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Abstract In the present paper, we first give four post-quantum integrals for
functions of two variables, denoted by acTp.qs (Tp.q, oTp.q and *@T), ,. After-
wards, each of these newly defined integrals is illustrated. Moreover, some new
Hermite-Hadamard inequalities are established based on these definitions. We
also show the correctness of these inequalities with the aid of some numerical
examples.
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1. Introduction

Quantum calculus has been the cornerstone of physics and mathematics. In par-
ticular, quantum integrals have solved many problems in the literature. After F.
H. Jackson described the g-Jackson integral in [12], this topic has attracted the at-
tention of many mathematicians. Quantum calculus and related properties are dis-
cussed in [14] by P. Cheung and V. Kac. Tariboon and Ntouyas obtained several ¢-
analogues of classical mathematics topics in [20]. Agarwal described the g-fractional
derivative in [1]. Noor et al. created new g-analogues of the inequalities using the g-
differentiable convex function in [19]. Tariboon and Notuyas introduced ¢,-definite
integral in [20]. Alp et al. obtained g,-Hermite-Hadamard inequalities with convex
functions on quantum integral in [5]. Bermudo et al. introduced a new quantum
integral concept called ¢b-integral and presented the related Hermite-Hadamard
type inequalities in [6]. In addition, the authors established new inequalities that
include ¢, and ¢” integrals together. In the paper [18], Latif offered g,.-integral
and properties this of integral for two variables functions. The author also worked
on the Hermite-Hadamard inequality based on this definition. However, Alp and
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Sarikaya revised the minor errors in this inequality and established a new inequality
in [3]. Budak et al. described new ¢’-integrals for two variables in [9]. The authors
also proved three different Hermite-Hadamard inequalities through the three new
integrals, namely ¢, ¢® and ¢*?-integrals. Nowadays, there are many studies on
integral inequalities and quantum integrals (see, [2], [8], [10], [11], [17], [22]).

On the other hand, using the facts of trpezoid areas in [4], Alp and Sarikaya
investigated the generalized quantum integral, expressed as the ,7T,-integral. In
addition, the Hermite-Hadamard inequality in the case of this definition is also con-
structed by the authors. In the paper [16], Kara et al. presented the generalized
quantum integral stated as the qu-integral involving areas of the trapezoids. With
the help of the given definition of this paper, the researchers obtained the new
Hermite-Hadamard inequalities. Moreover, Kara and Budak established new Tj-
integrals by two variables in [15]. In addition to these, they were also proved to cor-
respond to four Hermite-Hadamard type inequalities on co-ordinates. Vivas-Cortez
et al. considered to the generalized post-quantum integral, called the T}, ,-integral
n [21]. More precisely, the authors also investigated new Hermite-Hadamard-type
inequalities in the case of T}, -integral. Budak et al. demonstrated a new concept
of post quantum integral, namely °T}, ,-integral, in [7]. They also provided several
Hermite-Hadamard inequalities to the case of prﬁq—integral by using convex func-
tions. The definitions and theorems mentioned in this paragraph and that used in
the article are detailed in the following section.

2. T,-integrals and 7, ,-integrals

This section presents the desired definitions and related inequalities.
From the fact of the area of trapezoids, Alp and Sarikaya investigated the gen-
eralized quantum integral, which is called the ,T,-integral as follows:

Definition 2.1 (see, [4]). Suppose that ¥ : [a,b] — R is a continuous function. For
» € [a,b], it follows that

q

n=0

b o0
[ adgs = E=00=D a4 ) S e o+ - - 0)|

where 0 < g < 1.
Because of the ,T,-integrals, Hermite-Hadamard inequalities are also as follows:

Theorem 2.1 (see, [4]). [,T,-Hermite-Hadamard Inequalities] If ¥ : [a,b] = R is a
convex function on [a,b] and 0 < q < 1, then we get the following double inequality

b
\I/(a;b)gbia/\l/(%)adgzgw. (2.1)

By using the area of trapezoids, Kara et al. [16] introduced the following gener-
alized quantum integral which is called qu—integral.
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Definition 2.2 (see, [16]). Let us consider that ¥ : [a,b] — R is a continuous
function. For » € [a,b], ®T-integral is equal to

b

[ s = 0= 04 ) S ot -0y - v (@
a n=0

Here, 0 < ¢ < 1.

In addition, the Hermite-Hadamard inequalities based on qu—integrals are as
follows:

Theorem 2.2 (*T,-Hermite-Hadamard Inequalities). Let ¥ : [a,b] — R denote a
convex continuous function on [a,b] and 0 < q¢ < 1. Then, the following double
inequality holds:

b
w(a;b>gbia/\p(;¢)bd,§zgw. (2.2)

a

Vivas-Cortez et al. presented the following definition, designated T}, 4, with the
help of the trapezoid areas.

Definition 2.3 (see, [21]). Let ¥ : [a,b] — R be continuous function. For z €
[a, (1 — p)a + pb], the following equality holds:

x

/\I/ (s) adl s (2.3)

(r—q)(x—a) (p+q)§pgiqu (pz:1x+ <1 - pzil) a)

2q
where 0 < g <p < 1.

Based on this definition, the following Hermite-Hadamard inequality is estab-
lished.

Theorem 2.3 (,T, ,-Hermite-Hadamard Inequalities). [21] If ¥ : [a,b] — R is
a convex function on [a,b] and 0 < q¢ < p < 1, then the inequality is obtained as
follows:

pb+(1-p)a

() sy vt

U (a) + ¥ (b)
2 b—a) '

2

(2.4)

a

On the other hand, Budak et al. presented the definition called prﬂ below.

Definition 2.4. [7] Assume that ¥ : [a,b] — R is continuous function. For
x € [pa+ (1 — p) b, b], the following equality

b
/\I' (s) bdl s (2.5)
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(p—a)(b—2) Z‘” q" 7" q"
e — (p + q) v r+ 11— b
2q o pn+1 pn+1 pn+1

()

is valid. Here, 0 < g <p < 1.

Moreover, with the help of the definition of *7, ,, Budak proved the following
Hermite-Hadamard inequalities.

Theorem 2.4 (°T, ,-Hermite-Hadamard Inequalities). [7] Let ¥ : [a,b] — R be
differentiable convex function on [a,b] and 0 < q¢ < p < 1. Then, the following
double inequality holds:

b
a+b | g @)
\IJ( 2 ><p(b—a) +(1/_ )b\” Vs —g - (26)

To be precise, Kara and Budak defined four T,-integrals for two variables in [15].
More precisely, the authors investigated the Hermite-Hadamard inequalities based
on these definitions. In the third part, we introduce post-quantum integrals for
two variables. We illustrate each of these definitions with examples. In the fourth
section, using these definitions, we obtain four Hermite-Hadamard inequalities. We
will also give examples of these inequalities and support them for a better under-
standing of the interested reader.

3. New post-quantum integrals based on the func-
tions of two variables

In this section, we introduce new T}, ,-integrals to the case of two-variables functions.

Definition 3.1. Suppose that ¥ : [a,b] x [¢,d] C R? — R is continuous function.
Then the following 4.7}, 4 9T}.4, 2T} 4 and *IT,, ,-integrals on [a, b] X [c, d] equal to

z Y
//\Il (t’ s) Cdz;za‘h)s “dg1,q1t (3‘1)
a C

(P1—q1) (p2 — q2) (x —a) (y — ¢)

4q1q2

x | (p1 +@1) (P2 + q2) Z nil m2+1
n=0m=0 £'1 5]
ar ar 3" a3’
x ¥ ( x4+ (1 — ) a, y+ 11— c
p?+1 p;LJrl p£n+1 p;n+1

— & (r+(p—-Da q¢f %"

_(P2+CI2)Z m+1\II ) m+1y+ 1- M1 c
m=0 2 b1 V2 Do

o0

qr qr qr y+(p2—1)c
- (1 +q1) —T ¥ (m-f— 1- a,
= 1i7z+1 p;l+1 p711+1 Do
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for (z,y) € [a, (1 —p1)a+ p1b] x [e, (1 — p2) ¢ + pod] ;

// (4:5) 4, 5 ol 32)

:(Pl —(h) (P2 — @2) (x —a) (d —y)

4q1q2
1 2
(pl + (I1) (p2 + Q2) Z nt+1 _ m+1
n=0m=0 1 2
q qv 93" 93"
0 < T+ (1 - > a, y+(1-— d
pit! pitt) T pptt Pyt
Sl m m m
a3 r+(p1—1)a g5 3
— (p2 +@2) ‘I’( ) y+|1- d
— pgn+1 p1 ng_I ng_l
oo n n n
a1 a7 a7 y+(p2—1)d
— (p1+ @) ‘I/( I+<1 )07
o p111+1 p?—&-l p?—O—l Do
+

I (l‘ + (ppll— 1) @y (p;Q— 1) d)] ,

for (z,y) € [a, (1 —p1) a+ p1b] x [pec+ (1 — p2) d, d];

by

//ll/ t S 102 qzs bdlq;htht (33)

:(Pl —q1)(p2—q2) (b—2x) (y — ¢)
4412

oo o0
(p1+ 1) (p2 + q2) ZZ m+1
n=0m=0
q1 93"
v <p’iL+1 (1 - n—i—l) 7rL+1 (1 - p72n+1) C)
(pp—1b & q3"
— (P2 + q2) m+1 ( ’pm2+1y+ (1_ mz+1>c>

m=0 P2 5 ph
—(p1+q1) il m(ql +<1_ q{‘)by+(p2—1)c>
n=0 p;H—l p?—H p?—H D2
+W0 (xﬂpl —1)b y+(p2—1)c)]
b1 ’ P2 ’

for (z,y) € [pra+ (1 —p1) b, 0] X [, (1 — p2) ¢ + p2d] ;

b
[ v g, s 34

d
Ty
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(P1—q1) (p2 — q2) (b— ) (d —y)

4q1q2
oo 00 qn qm
x | (p1 +Q1)(p2+CI2)Z n]:ﬁ-l m2+1
n=0m=0 £'1 D2
q q 9" 93"
SRR SN Sy
pit! pitt) T pytt pyt!
— z+(p—1b q¢f 4"
— (P2 + q2) m ‘I’( oty H L d
m=0 P2 i b1 Pyt Pyt
— q a @ y+(p2—1)d
—(p1+ @) n ‘I’(n m+<1_ n )b’
2 T P Pt Do
— 1) —1)d
+\I,(l”r(pl ) ’Z/+(p2 ) )]’
P1 b2

for (z,y) € [pra+ (1 —p1) b,b] X [pac+ (1 — p2) d,d], respectively.

Example 3.1. Let us define a function ¥ : [0,1] x [0,1] — R by ¥ (¢,5) = ts°.
Then, by equality (3.1) for ¢ = g2 = 1/3, p1 = p2 =2/3, x = (1 — p1) a + p1b and
y = (1 — p2) ¢ + pad, we obtain

2 2
3 3
j/J/tSQOdé‘lsodé‘;t (3.5)
373 3’3
0 0
1ex <=9 /1\" /1\™ 1\" /1\™
= [224@ () *((5)-(5) )
n=0m=0

124 12 5
5 |F-T-] =

Example 3.2. Assume ¥ : [0,1] x [0,1] — R by ¥ (¢,s) = t?s%. If we choose
g1 =¢g=1/3and py =py=2/3, 2= (1 —p1)a+piband y = pec+ (1 —p2)d in
equality (3.2), then we have

21
//tZgzldg’%sodg%t (3.6)
0
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o 3 1 m 1 2m 1 3m
— Z z N z
() =6 () )
1198 8 8 3 8 8 25
=22 (2-2+2) =2 (2—-242)| ==,
9147 3 7 2 3 7 441

Example 3.3. Let us note a function ¥ : [0,1] x [0,1] — R by ¥ (¢,s) = ts>. If we
take ¢y = g2 = 1/3 and p1 = pa = 2/3, x = pra+ (1 —p1)band y = (1 — p2) c+pad
in equality (3.3), then we obtain

13

//tSS()d:gF 181y ot (3.7)
3’3 3’3

1

3

Example 3.4. Consider ¥ : [0,1] x [0,1] — R by V¥ (t,s) = t*s. If we assign
g1 =¢g2=1/3and py =ps =2/3, z =pia+ (1 —p1)band y = pec+ (1 —p2)d in
equality (3.4), then we get the following equality

1 1

//tzsldgls ldglt (3.8)
373 373

55

T 9 /1\"/1\™ 1\" 1\™ 5

== (=) (=) v(1-(=) ,1-(= = .

235(5) (1) v(-() -(3) )=

4. Some Hermite-Hadamard inequalities for new po-
st quantum integrals with two variables

In this section, we will establish some new T, ,~-Hermite-Hadamard inequalities for

co-ordinated convex functions.

Theorem 4.1. Suppose that ¥ : [a,b] X [¢,d] C R? = R is a co-ordinated convex
function on [a,b] X [¢,d]. Then, we obtain the inequalities

a+b c+d
(22t ox) a
1 1 (I—p1)atpid p
c+
< | U (50, —— ) od¥
) pl(b—a) (J{’ 2 ) 131;£11}f

e

(1—=p2)ctpad

1 a+b
- - N\ T
+p2 (d _ C) / ( 2 77) Cdpqury
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(I—=p1)a+p1b (1—p2)ctpad

1
< — — U(5,7) ey 0¥ adh, 47
p1p2(b—a)(d —¢)
a c
1 ] (1—p1)atp1b ) (1—p1)a+p1b
T T
“I|mo-a V(% 0)adyy g% + / W (56, d) adp, g, %
a a
1 (1—p2)ctpad ) (1—p2)ct+pad
7 Y v Al —_— U(b,~) AL
+ Do (d—C) / (auw) PQ,Q27 +p2 (d—C) / ( 77) p2~,112py
C (&
<\I/(a, ¢)+ ¥Y(a,d) + ¥(b,c)+ V(b,d)

- 4
forall0< g <p1 <1 and0< g < py < 1.

Proof. Let g, : [¢,d] = R, g,.(7) = ¥ (5,7) be a convex function on [c¢,d]. By
using the inequality (2.4) for the interval [c, (1 — pa) ¢+ p2d] and 0 < g2 < p2 < 1,
we get

(1—p2)ctpad

c+d 1 g5(€) + g5(d)
< T <
o (F) < = 9l el <75
i.e.

i ) (1=p2)ctpad \I!( ) \IJ( d)

c+ »,c)+ 4
< T < 9 9 )
\Il <%7 2 > - p2 (d _ C) / \II (%’ ’Y) Cdpg,qQ,y — 2 (4 2)

c

for all s € [a,b]. From the facts of ,T}, 4 -integrating the inequality (4.2) on
[a, (1 —p1)a+ p1b] for 0 < 1 < p1 < 1, we obtain

(I=p1)a+p1b

1 c+d
i (b—a) W 26— ) ady, 43
p1(b—a) / <%’ 2 > «” (4.3)
1 (1=p1)a+pi1b (1—p2)ct+p2d
< i CdT adT
_p1p2 (b*(l) (d*C) (%3’7) pz’quy Pl:t]l%
(1-p1)at+pid
S# \I/(%,c)—F\II(%,d) adT 2
D1 (b - a) 2 P1,q1

a

Similarly, let us consider that g, : [a,b] = R, g,(5¢) = ¥ (s¢,7) is a convex function
on [a,b]. With the help of the inequality (2.4) for 0 < ¢; < p1 <1, we get

(1-p1)at+pib

a+b 1 g(a) + g,(b)
< T < 2l Y
w(F) Spama [ e < BETEO,
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which gives

b ! (1=p1)a+pib o (b
\IJ(CH ,7>< U (50,7) 0dl s < 2D HYGA)

2 ~m (b_a) a¥pi,q1 —= 2

a

for all v € [¢,d]. By using .T,,-integrating the inequality (4.4) on [c,d] for 0 < ¢1 <
p1 < 1, we have the following double inequality

(1—p2)ctp2d

1 a+b T
m / v ( 2 ,’Y> Cdp2#12’y (4.5)
1 (1=p1)a+pib (1—p2)ctpad
Splpg (b — CL) (d — C) 4 (%a ’7) Cdzj;z,qgfy ad;;}ql%
(1=p2)ctpad
S# / \I’(CL,’}/)—F\I/(b,’Y) ch 5.
P2 (d — C) 2 P2,92

C

If we collect the inequalities from (4.3) to (4.5), then we have the following inequal-
ities

1 1 (1-p1)a+p1b p
c—+ T
i W cray
2 |p(b—a) / <%’ 2 ) allpy,q1 %
1 (1=p2)ctpad .
a+
+m / v ( 2 ’7> cdpar (4.6)
(&
1 (1=p1)a+p1b (1—p2)ctpad
S])1;172 (b—a)(d—c) v (>,7) Cdz;zyqzry ad;,tn%
1 (1=p2)etpad 1 (1—p2)ctpad
SImd=—0o U (a,7) cdy, —— U (b,7) odl,
_4p2 (d _ C) (CL,’Y) p2,q2Y + 4p2 (d — C) ( 77) p2,q2)
1 (=p1)atprb ) (1—p1)atp1b
TN ) 2d¥ - W (5. d) od”
+ I (b= (56, ¢) alp, ¢ + = a) (5, d) od? . 5,
@ a

which proves the second and third inequalities in (4.1).
From the fact of the first inequality in (2.4), we get

(I—p1)a+pib

a+b c+d 1 c+d
\Il< 5 3 ><p1(b—a) / \II<J47 5 )adg“h% (4.7)

and

(1—=p2)ctpad

a+b c+d 1 atb
v = v T 5. 4.
e e e BT (=L ISR
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If we add the inequality (4.7) and (4.8), then we obtain the first inequality in (4.1).
Finally, by using the second inequality in (2.4), we have

(1—=p1)at+pid

1 1¥(a,c)+ U(b,c)
I v AT e < GO TR 4.9
Iy () il e < SHLATIEE )
T 10(a,d) + (b, d)
a,d) +
S U (oe,d) od? e < -0 ! 4.1
4p1 (b_ a) (%7 ) pl,ql}f —_ 4 2 ’ ( 0)
a
T 1W(a, ¢) + W(a,d)
+ W¥(a
S — v ALy < 2 2B ’ 411
I (d—0) (@,7) elpy 007 < 3 5 ; (4.11)
and
(g e 1W(b,¢) + (b, d)
c)+
S U(b,y) dl 4 < -2 T YD) 412
I d=0) (6:7) edpy 07 < 5 (4.12)

c

By summing the inequalities from (4.9) to (4.12), we obtain

(1—p1)atpib (1—p1)atpib
I (b—a) <; — ) W (%,¢) ad§17q1%+74p1 (; —a U (5,d) od7 , 5
(1(1—p2)c+p2d (lfpz)C-s-pzd
+m U (a,7) ed}, 407 +m W (b, ) cdl, 0y
<‘I’(a,c)+\ll(a,d):-\I/(b,c)—i-\ll(b,d). )

- 4

This finishes the proof of Theorem 4.1. O
From the facts of Theorem 2.3 and Theorem 2.4, we can obtain the following

Theorem.

Theorem 4.2. If ¥ : [a,b] x [c,d] C R? — R is a coordinated convex function on
[a,b] x [c,d], then we obtain the following inequalities

\P(Hb c—l—d) w13)

2 72

(1=p1)atp1b

1 a+b d T
_ N d
p2(d—0) / < 2 ’”) pa.aa’l

p2ct(l—p2)d
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L (1-p1)atpib d
< v 4qr ody,
S —a)d—0 (56,7) “dpy,qrY adpy gy %
a p2ct(l—p2)d
1 L (1=p1)a+tpibd 1 (1—p1)atp1d
T T
SZ p1(b—a) / (s, c) alp, g% + m / (5, d) alp, q, %
d d
1 1
_— v 44T o U (b, ) “dZ,
+ Do (d—C) / (a77) p2¢Q2’y +p2 (d—C) / ( 7’7) p2#127
p2c+(l—p2)d p2ct(l—p2)d

< Y(a,c) + ¥(a,d) + ¥(b,c) + ¥(b,d)

- 4
forall0< ¢ <p1 <1 and0 < qy <py <1.

Proof. The proof is similar to that of Theorem 4.1 by using Theorem 2.3 and
Theorem 2.4. O

Theorem 4.3. Suppose that ¥ : [a,b] x [c,d] C R? — R is a coordinated convex
function on [a,b] X [¢c,d]. Then, the following inequalities hold:

@(”;bf;d) (4.14)
/ d

1 1 c+ b T

< | v

=2 | pr(b—a) / (%7 9 ) dpy,q1 %

pra+(1—p1)b

1 (1—p2)ctpad 5
a+
+ / v ( 2 ”7) Cdgz7q27

b (1—p2)c+pad

1

< N\ ch de

“pip2(b—a)(d—c) / / (367) clpy7 "dpy 0y
pra+(1—p1)b c

b b
1 1 1

<-|— U(s,¢)dr oo+ ——— / U(s,d) Y, >
=4 P1 (b _ a) / ( ) P1,91 1 (b _ a) ( ) P1,91
pra+(1—p1)b pra+(1—p1)b

(1—p2)ctpad 1 (1—p2)ctpad
U(a,7) edpy 407 + pa(d—o) / (b, ) cdpy 407

c c

1
_"_7
p2(d—c)

Y(a,c) + ¥(a,d) + ¥(b,c)+ V(b,d)
4

forall0< ¢ <p1 <1 and0< g < py < 1.

<

Proof. The proof is similar to that of Theorem 4.1 by using Theorem 2.3 and
Theorem 2.4. O
By the Theorem 2.4, we can also obtain the following Theorem.

Theorem 4.4. Assume that ¥ : [a,b] x [c,d] C R? — R is coordinated convex
function on [a,b] X [¢c,d]. Then, it follows

a+b c+d
o (o1 exd) -
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b
1 1 c+d\ 4 1
<z | — T
-9 P1 (b _ a) / <%7 2 ) dplxlh%

pra+(l—p1)b

1
< ] d T b 4T
_plpz(b — a)(d — c) / / (%’ 7) sz#Z27 dm,ql x

p1a+(1—p1)bpact(1—p2)d

b b
1 1 1
e ] bal _— U (5, d) bdE.
=1 | pi(b—a) / (3¢,¢) pr.a Tt p1(b—a) / (2, d) p1,q1 7%
pra+(l—p1)b pra+(l—p1)b
d d
1 1
— % 4qr e U (b,~) *d?,
+ P2 (d*C) / (G/?’Y) pz,q{y +p2 (d*C) / ( 7’}/) pz,qzry
pact(1—p2)d p2ct+(1—p2)d
U(a,c)+ ¥(a,d) + V(b,c) + V(b,d)

IN

4
forall0< g <p1 <1 and0< g < py < 1.

Proof. The proof is similar to the proof of Theorem 4.1 by using Theorem 2.4.
O

Remark 4.1. In Theorems 4.1-4.4,

1. if we chose p = 1, then Theorems 4.1-4.4 reduce to 7-10 proved by Kara and
Budak in [15];

2. if we consider p = 1 and by taking the limit ¢ — 17, Theorems 4.1-4.4 reduce
to Theorem 1 proved by Dragomir in [13].

Example 4.1. Let us consider ¥ : [0,1] x [0,1] — R by V¥ (¢,s) = ts?. Then,
U(t,s) is a co-ordinated convex function of two variables on [0, 1] x [0, 1]. By using
Theorem 4.1 with ¢ = g2 = 1/3 and p; = pa = 2/3, the first expression of (4.1) is

a+b c+d 11\ 1
q’( 2 7 2 >_\P(2’2>_8'

By utilizing equality (2.3) in the second expression of (4.1), it follows

(I—p1)atp1b

1 d
_ v (t, C;) oDt (4.16)

SN0

n=

(1—p2)ctpad

1 a+b
_ ) £ 4.1
waza | v(e) s 41
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2
3
_§/
4
0

From the facts of the equalities (4.16) and (4.17), we get

1 1 /(1—p1)a+p1bql . c+d T
2| p1(b—a) J, T2 a7PLa

1 (1—p2)ct+pad a+b 1/1 5
_ v CdT =—|=-+ =
*oa=a ) (5572) thoar] =5 (5+

From equality (3.5), the third expression of the inequalities (4.

following equality

(1=p1)a+pi1b (1—p2)ctpad

SRS HSHONORUIE

>:

1) derives the

5

28"

1
U(t,s) AL dr
p1p2(b—a)(d —¢) (t,s) 2,025 alpy g,
9/5 45
dr =2 (2) = =2
//ts odg 35 0d3 4t = 3 (63) 252"
Let us consider the following equalities,
(1—p1)a+p1b 2
L U(t,c) ady, —§/ (,0)0d% 1t =0
(b= a) ot T3 odz 4t =0,
a 0
1 (1—p1)atpid
— U(t,d)dE
pl(b_a) (7 ) Pl‘h
a
2
3 3 [ 31 1
— T = — T P —
2/‘P 2/’50%5 2’37
0 0
1 (1—p2)ctpad 3 2
T _9 T
o (d—0) / U (a,s)cd,, 4,5 5 /\IJ(O s) od%% =0,
c 0
and
) (1—p2)ctpad
U(b,s).d
P2 (d — C) ( S) p2, q2

112

(4.19)

(4.20)

(4.21)
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If we combine all equalities from (4.18) to (4.21), then we obtain the following
equality

(1=p1)a+pib (1—p1)atpib
i m (t,c)qdl ,t+ m U(t,d)od] .t
(1=p2)ct+p2d (1—p2)ctpad
+ m U(a, s) Cd;;)qgs + m U(b, s) Cd;;ms
1 1 1 12
=1 (0+2+0+154) - hoh
Finally,
U(a,c) + U(a,d)+ ¥(b,c)+ ¥(b,d) _ U(0,0) + w(0,1) + ¥(1,0) + ¥(1,1) 1
4 4 4

Consequently, the statements of the Theorem 4.1 are provided as follows

1 17 45 3 1

8<112<252<14<4.
Example 4.2. Suppose that ¥ : [0,1] x [0,1] — R described by the function
W (t,s) = t?s%. Suppose also that W(t,s) is a co-ordinated convex function on
[0,1] x [0, 1]. By applying Theorem 4.2 with ¢; = g2 = 1/3 and p; = p = 2/3, the
first statement of (4.13) becomes

v a—&—b’c—&—d _ g }7} :i.
2 2 2’2 16

The following equalities

) (1—p1)a+p1b J 5 Z 5 5
c+
—_— U(t,— ) odl  t == 2odl t === == (4.22
p1(b—a) / ( 2 ) PLO 8/ 072.% 8 21 (4.22)
a 0
and
1 ; b
a+ d
m / \ < B ,S) d;z’qzs (423)

p2ct+(l—p2)d

1 oo n n\ 2
3 [ oy 3|1 3(1 (L _3.5_5
_8/8 d§’és_8[3<§:02(2> (1 (2)))]_8 21 ~ 56
1 n=
3

are valid by using the post-quantum integrals (2.3) and (2.5), respectively. From
the equalities (4.22) and (4.23), we obtain

2| pb—a) /. T )
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1 d b
+7/ \Il(a+ ’5) ddg%qzs
pa(d —c) p2et+(1—p2)d 2
1[5 5)\_5
2\56  56) 56
By the equality (3.6), we have
1 (I—p1)atpid d
U(t,s) ddL s q.db ¢
pip2(b—a)(d — c) / (t,5) “dpy 025 adpy g,
a pact+(1—p2)d
9 b 9 25 25
— t221d'12—'1 dj;lt:77:7
4// SRt T T T 196
0 3
Use the fact that
1 (I=p1)at+p1b ; 2
i 6=a) U(t,c)adp, gt Q/Q(t,O)Od%%t 0, (4.24)
a 0
] (1-p1)a+p1b
— U(t,d)odl  t 4.25
p1(b—a) (t,d) ady, 4, (4.25)
2
3 [ 3[1 (3 (1)\*" 5 5 5
= 2. dr =212 1 1 _3.5_5
2/ 0733 2 [3 (Zg <2) )] 9 91 14
1 i 3
- d T _9 LT
=0 / V(a,s)d,, ;s 2/\1/(0,.9) dj s =0, (4.26)
pact(l—p2)d 1

d

1
1 3 3 5 5
P2 (d—C) / ‘;[j(bﬂs)dd;;’(ms :7/821dT s :§ﬁ:ﬁ (427)
p2ct(1—p2)d

By using the equalities from (4.24) to (4.27), we derive

1 ) (1-p1)at+pid ) (1—p1)a+p1b
| — U(t,c)gdd t 4+ ——mo U(t,d)dl t
4 pl (b _ a) / ( ?c) pl,ql + pl (b _ a) / ( ) )

P1,91
a

d d
1 1
+ — U(a,s)%dl s+ ——r / U(b,s)% L s
Do (d—c) / ( ) P2,42 P2 (d—c) ( )

Dp2,q2
pac+(1—p2)d pact+(1—p2)d
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1 5 5 )

The last one is as follows

U(a,c) + U(a,d) + U(b,c) + U(b,d) W(0,0)+W(0,1) +¥(1,0) + ¥(1,1) 1

4 4 4’
As you seen from the above,

1 ) 25 5 1

6 55 196 28 1
which shows the result defined in Theorem 4.2.

Example 4.3. Let us note that a function ¥ : [0,1] x [0,1] — R is defined as
U (t,5) = ts® and U(t,s) is a co-ordinated convex function on [0,1] x [0,1]. By
using Theorem 4.3 with ¢; = g2 = 1/3 and p; = pa = 2/3, we get

v a+bvc+d _ 1’1 :i.
2 2 2°2 16

With the help of the equalities (2.5), we have

b
L ctd\y, r
m / v (t’ 2 ) Ay, g, t (4.28)

ol

and by using equality (2.3), it follows

(1—p2)ctpad

1 b
— / v (a; ,5) cdl 8 (4.29)

1 o] 1 n 1 3n
*Zé DN (L 2333
3 = 2\ 2 2 4 15 20
If we add the equalities (4.28)-(4.29) and multiply the result by %, then we obtain
1 1 b d
Y / \I/<t, et ) bdgl Q1t
2 pl(b_a) pra+(1—p1)b 2 ’

1 (1—p2)c+p2d a+b
- v T
+p2<d—c>/c ( 2 )

L1 3y _ 117 a7
“2\16 20 2 80 160

]
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From the fact of Example (3.3), the following equalities hold
) b (1—p2)ctpad
U(t,s) AL sbdT ¢
p1p2(b _ a)(d _ C) ( ) p2.a25  Op1,q1
pra+(1—p1)b c
9 L3 9 3
1
_9d 3 g1 1gr o _ 2 L1 _ 9
_4//“ odz 18 et =01 T g
10
3
Let us calculate the following equalities
1 p 3 i
b T 2 1T 4
T / Ut o) bl ¢ 2/@(7:,0) 0 1=, (4.30)
pra+(l—p1)b i
. b
— W(t,d)bd? 4.31
p1(b—a) / (1 0) ! (431)
pra+(1—p1)b
1
3 [ — 3 \" 31 1
== dT 1z 2.z
ra=s %) (- 6))] 5 as
t -
1 (1=p2)ctpad 5 2
- T _° T
A=) U(a,s) clpy 428 5 /\I/(O s) 0d§% =0, (4.32)
c 0
and
(1—p2)ctpad
o U(b,s) odT (4.33)
p2(d—c) 18) cOp,,q,8 :
2
3 [ 31 /&3 /1\" [1\*" 313 13
3 7
2 - 2 o) —r) =2 2222
2/80%7%5 2[3(22(2) (2) )] 2 96 64
0 n=
If we consider the expressions from (4.30) to (4.33), then we can find the following
equality
1 1 b 1 /
— W(t,c)bd] — / t,d)bdl
Py I R CC K P ey YDyt
pra+(1—p1)b pra+(l—p1)b
) (1=p2)ct+pad ) (1=p2)ctp2d
T T
+ o d—0 W(a,s) dl, q28+p2(d_c) U(b,s)dl, s
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13\ 1 45 45
T4 64 256

_! 0+ 1+0+
T4 2 64

The last statements become

U(a,c) + U(a,d) + U(b,c) + U(b,d)  (0,0)+T(0,1)+T(1,0)+T(1,1) 1

4 4 4

It is clear that
1 17 3 45 1

6 160 ~20 S 256 ~ 4’
which shows the result of Theorem 4.3.

Example 4.4. Consider a function ¥ : [0,1] x [0,1] — R by W (¢, 5) = t?s. Then,
U (t, s) is a co-ordinated convex function of two variables on [0, 1]x[0, 1]. By applying
Theorem 4.4 with ¢; = g2 = 1/3 and p; = p2 = 2/3, we have

at+b c+d 11\ 1
\1,< 2 7 2 )_\P(Q’Q)_S'

Through the equality (2.5), the following expressions are obtained

b 1
1 c+d 3 [, 3 5 5
oI I G D KRS T FEs § 2

pra+(1—p1)b 3

and
1 i b 3 / 3 1 1
Cl+ d

pa(d—c) / q’( 2 ) dzwszé/sld?%“é'g:g

pac+(1—p2)d 1

From the obtained results, the statements can be rewritten as follows

1 1 b d
o / \Il<t7 C+ ) bdlj;l Q1t
2| p1(b—a) pra+(1—p1)b 2 ’
1 d b
+7-/ \I/<a+ 7s) dd;%s
p2(d —c) p2c+(1—p2)d 2 7
1(5 N 1\ 1 17 17
“2\28 8) 2 56 112°

By utilizing Example (3.8), we get

b d

1

U(t ddT de t

p1p2(b—a)(d —c) / / (t,5) “dp, 4,5 "y
pra+(1—=p1)bp2ct+(l—p2)d
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The result of the four integrals in the expression of inequality (4.15) is as follows

b
1
[ w0, -

p1(b—a)
pra+(l—p1)b

N W

3’3

1
/\I/(t,o)l(g it =0, (4.34)

1
1 3 3 5 5
_ U(t,d)bdr t:f/t“d?flt:f-—:— 4.35
p1(b—a) / (t,d) iy, g, 2 33 2 21 14’ (4.35)
pra+(1—p1)b

1

1 d jT _ 3 14T —

m / \I/(a,, 8) dp2_’q28 = 5/\:[/(0,8) d%’%s —07 (436)
pact+(l—p2)d 1

and

d 1
1 d JT 3 T 1
p2(d—o) [ v = g [ =0 i =0 s
1
3

pac+(1—p2)d

If we add the equality from (4.34) to (4.37) and multiply this sum by I, we get

b b
1 1 1
- | — U(t,e)bdl  t 4+ —— / U(t,d)bdl t
4 p1 (b—a) / ( 70) P1,91 +p1 (b—a) ( ’ ) P1,q91
pra+(1—p1)b pra+(1—p1)b
d d
+ _ / U(a,v)4dr s+ _ / U(b,v)4dL s
P2 (d _ C) ’ P2,q2 P2 (d _ C) ’ P2,q2
pact+(1—p2)d pact+(1—p2)d
1 5 1 1 6 3
=1 (‘”14“”2) VAV

If the last expression of the inequality (4.15) is calculated, it will be as follows

U(a,c) + ¥(a,d) + ¥ (b,c) + ¥(b,d) _ ¥(0,0)+W(0,1) +¥(1,0) +¥(1,1) 1

4 4 4

As a result, we have

1 17 5 3 1
— — < —. 4.
8<112<28<14<4 (4.38)

The statement (4.38) proves the correctness of Theorem 4.4.

5. Conclusion

In this article, we first defined T}, ,-integrals for functions of two variables. Also,
Hermite-Hadamard inequalities related to definitions were obtained. In future stud-
ies, researchers can derive new inequalities by using generalized convexities such as
co-ordinated preinvex, co-ordinated s-convex, and co-ordinated h-convex functions
on coordinates. This article will also motivate further research on quantum integrals
and post-quantum integrals.
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