COVID-19 other
than obtaining all of them from the literature and just making assumptions where
they could not be so obtained. The revelation from the numerical simulation of
the fractional order model is that it gives more degrees of freedom as the order of
the fractional differential equations contained in the model can be varied with ease
in order to show responses by different classes in real time. Furthermore, it was
observed that as there is a reduction in the order of the fractional derivative, it is
accompanied with reduction in the value of the population of each of the infected
classes in the model. From the analysis and numerical simulations presented in this
study we conclude that the fractional-order COVID-19 model using Caputo deriva-
tives effectively captures the memory effects of disease transmission and progression,
which are not accounted for in classical models. Also, the variation of the fractional
order £ reveals that system dynamics are highly sensitive to changes in &, offering
a flexible tool for studying a wide range of possible epidemic scenarios. Similarly,
the proof of Ulam-Hyers-Rassias stability confirms the model’s robustness under
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small perturbations, while the local and global stability of the disease-free equilib-
rium ensures theoretical reliability under realistic conditions. Finally, fitting the
model to real epidemiological data from Nigeria validates the model’s practical rel-
evance and demonstrates the potential of fractional-order models to support public
health decision-making, especially in settings with complex transmission patterns.
The results from numerical simulations reveal that the fractional-order model offers
greater flexibility than classical models. Specifically, the fractional order & allows
for dynamic adjustment of system behavior, which captures real-time responses in
different compartments. It was observed that decreasing the order £ leads to a
corresponding reduction in the population of infected individuals, highlighting the
memory-dependent nature of disease transmission dynamics. From both the the-
oretical analysis and numerical simulations, we conclude that the fractional-order
COVID-19 model formulated with Caputo derivatives effectively accounts for mem-
ory effects in disease transmission and progression, which are absent in classical
integer-order models. Furthermore, the system’s sensitivity to changes in & offers
a powerful tool for simulating a wide range of epidemic scenarios. The proven
Ulam-Hyers-Rassias stability guarantees robustness of the model under small per-
turbations, while the established stability of the disease-free equilibrium validates
the model’s theoretical soundness. It is pertinent to note that the fractional-order
model formulated in this work does not incorporate further disease control strate-
gies such as optimal control, which could be explored in future studies. Beyond this,
several potential extensions exist. For instance, alternative fractional operators like
the Atangana-Baleanu or Caputo-Fabrizio derivatives may be employed to investi-
gate the influence of different memory kernels on disease dynamics. The model can
also be enhanced by incorporating spatial heterogeneity, age-structured populations,
or stochastic elements to reflect more realistic transmission settings. Additionally,
integrating machine learning or real-time data assimilation techniques could signif-
icantly improve the model’s forecasting and policy-evaluation capabilities. These
directions represent promising avenues to further strengthen the relevance and ap-
plicability of fractional-order epidemic models.
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