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Haar Wavelet Operational Matrix Approach for
the Numerical Solution of Fractional Order
Diabetes Mellitus Model

S. Kumbinarasaiah®™ and R. Yeshwanth®

Abstract Diabetes is a chronic disease which many people suffer from seri-
ously. This study introduces a novel approach called the Haar wavelet colloca-
tion method (HWCM) to study the analysis and numerical approximation of
the fractional order diabetes mellitus model. We built the operational matrix
of integration (OMI) using the Haar wavelet to solve the diabetes mellitus
model, a system of fractional differential equations. First, we transform the
diabetes mellitus model into a system of algebraic equations using the oper-
ational matrix of integration of the Haar wavelet. The obtained system is
further considered using the Newton-Raphson technique to extract the un-
known Haar coefficients. Here, we use the calculus of fractional derivatives of
a mathematical model to study and investigate the dynamic behavior of dia-
betes. We find numerical results for the validation of fractional order deriva-
tives. Using the model parameter values, these numerical results are seen from
both mathematical and biological perspectives. Numerical tables and graphi-
cal representations provide a visual presentation of the obtained results. The
results of the developed method, the RK4 method, and the ND solver solution
are compared. The numerical results show how highly accurate and efficient
HWCM is in solving the fractional order diabetes mellitus model. Further,
we show the method’s efficacy and dynamics in various settings by performing
simulations with parameter values. Mathematica, a mathematical software,
has been utilized for numerical computations and implementation.

Keywords Caputo fractional derivative, collocation method, operational ma-
trix of integration, Haar wavelet, fractional order diabetes mellitus model
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1. Introduction

Chronic metabolic diseases like diabetes mellitus continue to pose a serious threat
to world health. It is a long-term metabolic disorder defined by persistently high
blood glucose levels brought on by insulin production action insufficiencies or both.
These abnormalities disrupt the metabolism of proteins, fats, and carbohydrates,
highlighting the pivotal role of insulin as an anabolic hormone. Patients with dia-
betes have a higher risk of coronary artery disease and are four times more likely
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to have a stroke compared to individuals without the condition. Untreated dia-
betes poses several risks, including abnormalities in vision that can result in blind-
ness, increased susceptibility to infections, and loss of consciousness. On the other
hand, some people, especially kids with total insulin deficiency, might exhibit ob-
vious symptoms like polyuria (excessive urination), polydipsia (excessive thirst),
polyphagia (increased appetite), blurred vision, and unintentional weight loss. The
International Diabetes Federation estimates that by 2040, there will be an addi-
tional 200 million people with diabetes mellitus worldwide from the approximately
415 million who had the condition in 2015 [1]. A wide range of genetic suscepti-
bilities, including differences in genes related to insulin secretion, production, and
regulation, are included in the etiology of diabetes mellitus. Diabetes mellitus is
characterized by intricate disruptions in protein homeostasis, lipid metabolism, and
glucose metabolism. Vast research efforts have been devoted to determining the
etiology of diabetes mellitus, investigating the underlying pathophysiological mech-
anisms, and creating efficient treatment approaches as our understanding of the
condition grows [7].

To find cures for the epidemics and plagues that have beset humanity, infectious
disease modeling has attracted a lot of attention recently. In the literature, integer-
order infection models have been the subject of numerous studies. Omame et al.
[6], highlighted the importance of taking preventative measures for COVID-19 and
Dengue co-infection in Brazil using an integer order model. An integer-order co-
infection model of Dengue fever, Zika virus cholera and Buruli ulcer, syphilis, and
HPV with optimal control was the main focus of the authors [3-6]. But the models
listed above have drawbacks because they don’t account for memory, an essential
component of faithfully simulating real-world situations [2].

This article aims to present a mathematical formulation of the diabetes mellitus
model, which has attracted significant attention from the scientific community. In
the mathematical modeling of diabetes mellitus, blood glucose, insulin, and other
relevant variables are modeled mathematically to understand and explain their dy-
namics. These models are useful for researching the illness’s fundamental causes,
evaluating different treatment approaches, and modeling its course. Diabetes math-
ematical models are helpful for research and clinical applications. They aid in com-
prehending the illness and provide direction for creating more potent treatment
regimens.

Consider the following diabetes mellitus disease mathematical model in the form
of a system of ordinary differential equations [8]:

B =y —pS—XT iR,
X~ (S X T -R)X — (p+1)X, W
T =X = (p+ T,

RO = (1—ev)X - (p+pR,

with the initial conditions: & =8y, X = Xy, Z = Zp, R = Ro.

The above set of non-linear equations is used to describe this complex model.
This diabetes model is divided into four subclasses: susceptible individuals S(%),
carrier infectious individuals X(t), infectious individuals Z(t), recovered individuals
R(t) and environmental bacteria concentration N(¢£)=8(t)+X (t)+Z(t)+R(t) de-
notes the total population number at time ¢. The model parameters are as follows:
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~ represents births in a given time range; p represents deaths in a given time range;
X represents disease-specific fatality rate; p represents disease-related mortality rate
with treatment; v represents the rate of transmission from latent to infected in-
dividuals without treatment; 1 represents the rate of transmission from susceptible
to exposed individuals.

A fractional differential equation (FDE) is a type of mathematical equation that
extends the idea of differentiation to non-integer values and deals with derivatives
of non-integer orders or fractions. FDEs, which describe complex systems with
memory, long-range dependence, and non-local effects, involve fractional derivatives
instead of ordinary differential equations (ODEs), where derivatives are of integer
orders. Many scientific disciplines have recently shown great interest in fractional
differential equations because they provide a solid foundation for modeling and
understanding complex systems with long-range dependencies and memory effects.
Here, we look at the system of nonlinear differential equations using the Caputo
fractional operator of order a, where o € (0, 1].

W =7—pS—xT — uR,

W =np§-X-TI-R)X—(p+1)&, (1.2)
@ =evX — (p+x)Z,

dt"zizt(t) =(1—-ev)X —(p+u)R.

This model has been studied by numerous researchers, including the Caputo Fab-
rizio fractional order model for glucose control in insulin therapies for diabetes [9],
the fractional-order mathematical model of diabetes and the complications that
result from it [10], the effect of an awareness program on diabetes mellitus as de-
scribed by the fractional-order model solved by homotopy analysis method [11],
stability analysis for the nabla discrete fractional-order of the glucose-insulin regu-
lating system on diabetes mellitus with a Mittag-Leffler kernel [12], fractional order
PID controller for diabetes patients [13], and the glucose-insulin regulatory system
on diabetes mellitus [14,15].

Joseph Fourier discovered in the early 1800s that sines and cosines could be
used to express a variety of functions, which is regarded as a significant advance
in mathematical analysis. Techniques for superposing distinct functions to approx-
imate other functions were developed due to this discovery. Despite their essential
contribution to the development of Fourier analysis, sines and cosines are not well
adapted for estimating noisy signals. Mathematicians have, therefore, been search-
ing for more effective ways to approximate these signals. It should be mentioned
that these functions have infinite extensions because they are non-local. As a result,
they can’t accurately represent acute spikes.

Wavelet analysis, however, offers a good substitute for Fourier analysis since
it can approximate functions precisely confined to finite domains. Various signals
with abrupt discontinuities or sharp spikes can be approximated using wavelets,
functions with finite support. Considering how commonplace these discontinuities
are in real-world communications, wavelets’ capacity to manage them is especially
important. Wavelet analysis is crucial in numerous practical applications, such as
data analysis, signal compression, and picture processing. Furthermore, waves have
been used in various disciplines, including geology, physics, and finance. There-
fore, recent research has focused on wavelet-based numerical approaches because
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they are efficient. During the last two decades, wavelets have made a great deal of
progress in terms of their application. There are several wavelets to study the differ-
ential equations, such as the numerical solution of differential equations using Haar
wavelets [16], Haar wavelet transform for integral and differential equations [17],
Haar wavelet technique to study Chlamydia transmission [18], Hermite wavelet
technique to study the squeezing flow in Casson fluid [19], the study of nonlin-
ear fractional Klein-Gordan equation [20], numerical solution of time-fractional
telegraph equations [21], numerical solution of SEIR epidemic model of measles
and smoking using Fibonacci wavelets [22], numerical solution of stiff systems in
chemistry using Taylor wavelet collocation method [23], the study of economic
and environmental mathematical model [24], biological pest model in Tea plants
using Haar wavelet [25], Haar wavelet method for fractional advection diffusion
equations [26], Fibonacci wavelet method for convection diffusion equation [27],
evolution of smoking habit model through Haar wavelet method [28], marriage di-
vorce mathematical model [29], Taylor wavelet method for tumor growth model [30],
Gegenbauer wavelets method for electrical circuits model [31], wavelets collocation
method for perturbed differential difference equations [32] .

Haar wavelets are useful for numerical techniques in several applications, such
as function approximation and differential equation solutions. The HWCM can
sometimes provide several benefits, even if many sophisticated numerical methods
are available for these tasks. This approach might be significant for the following
reasons:

High Accuracy: The HWCM can provide high-accuracy approximations of func-
tions and solutions to differential equations. The use of Haar wavelets can represent
complex functions with high precision, even in areas of rapid change.

Efficiency: The HWCM can be computationally efficient when solving problems
with smooth solutions. Collocation techniques reduce computing times and utilize
less memory, avoiding large matrix operations.

Flexibility: The HWCM can solve a wide range of problems, including those with
irregular domains and boundary conditions. This flexibility can be especially help-
ful in applications like signal analysis and image processing, where complex data
sets may call for unique solution techniques.

Wavelet Analysis: This method’s usage of Haar wavelets enables wavelet analy-
sis of the solution, revealing information about the solution’s various characteristics
and frequency content. This can be especially helpful when detecting and isolating
significant features, like signal processing, which is crucial.

The HWCM can offer unique benefits in specific circumstances, even if several
sophisticated numerical methods are accessible. This approach is the best choice
for applications requiring the highest levels of precision, effectiveness, adaptability,
and wavelet analysis capabilities. It is an excellent option for specialist fields like
signal processing, image analysis, and others that call for exact approximations
and unique solutions. This approach stands out due to its superior capabilities,
delivering unmatched performance. This approach is an ideal tool that you can
depend on to yield the best outcomes while analyzing intricate data sets or making
accurate estimations.

This paper is organized as follows. Section 2, named “Preliminaries,” defines
Caputo fractional derivatives, Haar wavelets, and OMI of Haar wavelets. Section
3 demonstrates its convergence analysis theorem. Section 4 proposes the solution
for integer and fractional order, and Section 5 presents a discussion of numerical
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results. Finally, Section 6 concludes the article.

2. Preliminaries of fractional derivative and Haar
wavelets

Definition 2.1. The Riemann-Liouville’s fractional integral of g € C), of the order
d > 0 defined as [36],

S  fa(s) if 0=0,
Jsg(s)—{%f;(st)élg(t)dt if 6>0.

The gamma function is indicated here by the symbol I', where C), is a continuous
linear space.

Definition 2.2. The Caputo fractional derivative of g(s) € C}, is defined as [36]:

S s s
) — o [ ar

for p—1 < < p, p is any positive integer, s > 0, and g(s) € CF,u > —1, where
C?, is a continuous linear space containing g”(s).

Definition 2.3. A wavelet ¢(t) is a real function with the conditions:

[ ) dt=0  and  [7_|p(t)[2dt = 1.

1(t) must satisfy the first criterion, which requires it to be a periodic function with
zero mean, and the other one, which guarantees unit energy. To be more exact,
wavelets are described as,

Yap(t) = ﬁzﬂ(%% b,a #0¢cR.

Here, the translation parameter is b, and the dilation parameter is a.

2.1. OMI of integer order

A subset [a,b] of R is partitioned into equal-length 2M sub-intervals, where each
sub-interval has a length of At = (bﬁ?), and M = 27, with J being the max-
imal level of resolution. We consider two parameters: k& = 0,1,....,m — 1, and
j=0,1,2,...,J, where m = 2J. The wavelet number i = m + k + 1, where k is the

translation, and 7 is the dilation parameter. Next, we define the i** Haar wavelet as

17 fOT te [Cl(l)v CQ(Z))a

hi(t) = q =1, for te[((i), G(4)), (2.1)
0, otherwise,
where,
G1(i) = a+ 2kAAL, (2.2)
C2(i) = a+ (2k + 1)AA¢, (2.3)

G(3) =a+ 2(k+ 1)AAt, (2.4)
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A= (2.5)

1, for té€]la,b),
hi(t) = 2.6
1) {O, otherwise. (26)

(2.6) is known as the Haar scalar function. The OMI is,

B times
pﬁ,i(t):///.../hi(t)dtﬁ (2.7)
2 aa

where, B =1,....n, i=1,...,2M. And if i = 1, we have
1 8
pp1(t) = a3 (t—a)”. (2.8)

For ¢ > 2, we have

0, for t < (i(i),
pas(t) = Flt = G(@), for  te[G(i), )],
! allt = QD)7 =2t - ()%}, for tel(i), (1)),
allt = Q@) =21t = O +[t - GO}, for  t> ).

(2.9)
For J = 2, the OMI is as follows:

0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.9375_
0.0625 0.1875 0.3125 0..4375 0.4375 0.3125 0.1875 0.0625
0.0625 0.1875 0.1875 0.0625 0 0 0 0
0 0 0 0 0.0625 0.1875 0.1875 0.0625
0.0625 0.0625 0 0 0 0 0 0 .
0 0 0.0625 0.0625 0O 0 0 0
0 0 0 0 0.06250.0625 O 0
0 0 0 0 0 0 0.0625 0.0625

P1i =

2.2. OMI of fractional order

Consider a subset [A, B] C R partitioned into m sub-intervals, each of width

Az = BT—;A. Given an interval [A, B], the i*" orthogonal set of Haar wavelets is
as follows:
17 Cl(l) S T < 42(1)7
hi(x) = § -1, (i) < @ < (3(9), (2.10)

0, otherwise.
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Here,

-1
G =A+ L —mAx,

23
k— 1
o) = A+ =@ A,
BY;
‘ k
43(2) =A + 27mA‘T7

where .J is a positive integer and i = 1,2,...,m = 27, and m is the greatest level of
resolution. In this case, the decomposition of the integer index i is represented by
jand k, where i =29 +k—1,0<j < 1,and 1 < k < 2/ +1. For i > 2, equation
(2.10) holds true; for ¢ = 1, we have,

hi(z) = {1’ for ve 4. B}, (2.11)
0, otherwise.
The Haar wavelet OMI Q% H,,,(z) of order « is,
QaHm(x) = [QhO(x); th (.’13), QhQ(x)a ceey thL—l(x)]Ta (212)
where,
0, A <z< Cl(i),
(I)la CI(Z) § T < CQ (Z)a
hi(z) = 2.13
Qhi() s, Ga(i) <z < G3(1), (2.13)
(1)37 CS(Z) <zr< Ba
and
_ (= G()”
T Tary
_(=a@) | (z—G6)
T Tar) Tty
_(e—a@) (=) | (z— ()"
= Tar) YT+ T Ta+
Equation (2.13) holds true for ¢ > 1. If ¢ = 0, we have
_ [‘(27:_1)3 S [A7B]a
Qho(a) {O, otherwise.

When « is fractional, for example, we have

For J =3, a=04.
-0.21204 0.40992 0.55693 0.68153 0.79244 0.89384 0.98808 1.07667 |
0.21204 0.40992 0.55693 0.68153 0.36836 0.07400 —0.12579 —0.28639
0.21204 0.40992 0.13285 —0.13831 —0.10938 —0.05929 —0.03987 —0.02949

) 0 0 0 0 0.21204 0.40992 0.13285 —0.13831
QliaHm(x) = QO'GHm(‘{E) = .
0.21204 —0.01416 —0.05085 —0.02242 —0.01367 —0.00952 —0.00715 —0.00565
0 0 0.21204 —0.01416 —0.05085 —0.02242 —0.01367 —0.00952
0 0 0 0 0.21204 —0.01416 —0.05085 —0.02242

0 0 0 0 0 0 0.21204 —0.014168
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Similarly, for various values of «, we can produce the OMI of Haar wavelets accord-
ing to our needs.

3. Some results on the Haar wavelets

Let 7,j be integers and the Haar function v;; be characterised as, v;;(z) =
Q%w(?x —7), Yz € R be endorsed on [i (jﬂ)) with the property f¢m Ydx =0

2%y~ 91t
and”wz]”Q*Iw d(E—]_

Theorem 3.1. Let {1; ;(t)|i,j € Z} be a set of the Haar wavelets on R. Then, the
space L*(R) generated by Haar wavelets is complete.

Proof. Consider that {1, ;(t)|i,j € Z} is spans the L*(R) called normed linear
space. The cauchy sequence {wf]} in L?(R) is defined as follows: for a given

e=1> 0 there exists a positive integer 1y 9 Hi/) — Pl jlla < 5, VE, L >
For € = =, choose 1/)”, such that wa; ||2 < Vkl, ko > n1;

For € = %, choose @/} such that ||1/Jf§ w||2 < 25, Vka, k3 > no;

For € = 5, choose w " such that ||7,/1/]‘ — 1, ”+1|| 5 Yk, kny1 > ﬂn

Therefore, {’(/JZ;} is a sub-sequence of {yF;}. It shows that, Z ||1/J n -

k 1
Viglla < X aw =1
n=1

Consider, ¢,, = |¢k1| + sz - 1/)k1 |+, . +|’kan+1 — ¢kn|, forn=1,2,...
= the sequence {¢,} is the non-negative increasing measurable functions, there-
fore,

[ ¢nl13=Ill"r, |12 + Z Wkn = Vral 212, (by Minkowski inequality)
6013 < (Ilvon, |12 + 1)

Consequently ¢, is an mcreasing and bounded sequence, and there exists ¢ such
that lim ¢, = ¢. By the theorem of monotone convergence, we have [ Prdx =
n—oo

lim [¢2de < oo = ¢ € L,(R).

n—oo
o0

= The series ¥, () + > [k, ., (€) =k, ()| converges almost eveywhere so that
1

Vr € A, {tx,} converges to 1 (z), where A is a measurable set.

Again, let € > 0 be given, and choose [ sufficiently large such that ||1/Jf,j—z/1£,j |2 <
€, vk, 1> L,

= ||f; — l"|\2<e Yk, 1, > L,
= [f |¢ 2cla:] <é? (using Fatous-Lemma),
Sl = l/fk zdx = f hrn | ﬁj|2dfc <€ < 0.

Thus, ¢ —yf; € p( )andw:¢—¢ﬁj+¢§jeLP(R) and lim_ || —f;||2 = 0.

Thus ¢ is the limit in Ly(R) of sequence {¢};}. Therefore Ly(R) is complete.
O
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Theorem 3.2. Let us assume that f(x) = % € L%(R) is a continuous function

on [0,1] and its first derivative is bounded Yx € [0,1], n > 2. Then, the Haar
wavelet method will converge based on the approach proposed in [34,35]. i.e., |E|
vanishes as J goes to infinity. The convergence is of order two [33] as follows,

1Bulla = 0[ () -

Solution at collocation points: Let p be a set of all measurable collocation
points. Let {C;} be the sequence of collocation points and {f;} be the sequence of
functional values at {C;} that satisfies the given system of differential equations.
Here f is a function from Z* to R defined by f(i) = f;. Then

flz) = Zf(z'>,

where f(z) is an exact solution of a given system of differential equations.

4. Method of solution

4.1. For integer order diabetes model

Consider the general form of the n-system of differential equations as follows:

Zl(t) = fl(tv Zl(t)v sy Zn(t))a

2(t) = falt, 21(£)s ooy 2n(D)),
(4.1)

20 (8) = fult,z1(), ..., 2 (1),

with initial conditions y4(0)=cay, where s = 1,...,n. To determine the HWCM of
the above system, we determine the collocation points as

te =05 (ts 1 +ts), s=1,...2M,

where,
ts = a + sAt, s=0,1,...,2M.

Now the HWCM approximation of (4.1) can be expressed as

, 2M
2.(t) = Z bER(t). (4.2)

Integrating (4.2) concerning t from 0 to t, we get

2M
2(t) = z(0) + > bEP4(t),

2M
2 (t) = g + Y _FPLi(t). (4.3)
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Py ; is the first OMI. The model reduces to a nonlinear algebraic equations system
by replacing the equations (4.2) and (4.3) in (4.1) and replacing ¢ by ts,
Fr(b}, b3, . bl 03,03, 0 b2, o O 05 b)) = 0,

Fg(b%,b%,...,b%M,b%,bg,...,bgM,..., ?, ”,.. bS) =0, 4
4.4

Fo(bl,bd, . 0L, 03,03, b2, O 08 b ) = 0.

To determine the values of the Haar coefficients b¥, the Newton-Raphson method
is taken into consideration. If b¥ is the initial guess of the root and the slope in-
tercept point is bf "1, (4.4) can be expressed using Taylor series expansion as follows:

OF1; OFy ; OF ;
Friv1 = Fi+0F b, AR — A (VbR
1,i+1 1,i+ (07 107 ) bk (b3,:41—b3;) b +y e (0201041 QM’Z)GIZ%\%)

where, k=1,....n. F5, F3, ..., F,, are expanded similarly using the Taylor series, and
generalizing for n equations, we get

OFi 1 0Fy ; 3 ki
Tb’f Lit+1 abk b3 1T ablsz sz i1
OFy ; 5‘sz oF;
= — Fj; + b ot + b5, ob% oy V50 abk’ (4.6)

The function at the current value (i) or at the next value (i + 1) is indicated by the
second subscript, and the first subscript k& depicts the equations in (4.4). Matrix
notation for (4.6) is as follows:

[T]1bF 1] = = [F] + [J][F), (4.7)

where the partial derivatives evaluated at i are written as the Jacobian matrix con-
sisting of partial derivatives:

[oF: oF. 0P ]

E T ED3

8F2,i 8F2,i .. 8F2,i

7] = obF obk ED
OFni OFni  0Fui

| ovk  obg b |

The final and initial values are expressed in vector form as:

T = [0 05 W] )T = [ W o ]
and [F]"= [Fu Fai--- Fnz} :
The inverse of the Jacobian is multiplied to (4.7)
[bFa] = [bF] — [J] 7 [F). (4.8)

We obtain the Haar wavelet coefficients b¥s using (4.8). We get the intended
solution of the model (4.1) by using b¥s in equation (4.3).
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4.2. For the fractional order diabetes model

Consider the general form of the system of FDEs,

Do‘zl(t) = fl(l'vzl(t)v vzn(t))a
DaZQ(t) = f2(xvzl(t)7 ,Zn(t)),

(4.9)
D2 (t) = fo(@, 21(t), ... 2 (1)),

with initial conditions zs(t) = Bk,s = 1,2,....,n. The following is the HWCM
approximation:

dzk(t) - o
o _Zafhm(t). (4.10)

Integrating the above equation concerning to ‘¢’ from 0 to ¢, we get

zi(t) = Br + Zaf@lhm(t), where,1 <k < n, (4.11)

i=1

where, Q1 H,, (t) is the 1% order OMI. Fractionally differentiating (4.11) with respect
to t of order «, where a € (0,1):

d*zy, (t)
dte dta‘

Bk +ZakQ1 “H,, (1) (4.12)

Replacing ¢ with the collocation points ¢; provided in Section 2 and, substituting
(4.10), (4.11), and (4.12) into (4.9), (4.9) reduces to nonlinear algebraic equations
system as follows:

Fy(bY,bL, . bL 52 b2, . b2, b b b”):

T Ymo m? v Ym
1 1 2 —
Fy(bY, b, .. bL b2 b2, ,bm,...,b?, noLbn) =

(4.13)

Fo (DY, b5, oo DY B3, 03, o b2, oo, DT, 05, BT) = 0.

s Ym> 9 Ymo
To determine the values of the Haar coefficients b¥’s, the Newton-Raphson method

is taken into consideration as follows: If b¥ is the 1n1t1al guess of the root and the
slope intercept point is b¥ 't1» (4.13) can be expressed using Taylor series expansion as

oFy ; OF1 OFy ;
_ k k 1,3 k k 1,4 k k 1,2
Fl,i+1 - Fl,i + (b17i+1 — bl,i) 8b]f + (b2,i+1 — b27’£) 8b’2€ +7 ceey +(bm,z+1 — bm,z) ab”fn s

(4.14)

where k=1,...,n. Employing the Taylor series expansion similarly for Fs, ..., F;, and
generalizing for n equations, we get

OF%i & 0Fy, ; 8Fk i
8b’f bl,i+1 + 8bk b2 z+1 6bk bm ,i+1
OF; OF OFy ;
= bk TR gk TRy gk S (4.15)

1,2 31)’1“ 2,1 abé; m,i abfn .
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The function at the current value (i) or at the next value (¢ 4+ 1) is indicated by the
second subscript, and the first subscript & depicts the equations in (4.13). Matrix
notation for (4.15) is as follows:

[T)b1] = —[F] + [J][bf], (4.16)

where the partial derivatives evaluated at ¢ are written as the Jacobian matrix con-
sisting of partial derivatives:

OF1,; OF1,i = OFi,;
ok obh bk
OF2: OFs.  0Fa,
] = abk obh bk,
OF, ; OFy OF, ;
bk~ Tapk T Tobk,

The initial and final values are expressed in vector form as:

(R P A R (7 E [T O SO

and [F]T:{FM Foy--- Fnz:|
Multiplying the inverse of the Jacobian to (4.16)

[bF 1] = 0] = [J)7 [F]. (4.17)

We obtain the Haar wavelet coefficients b¥s using (4.17). We get the desired solution
of (4.9) by using b¥s in equation (4.11).

5. Numerical results

For the justification of the method, we add a nonlinear system of equation. The con-
sidered model is solved by HWCM and the obtained numerical results are compared
with the other methods in the literature.

Example 5.1. Consider the following nonlinear system of two nonlinear FDEs:

DYy (t) = —1002Y7(t) + 1000Y2(t),
DYs(t) = Ya(t) — Ya(t) (1 + Ya(2)),

subject to the initial condition: Y;(0) = 1,Y3(0) = 1. The exact solutions to
the system when oy = ay = 1 are Yi(t) = el — 2t) and Y(t) = e'. The Haar
wavelet collocation method (HWCM) solutions shown in Tables 1-2 reveal that the
proposed method solutions are reasonably close to the exact solution compared
to existing methods such as Chebyshev polynomials (CMCP), multistep fractional
differential transform method (MSFDTM), fractional differential transform method
(MSFDTM), and ND Solver. From the tables, it is clear that the HWCM method
dominates all the other techniques in obtaining the numerical approximation and
yields a satisfactory result for the desired system.
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Table 1. Comparison of the A. E. of the solution Yi(¢) for the Example 5.1.

t | AE of HWCM | AE of MSFDTM | AE of FDTM | AE of CWCP
[37] [37] (N=8) [38]

0 0 0 0 0

0.1 4.55 x 10~10 - - -

0.2 3.45 x 10710 - - 0.45 x 108

0.3 2.61 x 10~10 - - -

0.4 1.96 x 10~1° - - 0.61 x 108

0.5 1.45 x 1010 1.66 x 1012 1.21 x 1073 -

0.6 1.07 x 10—1© - - 0.10 x 10~8

0.7 7.80 x 10—10 - - -

0.8 5.58 x 10710 - - 0.13 x 108

0.9 3.91 x 10710 - - -

1.0 2.66 x 10710 - - 0.53 < 10~7

Table 2. Comparison of the A. E. of the solution Y2(t) for the Example 5.1.

t | AE of HWCM | AE of MSFDTM | AE of FDTM | AE of CWCP
[37] [37] (N=8) [38]

0 0 0 0 0

0.1 2.52 x 10710 - - -

0.2 2.11 x 10~10 - - 0.14 x 10710

0.3 1.76 x 10~1° - - -

0.4 1.46 x 10—10 - - 0.21 x 10710

0.5 1.20 x 10—1° 9.64 x 10716 2.02 x 10° -

0.6 9.81 x 10710 - - 0.22 x 10710

0.7 7.89 x 10710 - - -

0.8 6.24 x 10710 - - 0.18 x 10710

0.9 4.84 x 10710 - - -

1.0 3.64 x 10710 8.54 x 10~16 1.21 x 1073 0.20 x 10710
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Now, we apply the HWCM to solve the diabetes model represented in (1.1) and
(1.2). Here, the diabetes mellitus model is solved using the HWCM with the help of
the operational matrix provided in Section 2. The following initial conditions and
physical parameter values are considered to solve this model §(0) = 400, X' (0) = 10,
Z(0) =5, R(0) = 3.5, vy = 1,p = 0.13869, x = 0.06654, x = 0.09281, v = 0.88187,
and n = 0.0009. Tables3-6 and Figures 1-4 display the HWCM solutions obtained
for the value of & = 1 (integer order), demonstrating that the suggested method
solutions are comparatively close to the ND Solve results when compared to the
RK4 method. Absolute errors (AE) of the developed approach with the ND Solve
solution are tabulated in Tables 3-6. Numerical approximations obtained by the
developed technique (HWCM) and RK4 methods are compared with the NDSolve
solution (since the present model has no exact solution). Utilizing the projected
HWCM yields smaller errors than utilizing other existing methods. Tables 7-10 list
the model’s numerical approximation at various values of a. Figures 5-8 show the
graphical representation of the solution at @ = 0.4, 0.6, 0.8, respectively. Therefore,
based on graphical data, we may conclude that the model depends significantly
on the order of fractional derivatives, which produces more biologically realistic
outcomes. Additionally, we conclude that, compared to the analogous integer or-
der Diabetes mellitus model, the suggested model under Caputo fractional order
derivative offers more prosperous and more flexible outcomes.

Table 3. Numerical comparison of the solution S(t) with different methods

t ND Solver HWCM RK4 AE of HWCM AE of RK4
solution solution solution with ND Solver | with ND Solver

0 | 400.0000000000 400.000000000 400.0000000000 0 0

0.1 | 394.5220594943 | 394.5220596531677 | 394.5220594012 1.58802 x 1077 9.32918 x 1077
0.2 | 389.1147104219 | 389.114710421998 | 389.1147102819 1.46486 x 1077 1.40026 x 1077
0.3 | 383.7775674332 | 383.7775674332405 | 383.7775672283 1.10397 x 10~7 2.04872 x 1077
0.4 | 378.5102032063 | 378.510203206327 | 378.5102029785 1.11342 x 1077 2.27583 x 1077
0.5 | 373.3121524604 | 373.3121524604941 | 373.3121522332 1.30765 x 1077 2.27235 x 1077
0.6 | 368.1829154486 | 368.1829154486643 | 368.1829152245 1.49108 x 1077 2.23867 x 107
0.7 | 363.1219613160 | 363.121961316041 | 363.1219610625 1.30799 x 1077 2.53493 x 1077
0.8 | 358.1287311204 | 358.12873112048266 | 358.1287308584 | 1.30345 x 10~7 2.62009 x 1077
0.9 | 353.2026409085 | 353.202640908549 | 353.2026406469 1.35951 x 10~7 2.61582 x 107
1.0 | 348.3430843722 | 348.3430843722583 | 348.3430841079 1.35814 x 10~7 2.64356 x 1077

Effect of deaths in a given time range (p): With variation in deaths in a
given time range (p) Figures 9-12 represent the changes of S(t), X' (¢),Z(t), and R(t).
With the increase in the deaths in a given time range, the number of susceptible
individuals S(t), the carrier infectious individuals X(¢), the infectious individuals
Z(t), and the recovered individuals R(t) decrease simultaneously.

Effect of rate of transmission from susceptible to exposed individuals
(n): With variation in the rate of transmission from susceptible to exposed indi-
viduals (1), Figures 13-16 represent the changes of S(t), X (¢),Z(t), and R(t). With
the increase in the rate of transmission from susceptible to exposed individuals, the
number of susceptible individuals S(t) decreases, while the number of carrier infec-
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Table 4. Numerical comparison of the solution X (t) with different methods
t ND Solver HWCM RK4 AE of HWCM AE of RK4
solution solution solution with ND Solver | with ND Solver

0 | 10.000000000 10.000000000 10.00000000 0 0

0.1 | 9.2331814585 | 9.233181517259 | 9.233181626 5.87169 x 10~8 1.67969 x 106
0.2 | 8.5210002974 | 8.521000384504 | 8.521000742 8.70407 x 1078 4.44826 x 1076
0.3 | 7.8599837500 | 7.859983961390 | 7.859984535 2.11386 x 1077 7.85971 x 106
0.4 | 7.2468363181 | 7.246836555395 | 7.246837317 2.37241 x 1077 9.99438 x 1076
0.5 | 6.6784353027 | 6.6784354422955 | 6.6784363651 1.3957 x 1077 1.06261 x 106
0.6 | 6.1518261175 | 6.15182614731 | 6.1518272061 2.97256 x 1078 1.08914 x 1076
0.7 | 5.6642171533 | 5.6642172779068 | 5.6642184511 1.24526 x 1077 1.29803 x 1076
0.8 | 5.2129748960 5.2129750110 5.2129762783 1.14989 x 10~7 1.38233 x 1076
0.9 | 4.7956172947 | 4.79561732503 | 4.7956186673 3.02624 x 1078 1.37311 x 1076
1.0 | 4.4098080523 | 4.4098080544931 | 4.4098094563 2.11487 x 107° 1.40396 x 106
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Figure 1. Graphical comparison of HWCM, ND Solver, RK Method solution for S(t)
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Figure 2. Graphical comparison of HWCM, ND Solver, RK Method solution for X (t)
Table 5. Numerical comparison of the solution Z(¢) with different methods
t ND Solver HWCM RK4 AE of HWCM AE of RK4
solution solution solution with ND Solver | with ND Solver
0 | 5.0000000000 5.0000000000 5.0000000000 0 0
0.1 | 5.7373208704 | 5.737320813563 | 5.7373206824 5.69086 x 108 1.88048 x 10~7
0.2 | 6.395148632 6.39514849758 | 6.3951480295 1.3497 x 1077 6.0302 x 10~7
0.3 | 6.9797138830 | 6.97971343543 | 6.9797126768 4.47661 x 1077 1.20622 x 10~
0.4 | 7.4968248020 | 7.49682434776 | 7.4968233408 4.5433 x 1077 1.46121 x 10~
0.5 | 7.9518921087 7.9518918900 7.9518906730 2.18735 x 107 1.43572 x 1076
0.6 | 8.3499516074 | 8.34995163364 | 8.3499502410 2.61612 x 108 1.3664 x 106
0.7 | 8.6956863102 | 8.69568614843 | 8.6956846113 1.61798 x 10~ 7 1.69884 x 1076

0.8

8.9934463025

8.99344616908

8.9934445155

1.33488 x 10~ 7

1.78707 x 1076

0.9

9.2472708237

9.2472708390

9.2472690932

1.52779 x 10~8

1.72987 x 10~6

1.0

9.4609069625

9.46090703131

9.4609052168

6.87247 x 1078

1.74573 x 1076
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Table 6. Numerical comparison of the solution R(t) with different methods
t ND Solver HWCM RK4 AE of HWCM AE of RK4
solution solution solution with ND Solver | with ND Solver

0 | 3.5000000000 | 3.5000000000 | 3.5000000000 0 0
0.1 | 3.5321294064 | 3.532129401867 | 3.5321293783 4.59449 x 10~° 2.80726 x 1078
0.2 | 3.5548929220 | 3.554892906512 | 3.5548928361 1.55809 x 1078 8.59567 x 1078
0.3 | 3.5691223638 | 3.569122304680 | 3.5691221939 5.91491 x 1078 1.69918 x 1077
0.4 | 3.5755909308 | 3.57559087092 | 3.5755907256 5.99059 x 1078 2.0516 x 1077
0.5 | 3.5750167447 | 3.57501671743 | 3.5750165430 2.73348 x 1078 2.01723 x 1077
0.6 | 3.5680660425 | 3.568066048955 | 3.5680658502 6.42504 x 107° 1.92264 x 1077
0.7 | 3.5553563050 | 3.5553562855 | 3.5553560668 1.9561 x 10~8 2.38201 x 1077
0.8 | 3.5374590668 | 3.53745905110 | 3.5374588164 1.57205 x 1078 2.50407 x 1077
0.9 | 3.5149030235 | 3.5149030280 | 3.5149027808 4.53021 x 107° 2.42712 x 107
1.0 | 3.4881766660 | 3.48817667783 | 3.4881764211 1.17487 x 1078 2.44941 x 1077

10

10

I
L @
o * " 4

ST @ -
[ s ]
L . ]

8 - ]
L B ]

T s b
r & 1

67 -
L ® ND Solver ]
Lo RK Method ]

5% B
- e HWCM 1

P ! ! ! ! L]
0.0 0.2 0.4 0.6 0.8 1.0

t

Figure 3. Graphical comparison of HWCM, ND Solver, RK Method solution for Z(t)
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Figure 4. Graphical comparison of HWCM, ND Solver, RK Method solution for R(t)

Table 7. HWCM solution at different values of o for S(t)

Haar wavelet solution at

a=0.2

a=0.4

a=0.6

a=0.8

400.0000000000

400.0000000000

400.0000000000

400.000000000

0.1

362.3758200103116

375.1265727302

384.7773900061

390.9155198730

0.2

360.145639661270

369.4584242616

377.4986616869

384.1674465410

0.3

358.077181743496

364.4451286769

371.5555971929

378.2199708623

0.4

355.3901629947003

360.4111689505

366.5022377000

372.7718148950

0.5

353.2861472966467

357.0598694565

362.0271108269

367.6825680827

0.6

351.7776911928322

354.1381736810

357.9702426456

362.8743735243

0.7

350.5202763928997

351.5290052446

354.2371063761

358.2976238019

0.8

349.3600927856298

349.1635088432

350.7650367878

353.9178700539

0.9

348.292060883805

346.9938507527

347.5096676164

349.7097311086

1.0

347.2688940828827

344.9852075280

344.4379956306

345.6536212698
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Table 8. HWCM solution at different values of o for X (t)

t Haar wavelet solution at
a=0.2 a=0.4 a=0.6 a=0.8

0 | 10.000000000 | 10.000000000 | 10.000000000 | 10.0000000000
0.1 | 6.0590007912 | 7.0390052867 | 8.0257429329 | 8.7636803598
0.2 | 5.9383703356 | 6.6036403784 | 7.2641996533 | 7.9395932316
0.3 | 5.8685176195 | 6.2026447470 | 6.6909208617 | 7.2742364726
0.4 | 5.6750763230 | 5.8909678797 | 6.2443298674 | 6.7117536320
0.5 | 5.5052924252 | 5.6519308124 | 5.8774171060 | 6.2242189339
0.6 | 5.4064340542 | 5.4546704362 | 5.5660700074 | 5.7951567476
0.7 | 5.3411696921 | 5.2856087215 | 5.2962791500 | 5.4135523479
0.8 | 5.2770840982 | 5.1379472586 | 5.0588811336 | 5.0714735471
0.9 | 5.2114457195 | 5.0070856075 | 4.8474805281 | 4.7629149317
1.0 | 5.1285850435 | 4.8896623743 | 4.6573927722 | 4.4831504000
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Table 9. HWCM solution at different values of o for Z(t)

t Haar wavelet solution at

a=0.2 a=0.4 a=0.6 a=0.8

0 | 5.0000000000 | 5.0000000000 | 5.0000000000 | 5.00000000000
0.1 | 8.0315001339 | 7.5415287460 | 6.8046097274 | 6.1673433136
0.2 | 8.0417077845 | 7.7565340056 | 7.3868445719 | 6.8881114857
0.3 | 7.9909155305 | 7.9749952651 | 7.7905223687 | 7.4304352920
0.4 | 8.0790855246 | 8.1357844299 | 8.0736471983 | 7.8566227604
0.5 | 8.1748221750 | 8.2407731461 | 8.2829727112 | 8.1986211279
0.6 | 8.2099020730 | 8.3167175278 | 8.4423439166 | 8.4756281132
0.7 | 8.2145764163 | 8.3748004429 | 8.5654195291 | 8.7006209222
0.8 | 8.2247973652 | 8.4198208368 | 8.6610271846 | 8.8829993546
0.9 | 8.2438560893 | 8.4549347635 | 8.7352516738 | 9.0298954265
1.0 | 8.2906987795 | 8.4824539516 | 8.7924916523 | 9.1469194137

10

0.0 0.2 0.4 0.6 0.8 1.0

t

Figure 7. Graphical representation of Z(¢) with distinct values of «
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Table 10. HWCM solution at different values of « for R(t)

Haar wavelet solution at

a=0.2

a=0.4

a=0.6

a=0.8

3.5000000000

3.5000000000

3.5000000000

3.5000000000

0.1

3.4664953178

3.5438711052

3.5581752744

3.5462056677

0.2

3.4444334934

3.5087476532

3.5505477135

3.5618875723

0.3

3.4164494262

3.4814372090

3.5355441045

3.5639892219

0.4

3.3986890729

3.4578908539

3.5154528122

3.5570872622

0.5

3.3882761058

3.4349527008

3.4926776059

3.5436877691

0.6

3.3768139154

3.4131588476

3.4684237688

3.5253687994

0.7

3.3642034668

3.3926119381

3.4433428122

3.5032290817

0.8

3.3532993639

3.3731430710

3.4178344802

3.4780790308

0.9

3.3445156595

3.3546118182

3.3921586336

3.4505400510

1.0

3.3398019776

3.3369184049

3.3664908174

3.4211034271
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Figure 12. Graphical representation of R(t) for variation of p

tious individuals X (t), the infectious individuals Z(t), and the recovered individuals
R(t) increases simultaneously.
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Figure 13. Graphical representation of S(t) for variation of 7
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Figure 16. Graphical representation of R(t) for variation of n

6. Conclusion

In this study, we considered a fractional-order model of the Diabetes mellitus. The
numerical solution was obtained using the Caputo fractional derivative and the
HWCM. An OMI based on Haar wavelets and collocation technique was constructed
to solve the model numerically. Using the abovementioned method, the mathemat-
ical models (1.1) and (1.2) were solved numerically. The HWCM more closely
matches the nature and solution of the model when compared to other numerical
approaches such as ND Solve and RK method, as shown in Figures 1-4 and Tables
3-6. For different values of «, the fractional order model is graphically displayed in
Figures 5-8. The numerical values of the fractional order model for various values of
« are displayed in Tables 7-10. This method yields results that agree with Mathe-
matica’s ND solver. Tables and figures demonstrate that the proposed method out-
performs the existing numerical methods regarding precision. Numerical examples
further substantiate that a small number of Haar wavelets is necessary to achieve
acceptable results. Despite its ease of use, the method produced excellent results.
Our belief that the technique works well for managing highly nonlinear FDEs was
reinforced. We concluded that, compared to RK4, the approach is a valuable tool
for obtaining the numerical approximation of the mathematical models in the form
of nonlinear FDEs. The proposed techniques can be used for different mathematical
models to solve them numerically and understand the geometrical interpretations
of the models.
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Construct an Operational Matrix
of Haar wavelets

:

Consider the Haar wavelet
approximation of the Diabetes Model

;

Collocate the Haar approximation
with collocation points

v

Solve the system of algebraic equations
to find unknown Haar coefficients

v

Substitute the unknown Haar coefficients
in Haar approximation to find the solution
of diabetes Model

Figure 17. Flowchart of the proposed approach
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