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Monotonicity Analysis of Generalized Discrete
Fractional Proportional h-Differences with
Applications

Ammar Qarariyah!, Iyad Suwan?, Muayad Abusaa® and Thabet
Abdeljawad 561

Abstract Monotonicity analysis is an important aspect of fractional math-
ematics. In this paper, we perform a monotonicity analysis for a generalized
class of nabla discrete fractional proportional difference on the hZ scale of
time. We first define the sums and differences of order 0 < o < 1 on the
time scale for a general form of nabla fractional along with Riemann-Liouville
h-fractional proportional sums and differences. We formulate the Caputo frac-
tional proportional differences and present the relation between them and the
fractional proportional differences. Afterward, we introduce and prove the
monotonicity results for nabla and Caputo discrete h-fractional proportional
differences. Finally, we provide two numerical examples to verify the theoret-
ical results along with a proof for a new version of the fractional proportional
difference of the mean value theorem on hZ as an application.

Keywords Monotonicity analysis, h-fractional proportional difference, Ca-
puto fractional proportional difference, fractional proportional Mean Value
Theorem(MVT)
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1. Introduction

Fractional calculus has become an important and active area of research. Many
researchers use this topic to model and successfully solve diverse types of problems
that appear in science and engineering [1-5]. Fractional calculus extends tradi-
tional calculus by allowing derivatives and integrals of non-integer orders, providing
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a powerful tool for modeling complex, real-world phenomena such as memory ef-
fects and anomalous diffusion. In differential equations, fractional derivatives offer
greater flexibility and accuracy in describing processes with long-range dependencies
and hereditary properties, making them essential in fields such as physics, biology,
and engineering [6-9]. While continuous fractional calculus is well established, dis-
crete fractional calculus still has high potential in modern applications. Lately,
this specific field has been under the spotlight of the research community. Differ-
ent properties of discrete fractional operators are studied to reveal the potential in
various aspects of such a topic [10-13].

One important aspect of discrete fractional calculus is the study of fractional
sums and differences with nabla operators. The theory and applications have been
extensively considered with new developments over the last few decades [12,14-17].
For example in [18], the Laplace transform on the fractional proportional opera-
tors is studied and a generalization of fractional proportional sums and differences
is given. Wei et al. [19] consider the series representation for nabla discrete frac-
tional sums and differences. A new discrete fractional solution of the modified
Bessel differential equation is introduced in [20]. The monotonicity properties of
discrete delta and nabla fractional operators have been an active topic of research
recently [21-24]. In [25], the monotonicity properties for nabla fractional sums and
differences of order 0 < v < 1 on the time scale hZ, where 0 < h < 1, are studied.
Monotonicity results for Riemann-Liouville and Caputo fractional proportional dif-
ferences on the time scale Z are presented in [26]. In [27], a new method for negative
nabla and delta fractional proportional differences is introduced. Authors of [2§]
present a comprehensive study on the monotonicity analysis for delta and nabla
discrete fractional operators of the Liouville-Caputo family, which directly aligns
with the exploration of fractional operators in this work. Additionally, [29] inves-
tigates unexpected properties of fractional difference operators, particularly finite
and eventual monotonicity, offering insights that are relevant to the current study’s
focus on operator behavior.

Motivated by the aforementioned work, we present the monotonicity properties
for a generalized class of discrete h-fractional proportional differences on the time
scale hZ. We start by defining the general fractional sums and differences along with
the Riemann-Liouville form. We then move to find and prove the relation between
the nabla fractional sums and differences and the Caputo proportional differences.
Monotonicity analysis is then conducted for both nabla and Caputo proportional
differences. Moreover, we present a new form of the fractional proportional differ-
ence of the mean value theorem on hZ time scale. The work presented in this paper
is a direct generalization of results presented in [25] and [26]. In order to validate
the theoretical findings, we introduce two numerical examples that are considered
direct illustrations of the basic results presented in this work. Additionally, we
provide a comprehensive proof of an updated version of the fractional proportional
difference of the mean value theorem.

The rest of the paper is organized as follows. In Section 2, basic definitions and
preliminary work are introduced. Section 3 includes the main monotonicity results
for nabla h-fractional proportional differences. In Section 4, two numerical exam-
ples that verify and support the theoretical results are presented and a fractional
proportional version of the Mean Value Theorem is developed. Finally, Section 5
concludes the paper.
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2. Preliminary definitions

The definitions presented in this section rely mostly on the results presented in
[18,25,26]. The interested readers could turn to those references for a more detailed
explanations.

Definition 2.1. Let f be a function that is defined on space N, ;, = {a,a + h,a +
2h,...}. We can introduce the backward h-discrete proportional difference with
order w and 0 < p <1 as:

(VRH(#) = (1 =p)f(t) + p(Vaf)(t), (2.1)
while the forward h-discrete proportional difference of order « is given by:
(APf)(t) = (L= p)f(t) = pAnf(D), (2.2)

where t € Ngyp 4, 0 <h <1 and a > 0is an integer.

Definition 2.2. Considering the time scale hZ, we can define the backward differ-
ence operator as:

i) = TO=IEZD), (23
while the forward operator can be presented as:
anf(ey = LM ZIE), (2.4
Definition 2.3. On hZ, the backward jump operator can be introduced as
p(t) =t —h, (2.5)
while the forward jump operator is presented by
o(t)=t+h. (2.6)
Definition 2.4. Let « € R and 0 < h < 1, we define the h-factorial of ¢ as:
7o pellite) .1
I'(3)

where t € R — {..., —2h, —h,0} and 0% = 0.

Definition 2.5. Fort € Ny, 0 < p <1 and 0 < h <1, the exponential function
f is given by

t—a

~ p o
F(t) = s (10 :() | 2.4
() pp ,h( ) p_(p_l)h ( )
Definition 2.6. (Nabla h-fractional proportional sums)
Let f be a function such that f : N, — R, where 0 < p < 1, a € C and
Re(a) > 0. The left h-fractional proportional sum for f is defined as:

(VP 1) (1) :pa%(a) / &yt — 7+ ah,0)(t — pa(r))E S (1) Var
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t/h o
T a 1 > Gt + (k= a)h,0)(t — pu(kh))y " f(kh)h, (2.9)
P F(a) k=a/h+1

where t € Ny j,.
Now let f be a function such that f : 5, N — R where, )N = {b,b — h,b — 2h, ...}.
Then the right h-fractional proportional sum for f is defined as:

1 b —
WV, P ))(2) :m /t ep(T —t+ah,0)(r — ph(t));f_lf(T)AhT
N

= o Ta) k_Zt/h & ((k+ a)h — £,0)(kh — pu(£))3 f(kh)h,  (2.10)

where t € 5 N.
— p=1

p is given as p = 5 throughout the definition.

We can generate the left and right Riemann-Liouville fractional sums for order
« by simply setting p = 1 in Definition 2.6 and making use of Definition 2.5.

Definition 2.7. (The Riemann-Liouville sums for the h-fractional proportionals)

Let f be a function such that f : Nyp = {a,a + h,a + 2h,...} — R, and
0 < h < 1. Then the left Riemann-Liouville h-fractional sum with order v > 0 can
be given as:

(B2 (1) = —— / (t = pn(s)T £ (5)V

')
1 t/h -
= f@ L (- mER)TTRA, tE Napny (211
k=a/h+1

Now for a function f such that f: , )N ={b,b—h,b—2h,...} — R and ending
at b, the right Riemann-Liouville h-fractional sum with order a > 0 can be defined
as:

b -
(BT )(t) = ﬁ / (5 — P02 F(5)Ans
L Y o
= > (kh— pn ()5~ f(kh)h. (2.12)
k=t/h

Definition 2.8. (Nabla h-fractional proportional differences)
For a function f, 0 < p <1,0< h <1, and o € C, where Re(a) > 0, we can
define the left h-fractional proportional difference as:

WV 1)) = Vi oV, O f(2)

Vi, / 2ot — 7+ h(l — ), 0)(t — p(7))* () VT

- pl=al(1 — «)
Vﬂ t/h —
— 7}1 - _ — — —o
= er(l—a) k_%ﬂep(t h(k =1+ ), 0)(t = pn(kh);* f (kD).

(2.13)
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The right h-fractional proportional difference that ends at b can also be defined

as:
WV W = = ALY, ()
— AP b _
— e [ BT R 0,00 () ) A
— AP b/h—1 I
= m > (k+1—a)h—t,0)(kh — pu(t)), * f (kh)h.
k=t/h

(2.14)

Clearly, substituting p = 1 in Definition 2.8 yields the Riemann-Liouville h-
fractional differences with order «.

Definition 2.9. (The Riemann-Liouville differnces for h-fractional proportionals)
The left Riemann-Liouville h-fractional difference with order o > 0 (which starts
at a) can be defined as:

EVENE) = (Vi oV, 00
:% > (= pu(kh)); " f(kh)h, (2.15)

k=a/h+1

where ¢t € Ny1p n. The right Riemann-Liouville h-fractional difference with order
a > 0 (which ends at b) can be presented as:

(BVER(t) = (—2nnV, " 1)1

A, b/h—1 _
=iy 2 BRI (2.16)

where t € y_p 5, N.

The Caputo fractional difference operator is favored in real-world applications
because it allows initial conditions to be specified in the same manner as in classical
differential equations, making it more intuitive for modeling physical processes such
as biological growth or physical systems. Unlike the Riemann-Liouville operator,
which requires fractional-order initial conditions that can be challenging to interpret
in practical contexts, the Caputo operator is well suited to initial value problems
where traditional initial conditions are defined at a specific point in time. This
makes it particularly applicable in fields such as control theory, viscoelastic materi-
als; and diffusion processes. While the Riemann-Liouville operator is more versatile
in theoretical analysis, the Caputo operator is more practical for real-world sys-
tems, where clear and measurable initial conditions are crucial. For a more detailed
comparison of these operators, the reader is referred to [32].

Definition 2.10. (The Caputo h-fractional proportional differences)

Let f be a function that is defined on N, ;, = {a,a + h,a + 2h,...} and also
on , ,)N={bb—hb—2h,...}. Fr0<a<1 0<h<1l anda<beR, we
can define the left Caputo h-fractional proportional difference with order v ( which
starts at a) as:

(o Vi’ D)
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=V, TPV f) ()

e Ll h( =)0 = () (V)T

()
t/h
:m k_%ﬂgp(t — h(k =1+ a),0)(t — pn(kh)), (V4§ f)(kh)h, (2.17)

where ¢t € Nyip . Also, the right Caputo h-fractional proportional difference with
order o (which ends at b) can be presented as:

(V7))
=V, TP A1)

1 b () .
e L Bt A= 0.0 (O~ AL s
b/h—1 o
ey 2 k1= ) =L O)(hk = pu (D)7 = AL
k=t

(2.18)
where t € _p N

Proposition 2.1. (Nabla and Caputo h-fractional proportional differences relation)
The relation between nabla and Caputo h-fractional proportional differences can
be defined for 0 < p<1,0< h <1, a € C, and Re(a) > 0 as follows:

(0%

@) CVEPNE) = (VEF)(E) — =8y (t,a + ha)(t — a);, f(a). (2.19)

I'l-a)
(i) VP00 = (TN = i ytld = ha )= 07" F0). - (220)
Proof.
() €V H)
=V, TN )
1 t/h ~ —
= e —a) k:a%l &p(t = (k= 1+ ), 0)(t = pn (k) (V5. /) (k)R
1 t/h o
= eT(1—a) kz%%ﬂ ep(t —h(k—1+a),0)(t — pn(kh)),
% [(1= p)f(kh) + p(Vif)(kh) [
1 t/h ~ _
=T —a) k_;ﬂw = h(l =1+ a), 0)(t = pu(kh));;* (1 = p) f (k)R
1 t/h

+ SeT(1—a) k_%};ﬂ ep(t —h(k —1+4a),0)(t — pr(kh)), “p(Vnf)(kh)h
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1 t/h - _
=TI —a) k:az/};rl ep(t = h(k =1+ a),0)(t — pn(kh)), “(1 — p)f(kh)h
1 t/h R —

T ) k:%l &p(t = bk =1+ 0),0)(t = pi(kh));
y p(f(kh) - i(kh— h))h
1 t/h R —
= T a) k_g;ﬂ ep(t = h(k =1+ a),0)(t = pu(kh));,* (1 = p)f (kh)h
t/h o
+ m k_%ﬂgp(t —h(k —1+4a),0)(t - ph(kh));”‘p@h
1 em/m _
- T k_(a_zwh+le,,(t —h—h(k—1+a),0)(t —h— pn(kh));
y pf(:h) .
1 t/h R —
=T —a) k_%ﬂep(t = h(l =1+ a), 0)(t = pu(kh));;* (1 = p) f (k)R
1 t/h o
) k_%ﬂ &(t = bl =14 0),0)(t = pu(kh)); " pf (kh)
1 t/h—1 o
A e k_%ﬂ ep(t—h—h(k—1+a),0)(t — h — pu(kh)),
x pf(kh)h
_ mgp(t —h—h(a/h—1+a),0)(t —h— (a/h)h+ h);*
x f((a/W)h)h
t/h
1= e t—hlk—1+a _ —a
=T —a) k_;ﬂ p(t = hik = 14 0),0)(t = p(kh)); " f (k)
p t/h o
T —a) k_aZ/hH ep(t = h(k =14 a),0)(t = pu(kh)), " f (kh)h
p t/h—1 o
“ T —a) k%ﬂep(t —h—h(k—1+a),0)(t = h— p(kh)),*
x f(kh)h
P ~ —a
_ mep(t —h—h(a/h—1+),0)(t — h — (a/R)h + h);

x f((a/h)h)h
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t/h

_ L—p e (t — _ o N =rey
=T o) k:az/,;“ o(t = hik =14 0),0)(t — pu(kh)),“ f(kh)h
oV t/h
h ~ vy
o ) k:%l 8p(t = Bk =1+ 0),0)(t = pi(Kh)) S (k)
- mpiia)gp(t, a+ ha)(t - a);, " f(a)
e t/h _
=— _h et—hk—1+a - R
=T o) k:a%l o(t = hik =14 a),0)(t = p(kh)),“ f (k)
- m”iia)ap(t, a+ ha)(t —a);, " f(a)
=WV D) = gt o+ ha)(t = )" (o).

(it) The proof for this part can be obtained in the same way as for (i), therefore
it is omitted. O

Remark 2.1. Setting p to be 1 and making use of Definition 2.5 will lead to defin-
ing the relation between Riemann-Liouville and Caputo h-fractional proportional
differences and can be given as:

@) VRO = EVIN0 - grog -0t f@. @21

1 R

(i) (FVif)(t) = (fV?f)(t)—m(b—t)ﬁ“f(b)- (2.22)

3. The generalized monotonicity results

We start this section by introducing the hZ version for the monotonicity definitions
that are presented in [25].

Definition 3.1. Let f be a function defined as f : N, — R where f(a) > 0,
O<a<land0<h<1.If f(t+h)> «a f(t) Vt€ Ngp, then the function f(t)

is a—increasing on N .

Definition 3.2. Let f be a function defined as f : N, — R where f(a) <0,
O<a<land0<h<1If f(t+h)< a f(t) Vte Ny, then the function f(t)
is a—decreasing on N p,.

Remark 3.1. For Definition 3.1, when o = 1, the concepts of increasing and a—
increasing coincide for function f. The same can be noticed for the decreasing
concept in Definition 3.2.

Using Definitions 3.1 and 3.2, we have the following results:

Theorem 3.1. Let f be a function defined as f : Ng_pp — R. Now assume that
(a=rVy? f){#) >0where0<a<1,0<h<1landalso0<p<1,te Ny pp.

Then the function f(t) is (%) — increasing.
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Proof. We start by using Definition 2.8, which gives us the expression for the
operator 45, V;'* f(t). This operator involves a weighted summation over discrete
intervals, adjusted by parameters «, p, and h.

We recall that:

(a-n V"))

v t/h - , _
= — (k-1 0)(t — pn(kh kh)h
AT a) k_(aZh)Mep(t (k= 1+ ), 0)(t — pr(kh));,* f (kD)
P t/h o
:Wfi—a) k_za;hgp(t — h(k — 1+ ),0)(t — pp(kh)), “ f(kh)h.

This sum represents a discrete fractional difference operator acting on f. Let us
define S(t) for simplicity:

t/h -
S(t) = Y &t —h(k—1+a),0)(t — pa(kh)),* f(kh)h.
k=a/h

Now we know that V7 S(¢) > 0, which implies that:
ViS(t) = (1—p)S(t) + pVrS(t) > 0. (3.1)

We now expand V;,S(t). Using the definition of the discrete backward difference
operator Vj,, we have:

S(t) — S(t — h)

ViS(t) = A

By substituting S(¢) and using basic definitions presented in Section 2, we can
do the following;:

ViS(t) = [ % et — h(k — 1+ a),0)(t — pn(kh));,* f(kh)h
P R
_ k:za:/hép(t —h—h(k—14+0a),0)(t —h— ph(kh))haf(kh)h] W
=2, (h — ha, 0)(h); * (1)
+ ril St — h(k — 1+ a),0)(t — pu(kh)), * f(kh)h
ot
= > @t—h—hk—1+a),0)(t—h— ph(kh))h“f(kh)h] %
k=a/h
=2, (h — ha, 0)(h); * (1)
+ t/ﬁfl f(kh)h [ép(t —h(k —1+a),0)(t — kh +h),*
k=a/h

> =

— &t —h—h(k—1+a),0)(t — kh)?‘]
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=, (h — ha, 0)(h);, * f(¢)

t/h—1 t/h—k+l—a F(tfkthh_a) .
2 e (== o
(o \MEOIEE—a), |1

(p—(p—l)h) INEY) "

=8y (h — hav, 0)(h),,* £ (1)
t/h—1
P J4 t/hkal(t/h—k+1—-0) _,
1%“’”’{( —(p—1>h>(p—<p—1>h> Ceh—kr1)
_( p )t/h"“‘“ D(t/h—k—a), o| L
p—(p—1)h L'(t/h—k) h
t/h—1
5 o P t/h—k—a\
=G (h—he O)TSE)+ 2, Sk Gmo=m) (Yiase®) -1
t/h—k—a —a
P (t/h—k—a)\ h
(p—<p—1>h> ( T(t/h — k) ) h
e —hk—a)—t+hk
=&, (h — hav, 0)( +kza;hfkh { Py ]
p YRR D/ h— k14 (—a—1) ), e
(p—<p—1>h) ( T(t/h—k+ 1) )h
t/h—1
=2, (h — ha, 0)( + > flkh)h {tfhkfaft’hk}
k=a/h
St — h(k — 1+ a),0)(t — pn(kh)); > "
- t/h—1
—&y(h — ha,0) (), " F(8) =~ 37 [t — hk — p(t — bk — )]
k=a/h
et — h(k — 1+ a),0)(t — pn(kh));, >~ f(kh)h. (3.2)

At this point, the terms involving p, «, and h highlight the influence of the
discrete step size h and the fractional order « on the growth of S(¢).

Next, let’s examine the (1 — p)S(t) term from Equation 3.1:

t/h
(1=p)S(t) =(1=p) > &t —h(k—1+a),0)(t — pn(kh)), " f(kh)h
k=a/h
o t/h—1
=(1 = p)hey(h — ha,0)(h), *f(t)+ Y [p(hk + ha — t)+t—hk—hal
k=a/h
&p(t — h(k — 1+ ), 0)(t — pn(kh)), *~ " f(kh)h. (3.3)

This term provides another measure of how the operator scales with respect to
p. Combining this with VjS(¢), we substitute both Equations 3.2 and 3.3 back into
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Equation 3.1 to get:

t/h—1

VES(t) = (1 — o)+ p) &y (h — hat,0) (), £ (1) — [ S [t bk
k=a/h
ot — bk — )] (¢ — h(k — 1+ a),0)(t — p(kh)); o L f(kh)h
t/h—1
= > [p(hk + hor— t) + t — bk — ha] €,(t — h(k — 1+ a),0)
k=a/h

(t — pu(kh)), ™ f(kh) }

o t/h—1
(L= Pt )&y lh— ha 00 = 3 |1tk

k=a/h

—p(t—hk—a)]—[p(hk—i—ha—t)—i—t—hk—ha}]

&p(t — h(k — 1+ a),0)(t — pu(kh));, * 1 f(kh)h
t/h—1

= (1= p)h+ p)&(h — ha,0)(h), (1) - Z lpa = pha
=a/h

+ha€,(t — h(k — 1+ @), 0)(t — pn(kh)); *~ L f (kh)h

t/h—1

=((L = p)h + p) Ep(h — ha,0)(h), *F(t) — (L= p)h+p) >

k=a/h
et — h(k — 1+ ),0)(t — pu(kh)),; * "L f(kh)h > 0. (3.4)

Finally, by substituting ¢t = a, we find:
ViS(a) = (1= p)h + p) &y(h — ha,0)(h),* f(a) > 0. (3.5)

Thus, f(a) > 0. Similarly, by setting ¢ = a + h, we establish that:

Vi S(a+h)
= (L= p)h+ p) 8y(h— ha,0)(h),* f(a+h) = (1 = p)h+ p)

&p(2h — ha,0)(a + h — pu(a)), >~ f(a)h
— (1= p)h+ p)y(h — hat, 0)(h);,* fa+ h) — a((1 = p)h + p)

€p(2h — ha, 0)(2 ) Lf(a)h

I'(h/h — a)

F( /h)
(

—(1- P+ p) (p_(pp_l)h)
— (1= p)h+p) (p_(p”_l)h) (”ﬁ(])a)) hfla+h)

h—h

) h=f(a + h)
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j e
(=) (=g ) T n

Hence, f(a+ h) > (%) f(a).

By continuing this process inductively, we conclude that f(t+h) > (%)

- f(t) for any t, showing that f(t) is (%)—increasing. O

(a) a=0.5 (b) @ =0.75 (¢) @« =0.9
Figure 1. Monotonicity factor for different values of «, h, and p.

The main monotonicity result is illustrated in Figure 1. The monotonicity factor
is calculated for different values of o, h and p. Namely in Figure 1(a), we calculate
the monotonicity factor in the case where o = 0.5, h = 0.2,0.4,0.6 and 0.8 and
0 < p < 1. In Figures 1(b) and 1(c) the same sittings are used with a = 0.75,0.9,
respectively.

Remark 3.2. Theorem 3.1 is a generalization for the results presented in [25]
and [26]. We note the following:

() When we set p = 1 in theorem 3.1, we get that f(¢) is a—increasing which
is presented as the main result in [25].

(#9) When we set h = 1 in theorem 3.1, we get that f(¢) is ap—increasing which
is presented as the main result in [26].

Using Theorem 3.1 and Proposition 2.1, we can obtain a straightforward result
of monotonicity for the Caputo h-fractional proportional difference presented as
follows:

Corollary 3.1. For a function f defined as f : Ng_pp — R where 0 < h < 1,
0<p<1land0<a<1, wesuppose that the following holds for t € Ny_p p:

(o3

S v () E—_

mgp(t7 a—h(l—a))(t—a+h),*fla=h). (3.6)

Then the function f(t) is (#ﬂl)h) — increasing.
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Theorem 3.2. Let f be a function defined as f : Ny_pp — R and f(a) > 0.
Assume that f(t) is increasing on Ngp where 0 <h<1,0<p<1land0<a <1.
Then we can get that:

(a=n V3P )(t) >0, VteNg_pp. (3.7)

Proof. We will proceed by showing that (,—,V3”f)(t) is non-negative for all
t € Ng_p,» by analyzing its components.
Recall from Theorem 3.1 that:

(a*hvz’pf)(t) = st(t), te Nafh,hw

pl=oI(1 — )

Thus, in order to show that (4, V5’ f)(t) > 0, we only need to prove that S(t)
is increasing on N, », which implies that V{.5(t) > 0.

First, consider the case when ¢t = a. We substitute ¢ = a into the equation for
VES(t):

ViS(a) = (1= p)h + p)ep(h — he, 0)(h),, " f (a).

By the assumptions 0 < h < 1, 0 < p < 1,0 < a <1 and f(a) > 0, we get
ViS(a) > 0.

Now, assume that V/,S(i) > 0 for all i < t. We need to show that VS(t) > 0
for t > a.

Since f(t) is assumed to be increasing, then we can get that f(¢t) > f(t — h)
> f(a) >0, Vt € Ny

Since f(t) is increasing, we know:

Ft)> f(t—h) > f(a) >0, VteN,y.

We now use the recursive formula for V7 S(t):
Recalling Equation 3.4,

t/h—1

ViS(t) = (1= p)h+ p)&p(h— ha,0)(h), * f(t) —a (1= p)h+p) >
k=a/h

ep(t —h(k — 1+ @),0)(t — pr(kh)), >~ f(kh)h > 0,
we have

VAS(t) = (1= p)h+ p)&y(h — ha, 0)(R);* £(8) = (1 = )+ p) [Ep(t = h(t/h 1
- t/h—2
—1+0a),0)(t — pu(t — 1), ' ft—h)h+ D &t —h(k—1+a),0)
k=a/h

(t = pn(kh)), ™" F(kh)h)

(1= o)+ p) By (h = b, 0) (), * £ () = (1 = p)h+ p) [5(2h — b, 0)
t/h—2

(2h), L f (= b+ > Gt —h(k — 1+ a),0)(t — pr(kh)), * " f(kh)h
k=a/h
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t/h—2
— 37 Bt h(k — 1+ 0),0)(t — pu(kh)), *Lf(t ~ h)h
k=a/h
t/h—2
+ D0 Gt = hlk—1+0a),0)(t — pu(kh)); " £(t — W]
k=a/h
= (1= )+ p) &l = her,0)(R);“£(8) = (1= p)h+ p) [(2h — ha,0)
t/h—2
(2h), * 7T f(E—h)h+ Yt — h(k — 1+ a),0)(t — pa(kh)), !
k=a/h
(F(t— ) — f(kh)h
t/h—2
+ D0 Gt = hlk—1+a),0)(t = pu(kR); " f(t = h)A
k=a/h

leen that f(t) is increasing, then f(t — h) — f(kh) > 0, Yk, where k = £, & +
1,..., E — 2. Hence, we can do the following:

VES(1) 2 (1= p)h+ ) 8(h — ha, 0)(); " £(£) — o (1 = p)h + p) [ep(2h — ha,0)

t/h—2

(2h), " F(t =Mk + 37 Gt —hlk—1+a),0)(t = pu(kh), " f(t = W]
k=a/h
o t/h—1
= (L= p)h+ ) Elh = het, 0)(), S (1) = a (L= ph+p) D Gt —h
k=a/h

(k= 1+0),0)(t = pu(kh)), *~ f(t = h)h

=((1 = p)h + p) Ep(h — ha, 0)(h);* f(t) — (1 = p)h + p) Ep(h — har, 0)(h),
t/h—1

F(t—=h) +((1 = p)h + p) & (h = ha, 0)(h);* f(t—h) —a (L= p)h+p) >

k=a/h

et — h(k — 1+ a),0)(t — pn(kh));, “ " f(t — h)h
=((1 = p)h + p) & (h — ha,0)(h);, “(f(t) — f(t — h)) + ((1 — p)h + p) (R

t/h—1
— ha, 0)(h);, “f(t —h) —a((1 — p)h+ p) f(t — )k > &t —h(k—1+a),0)
k=a/h
(t = pu(kh)); "~
=((1 = p)h + p) Ep(h — ha, 0)(h), *(f(t) — f(t — b)) + (1 — p)h+ p) F(t — h)
L t/h—1 -
&p(h— ha,0)(h), ™ —ah 3 &t — h(k — 1+ @),0)(t — pu(kh)), " 1]
k=a/h
t/h—1
>((1—p)h+p) f(t— )[ep(h ha, 0)(h), * — ah Z &t —h(k -1+ a),0)
=a/h

(= pn(kh)), ]
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=((1—p)h+p) f(t—h) [a,(h — ha, 0)(h); © — ah(ap(t —a+ h—ha),0)
(t—pn(a), " 48t —a — ha),0)(t — pu(a+h)), "+ +&(2h — ha),0)

(t= e =)™ )|

— (L= p)h +p) f(t — W)R~® [a,(h - ha,O)F(IE(I)a) —e)(t—a+h—ha,0)
alg((i_% :rcf)) —e(t—a— ha,O)aIW .~ %,(2h — ha,0)
J@&MH

— (L= p)h +p) f(t — B)h~® [a,(h - ha,O)F(IE(I)a) —%,(2h — ha,0)

F(;(;)O‘) — %, (3h — ha,O)aF(lz(;)a) %y (t—a+h— ha,0)
H b))
By adding the parts and continuing in the same manner, we get
V2S(t) = (1= p)h+ p) f(t — h)h ™ (ep(t — a—ha,0) F(Ft(t;_))“)
—et—a+h— ha,O)aIE‘((Z_j:J:la))))

=((L=p)h+p) f(t = h)h™*Ey(t — a— ha, O)W (1 -

hip—1)(t—a ~ o (m_a)
=(p+ %)J’(t —h)e,(t —a — ha,0)h #THL))
=(p+ w)ﬂt — h)ey(t —a—ha,0)(t —a+h)~* > 0.

a+ha—t
Since V7 S(t) > 0 for all t € Ny_p, p, it follows that:
(a,hvz’pf)(t) >0, Vte Nafh,h«

This completes the proof. O

Theorem 3.3. Let f be a function defined as f : Ny_pp — R and f(a) > 0.
Assume that f(t) is strictly increasing on Ny p where 0 < h <1, 0 < p <1 and
0 < a<1. Then we can get that:

(a,hvi"’f)(t) >0, VteNg_ph. (3.8)

The proof of this result follows the same steps as the one for Theorem 3.2 and
therefore we omit it.
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Theorem 3.4. Let f be a function defined as f: Ng_p p — R. Now assume that
(a=rVy? f){#) <O0where0<a<1l,0<h<1landalso0<p<1, teNy_pp.

Then the function f(t) is (%) — decreasing.

Proof. To start this proof, we define a function k such that k: N,_5 5, — R and
k(t) = —f(t). Using this, we get the following:

(a=nVR)E)(t) = (a=n V") = /)(t) = =(a=nVy")f)(E) = 0.
Now by using Theorem 3.1 for the function k(t), we directly have our wanted
result. O

Theorem 3.5. Let f be a function defined as f : Ny_pp — R and f(a) <
Assume that f(t) is decreasing on Ng j, where 0 <h <1, 0<p<1land0< a <
Then we can get that:

(a,hvz"’f)(t) <0, VteNi_ph. (3.9)

Proof. By defining a function g(¢) = —f(¢), we can apply Theorem 3.2 and the
result follows. O
The following Theorem is a direct result for the work presented in [18].

Theorem 3.6. Let us suppose that f is a function defined as f : Ngypp — R
where 0 < h <1, 0< p<1and0 < a < 1. Given the previous assumption, the
next result holds:

W% (ta)

Ryt at Wi ),

(VP ash VP f) (1) = £(t)

4. Applications

In this section, two applications are presented to verify and illustrate the theoretical
results generated in this work.

4.1. Numerical examples

The nature of a function is a vital aspect when considering real-life problems es-
pecially those related to engineering. For instance, monotonic functions are in-
dispensable when dealing with growth and decay behavior in material, biological
and population engineering [30]. In particular, several biological models have been
developed to simulate the growth and decay of microscopic organisms, diseases, in-
fections spread and more. The flexibility and the wide range of possibilities that
the fractional calculus provides through the newly adopted operators allow such
models to be handled efficiently and enable the possibility to model more complex
real life applications. In this subsection, we first verify our monotonicity results
numerically using a logistic growth function as an example. In the second example,
we verify our results by presenting an example of another type of growth function
called Generalized Weibull function which is a special case of Koya-Goshu growth
function used for modeling biological growths [30, 31].

Example 4.1. Let us consider the classical Logistic growth function

A
T =1 pem
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where k > 0, A, B and k are parameters. For the sake of our numerical example,
let us choose A =10, B=2 and k =0.7.

The function f(¢) has a positive derivative and for 0 < o < 1, 0 < h < 1
and also 0 < p <1 we get ( V3" f) (t) > 0. Applying Theorem 3.1, f(¢) is
(%) — increasing. In order to verify this numerically and taking into account

Definition 3.1, we just need to show that

raen = (=2 ) . (2)

f(t+h)-RA()

0=0.999

(a) (b)

Figure 2. In Figure 2(a), the curves for function f(t 4+ h) compared to (%) f(¢) for different

values of a while h = 0.1 and p = 0.9. The differences between the values of the two functions are
illustrated in Figure 2(b).

In Figure 2, the results for the numerical illustrations of Equation 4.2 are pre-
sented for h = 0.1, p = 0.9 and a = 0.9,0.99,0.999, respectively. The numerical
results support those presented theoretically in Theorem 3.1 and can easily ap-
ply for other theoretical results with minor modifications on the function and the
parameters.

Example 4.2. In this example, we consider the Generalized Weibull function which
is used to model growth in biological applications [30,31]. The function can be
derived by solving the ordinary differential equation:

dj
d—{; =rif(t), (4.3)
where 7, is the rate function given by
k. t—p._,, A
= (=)(—— — -1 44
O R (44)

where k, §, p, A are parameters and t represents time. Solving Equation 4.3 will
give the general Weibull function:

F(t) = A(1 — Bel — k(t’T“)v). (4.5)

For the sake of our example, we suppose that the value of the parameters A = 10,
B=05,k=0.01,x=0.02, ) =3 and v = 2.
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The function f(¢) has a positive derivative and for 0 < a < 1, 0 < h < 1
and also 0 < p <1 we get ( —n V" m ) (t) < 0. Applying Theorem 3.1, m(t)
is (%) — decreasing. In order to verify this numerically and taking into
account Definition 3.1, we just need to show that

Ft+h) > <p_(;w_1)h) F(t). (4.6)

=0.999
I

Figure 3. In Figure 3(a), the curves for function f(t 4+ h) compared to <%) f(t) for different

values of o while h = 0.1 and p = 0.9. The differences between the values of the two functions are
illustrated in Figure 3(b).

In Figure 3, the results for the numerical illustrations of Equation 4.6 are pre-
sented for h = 0.1, p = 0.9 and a = 0.9,0.99,0.999, respectively. The numerical
results are consistent with theoretical result presented in Theorem 3.4.

Both examples illustrate mathematical models commonly applied in real-world
scenarios. The logistic growth function, used in biology, medicine, and economics,
describes constrained population growth or the adoption of new technologies, where
growth accelerates initially but slows as limits are reached. The generalized Weibull
function, applied in biological growth models, reliability engineering, and environ-
mental science, captures more complex, non-linear growth or decay patterns, such
as tumor growth, system failure rates, or extreme weather events. These mod-
els, supported by numerical verification, are vital in predicting and understanding
dynamic processes across various fields.

4.2. Generalized Mean Value Theorem

In this subsection, we present simple calculus application for the results generated
in this work by introducing another version of the Mean Value Theorem (MVT).
Before we start, let us first rewrite Equation 3.10 in Theorem 3.6 in a simplified
form as follows

(oVa ™" amn VP f) (t) = f(t) — R (a,t,a) f(a), (4.7)

ht=oe,(t,a)

Ny 7 FHE

where R} (a,t,a) =
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Theorem 4.1. (The MVT for fractional h-proportional differences)

Suppose that there exist two functions f and g that are defined on Ng p, N p)N =
{a,a+h,a+2h, - ,b—2h,b—h,b} such that b = a+kh for any k € N. Furthermore,
suppose that the function g is strictly increasing with g(a) > 0,0 < h<1,0<p<1
and 0 < o < 1. Then 3 51,52 € Ngp, N 4 nN such that the following holds:

(V™" 1) _
( a—hv}:a’pg)(sl) - g(b) -R (

(4.8)

Proof. We start by showing that g(b) — R} («,t,a)g(a) > 0. Since the function g
is assumed strictly increasing, then we can show that g(b) — R} (v, t,a)g(a) > 0 by
using Theorem 3.3. We get

(a=nV3y*g)(t) >0, VteNg,N puN.
Now, applying the operator of fractional sum for both sides we get:
oV, P (a=nVyPg)(t) >0, VteNg N pN.
Using Equation 4.7, we get
Vi (aenViPg)(t) = g(t) — Rh (e, t,a)g(a) >0, Vt€Ngp N p,N.
When ¢t = b, we get what we need as follows

g(b) — R} (v, b,a)g(a) > 0.

We now turn to prove this theorem using contradiction by assuming that Equa-
tion 4.8 doesn’t hold. Then we have either

f(b) — By (

~ Rp(a,t,a)f(a) _ (anVi™"H)(0)
g(b) — R} (a,t,a)g(a) = (a-nV, " 9)(t) 7 R o -
or we can get
1) = Filonba) /(@) LanVo ZHO ey, N (@10)

9(b) = Rjy(a,t,a)g(a) = (0nV, " 9)(1)

But again since the function g is strictly increasing, then using Theorem 3.3 we
have:
( a_th;’”g)(t) >0, VteNgun N

Then, Equation 4.9 becomes

)( a_hvga"’g)(t) < ( a_hV;“’pf)(t), Vt € th n b,hN~

(4.11)
Applying the operator of fractional sum and making use of Equation 4.7 at t = b,
we get

f(b) B RZ(O‘a tva’)f(a)
g(b) - RZ(O&,LQ)Q(G)

(9(b) = Ry (v, b,a)g(a)) < f(b) = Rj(a,b,a)f(a). (4.12)
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This leads to f(b) < f(b) and this is a contradiction. Following the same way

using Equation 4.10 also leads to a contradiction. Hence, the proof is complete.

O

We illustrate the proposed Generalized MVT using the following numerical ex-
ample:

Example 4.3. Let us consider the logistic growth function presented by Exam-
ple 4.1:

A
T =1 g

where k£ > 0, A, B and k are parameters. For the sake of our numerical example,
let us choose A = 10, B = 2 and k = 0.7. Let us use the generalized MVT on
interval ¢ € [0,10] with & = 0.8, h = 0.1, p = 0.9, and the function g(t) = ¢.
In order to check Equation 4.8, we first compute the fractional differences
(a=nV, P f)(t) and ( -V, “"g)(t) at s1 = 3 and s, = 7. We get the following:
For s; = 3,

(4.13)

(n V0l |
(T P)sn)

and for so =7,

(a=n Vi " f)(s1)

(a=rV,“"9)(s1)

Now we compute the middle term of the Generalized MVT:
f(b) — RZ(OZ7 t, a)f(a‘)
g(b) - RZ(O(, t7 a)g(a)

Using the given parameters, the coefficient R} («,t,a) ~ 0.7, So we get:

~0.7.

f(b) — Ry (a,t,a)f(a)  9.96 — (0.7 - 3.33)

= =0.763.
9(b) = R? (a1, a)g(a) 10-07-0 3

Clearly, the result 0.763 lies between 1.5 and 0.7, satisfying the Generalized
MVT. This confirms the validity of the Generalized MVT for fractional proportional
differences in this case. The computed fractional differences at the points s; = 3
and sy = 7 accurately bound the middle term, demonstrating the application of the
theorem to a logistic growth function.

5. Conclusions

In this work, we conducted a monotonicity analysis and presented the results for a
generalized class of discrete fractional proportional h-differences. We first defined
the sums and differences that are associated with ( ,Vy”f)(¢) for 0 < a < 1,
0<h<1land0< p<1. We used the basic definitions in Section 2 to re-establish
the relation between nabla and Caputo fractional proportional h-differences. After-
wards, we moved to present the main monotonicity results and we proved that if
the proportional h-differences satisfies the general form ( —,V3” f ) (t) > 0, then
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the function f(t) is (%) —increasing. Moreover, the monotonicity results for

Caputo fractional proportional differences is introduced. At the end, we presented
two applications to support the theoretical results. The first is a numerical illus-
tration for the result presented in Theorem 3.1 and is presented as two numerical
examples. The second is a direct application that follows the monotonicity results
in calculus where a general version of the Mean Value Theorem on Z for fractional
proportional h-differences is proposed. A good topic that follows is to investigate
the monotonicity analysis for fractional proportional h- differences with memory.
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