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A Novel Variant of Milne’s Rule Inequalities on
Quantum Calculus for Convex Functions with
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Abstract In this investigation, we introduce a novel approach for establish-
ing Milne’s type inequalities in the context of quantum calculus for differ-
entiable convex functions. First, we prove a quantum integral identity. We
derive numerous new Milne’s rule inequalities for quantum differentiable con-
vex functions. These inequalities are relevant in open Newton-Cotes formulas,
as they facilitate the determination of bounds for Milne’s rule applicable to
differentiable convex functions in both classical and g¢-calculus. In addition,
we conduct a computational analysis of these inequalities for convex functions
and provide mathematical examples to demonstrate the validity of the newly
established results within the framework of g-calculus.
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1. Introduction

Convexity, a fundamental mathematical notion derived from ancient Greek philoso-
phy, acquired substantial traction in the late nineteenth century, mainly due to the
pioneering work of German mathematician Karl Hermann Amandus Schwarz, who
introduced convex functions [13]. Convexity has numerous modern applications in
economics, engineering, computer science, and mathematics, particularly in opti-
mization problems and inequalities [19,29]. Considerable study has demonstrated
the strong relationship between convexity theory and integral inequalities, empha-
sizing their critical roles in differential equations and applied mathematics. This
relationship is critical due to the broad range of applications and the significant
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impact of integral inequalities. Exploring numerous inequalities such as Gronwall,
Simpson’s type, Chebyshev, Jensen, Holder, Milne, and Hermite-Hadamard (H-H)
inequalities enriches the general comprehension of mathematical concepts. For those
interested in delving deeper into these inequalities and their practical applications,
references [1,2,24,29,306] provide valuable insights.

The H-H inequality for convex functions is one of several inequalities that can
be deduced directly from the applications of convex functions. The H-H inequality,
originated by C. Hermite and J. Hadamard, is a cornerstone in the field of convex
functions, known for its geometric interpretation and numerous applications [21,22].

F<J+p>< 1 /:F(C)dC<F(U)+F(p)~ (1.1)

2 p—o0 2

This inequality has numerous advantages, particularly its widespread applica-
tion in approximation theory. Its vast applications prompted mathematicians to
begin developing it, which resulted in the publication of multiple new results. The
trapezoidal and midpoint-type inequalities are reported in [14,25] by employing the
principles of differentiable convexity. Numerous studies have been accomplished
over the past twenty years to find new bounds for the inequality on the left and
right sides of (1.1). For more information, see [17,30].

The ¢-H-H type inequality expands the traditional H-H inequality in mathemat-
ical analysis. It offers constraints on convex functions by considering their values
at the interval’s endpoints. Alp et al. [3] applied quantum calculus techniques to
establish a novel variant of the H-H inequality (1.1), as follows:

a0 +p I qF(o) + F(p)
F(F7) = s [ o < R

Burmudo et al. [6] proposed a novel formulation specifically designed for ¢ values
occurring within the interval (0, 1), presented as follows:

o+ qp 1 P F(o) +qF(p)
F( T+g ) < p—a/a F(C)pquSﬁ’

and

F(752) < s | F@eis [ F@ra] < BOTEE.

In recent years, numerous researchers have focused on Milne’s type inequality
across various categories of mappings. Recognizing the versatility and effectiveness
of convexity theory, they utilize it to tackle problems spanning multiple fields of
pure and applied mathematics.

Budak et al. [10] revealed fractional versions of Milne-type inequalities for dif-
ferentiable convex functions. Celik et al. [12] generalized Milne-type inequality for
conformable fractional integrals. Also, they discussed different function classes.
In [23], Hezenci et al. proposed a tempered fractional version of Milne-type in-
equality. Demir demonstrated multiple integral inequalities connected to Milne-
type integral inequalities concerning the proportional Caputo-hybrid operator [15].
Ali et al. [5] established the error bounds for Milne’s formula, a variant of the open
Newton-Cotes formulas designed for differentiable convex functions within fractional
and classical calculus frameworks.
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On the contrary, many investigations in g-analysis trace back to Euler’s pioneer-
ing work. Quantum calculus has numerous applications in number theory, combi-
natorics, orthogonal polynomials, fundamental hypergeometric functions, quantum
theory, and the theory of relativity, among other branches of mathematics and
physics. Due to the tremendous consideration, this topic has garnered significant
attention from researchers and is regarded as an interdisciplinary field bridging
mathematics and physics. For further insights into recent advancements in the the-
ory of quantum calculus and the theory of inequalities within this field, interested
readers are encouraged to explore [18,20,33].

Over the recent span, Tariboon and Ntouyas [34] revealed a comprehensive ex-
amination of g-derivatives and g-integrals within the domain [o,p] C R. Their
research has yielded significant advancements by establishing quantum analogues
of renowned mathematical results, such as H-H inequality, Holder inequality, Os-
trowski inequality, and other integral inequalities using classical convexity. Khan
et al. [26] formulated quantum H-H inequality by employing the Green function.
Noor et al. [28] examined the generalized form of g-integral inequalities. Kalsoom et
al. [27] extended the formulation of the quantum Montgomery identity utilizing the
quantum integral. Leveraging this, they introduced novel Ostrowski-type inequali-
ties derived from the newly established identity. Advancing Simpson-Newton-type
inequalities by applying Mercer’s convexity in quantum calculus, Butt et al. [7]
unveiled new quantum bounds through Hélder’s inequality and the power mean
inequality. Their investigation yields insight and expands upon earlier conclusions.
For (a,m) convex function, Sial et al. [31] proposed a modified form of Simpson’s
and Newton’s type inequalities. Numerous scholarly articles have been devoted to
expanding and broadening the scope of quantum calculus. Here, we list some of
them for interested readers [11,32,35].

Motivated by ongoing investigations, we develop Milne-type inequalities by lever-
aging the function’s convexity property within the framework of g-calculus. We
provide numerical examples to validate the effectiveness of these newly derived in-
equalities.

2. Preliminaries
In this section, we revisit the definitions and properties of ¢-derivatives and ¢-

integrals. In this paper, ¢ is considered a constant with 0 < ¢ < 1, and [o,p] C R
represents an interval with ¢ < p. The g-number is defined as follows:

=l+q++-+¢"", neN.

In 2013, Tariboon and Ntouyas [34] initiated the g,-derivative and integral. They
also provided their properties. Here, we recollect the subsequent definitions from
their work:

Definition 2.1 (See [34]). Let F : [0, p] =& R be a continuous function. Then the
go-derivative of F at s € (o, p] is outlined as
F(>) — Flo + ¢(> - 0))

(1-¢)(>¢—0)

o DyF(3) =
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The g,-integral is described as

[ F©utat = (1= )= ) > aF o+ "= ).

n=0

Bermudo et al. [6] unveiled a novel approach involving the ¢” derivative and
integral. They also examined several fundamental properties of these operators.
Here, we recapitulate the definitions provided in their study:

Definition 2.2 (See [6]). Let F : [0, p] = R be a continuous function. Then the

gP-derivative of F at » € [0, p) is outlined as

F(p+q(—p)) —F(>)
(I-=q)p—2)

PD4F(5) =

The g’-integral is described as

/p F(O)PdeC=(1—q)(p—2) > _q"Flp+q" (>~ p)).

n=0

In [4] and [31], the authors provide the following formulas of g-integration by
parts:

Lemma 2.1. For continuous functions h,F : [0, p] = R, the subsequent equality is
valid:

/0 Qe DaF(Cp+ (1 — O)o)dyC

_ h(QF(Cp+ (1 - Qo)
p—0

c 1 c
. p_U/o Dgh(Q)F(a¢p + (1 = q¢)a)dyC.

Lemma 2.2. For continuous functions h,F : [0, p] = R, the subsequent equality is
valid:

/ WO D F(Co+ (1 Op)dye
h(OF(Co+(1— Op) |

p—0 o.

1 (&
—— [ DuhOF (e + (1~ )it -

3. Main results
Initially, we establish the essential identity that will enable us to achieve the in-

tended outcomes by utilising quantum differentiable functions.

Lemma 3.1. Assume F : [0, p] = R is a g-differentiable function. If ;D,F(¢) and
PD,F(C) are g-integrable on [0, p|, then the following equality is valid:

ﬁ {/: F(%)pdq%+/p F(%)qu%] _% |:2F(O’) —F (U—SQ—P> +2F(P)}

g

— 0
:p2 1+ 12 — I3 — L], (3.1)
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where
I :/05 (qg _ §> PDyF(p+¢(o — p))dyC,
1
I, :A <q¢ - ;) PDyF(p+ (0~ p))dyC,
I / (qg _ z) #DyF(0 +(p — 0))d.
and

1
f= [ (4= 3) Do+l e

Proof. By utilizing the definition of g-integral, we acquire

I :/05 (qC - §> PDyF(p+ ¢l —p))dyC

— [* Do+ clo = et~ 5 [T 2D+ Gl = o)t
0 0
Likewise,

I = / 1 (qc - ;) PDF(p+ C(0 — p))dyC

1
2

-/ 1 (qg - ;) PDyF(p+ ({0 — p))dgC
- ' <q¢ . ;) PDyF(p+ (o = p))dyC
- Do+ Gl o & / DG (o4 o — )t

1 1

= [ ¢ DuF o+ 6o = ot + 5 [ PDuF(+ Sl pduc.
0 0
Therefore,
1 1
hl= [ aDF(p+Clo—)did ~ 5 [ PDF(p+ o= (32)
0 3 0
~5 | e o= g

By Lemma 2.2, we attain

/0 4¢P DyF(p+ (o — p))dgC (3.3)
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1

qCF(p+ (o —p))

p—0 0

1
/0 aF(gCo + (1 — qO)p)dyC -

p—0
q n—l—l n+1 _ . n+l _ q
= Z o+ (1=q"") p) = = Flo)

1= 1

"F ("o + (1 —
WL (¢"c+(1—4q")p) - s

:(p10—)2/p|:<%)pdq%_ L F(o).

F(o)

Similarly,

/O PDaF(p+ ({0 — p))daC = ——— [F(o) — F(p)]. (3.4)

p—0

1

/05 PDyF(p+ (o = p))de¢ = - i - [F (";”) — F(p)} : (3.5)

By substituting the equalities (3.3)-(3.5) into equation (3.2), we arrive at

L+ 1= ﬁ /Up F(32)Pdgs — ﬁ [QF(J) —F <

Similarly, we have

o+ p

) + QF(p)} . (3.6)

Ii+1, = ﬁ [2F(U) —F (U ;r p) + 2F(p)] - ﬁ /: F(30)odys. (3.7)

The equalities (3.6) and (3.7) yield the following equality:

—0o
L[Il+12_13_14]

:ﬁ [/: F)Pdyn + /: F<%)qu%} _% [2F(a) —F <042rp> +2F(p)} .

The proof of Lemma 3.1 is concluded. O

Theorem 3.1. Consider the conditions outlined in Lemma 3.1 hold. If [P D4F({)|
and | DyF(C)| are convex on [o, p], then the subsequent inequality is valid:

‘2([)1_0) Ua” F(50)°dy 5 + /Up F(%)gdq%} - % [QF(U) ~F (U;Fp> + 2F(P)H

<2 [(A1<q> + A3() [P DaF (0)| + |- DyF ()]

+ (A2(a) + As(@)) [P DaF (p)] + 1o DF ()] ] (3.8)

where

4+q+¢°

40 = SapLE],

) = [ a3
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d<_4+9q+9q2+2q3
T 2B,

o= [T0-0-2

2751175q2 0

8[2]4[3]q
(= —74+153¢+153¢> 1
21612],(3], 3
—2+5¢+5¢°> 2
8[2]¢[3]q > 3

IN

IA
oo wl=

1
Ao) = [ ¢lac—5a

AN A

q
q
q<
and

a+q°>—204°
24[2]4[3]q
d,¢ = 14—51q—51¢>+162¢°
4 216[2]4(3]4 ’
2—5q—5q¢%+144¢°
24[2]4[3]g

Qe R
IA A
= win Wik

N

As(q) = [(1 - ‘CIC— %

2

wiv wi= D
A AN

Proof. By Lemma 3.1, we attain
L Y. . g+p
o —a) M F(2) dq%—i-/a F(%)[,dq%} -3 [zF( ) -F (552 )—|—2F(p)H

p—o 2 2
< B [/0 '(IC*g

"D+ clo = )l + [ Jac =51

F(o+{(p—0))]deC

4 [l = 2o+ co - ontdic+ [ Jac - 3 1o, (a+<<p—a>>dqc] .
(3.9)
As [PD,F(¢)| and |, D,F(¢)| are convex on [, p], it yields
PDoF(p+ (o = )| < CPDF@) + (1 - QPDF@],  (310)
and
o Do+ Clp = )] < LoDy ()] + (1= O, DF@) . (311)

Substituting (3.10) and (3.11) into (3.9), we find

i [ e [ et 3=+ (252) ]

p—0

3 9 ) )
< 5 l/o ’qé—g‘[(é DyF(0)| 4+ (1= ¢) [P DyF(p)]) + (¢ |oDyF(p)]

1= QLD + [ [ac - 3| CIPDF@ + 0= O PDFO)

+ (CleDgF(p)| + (1 = Q) [0 DgF(a)])] dyC]

[\J\»—A

=5 [[ﬂDqF<o>|+|aDqF< i€

C‘qé

[P DoF()| + 1 DyF(0)] / “1-¢) \qc 2

0

dqC

[P D4F(0)] + 1o DaF(p) 4]4—

dqC



1734 W. Haider, H. Budak, A. Shehzadi, F. Hezenci & H. Chen

qu] .
By computing the quantum integrals, we acquire

‘2@10) U; F(50)°d, 5 + /: F(%)qu%} - % [2F(0) _F (U : ”) + 2F(p)] ‘

27 [(A1(a) + As(a)) [P DyF(@)| + |- DyF (o)
+ (Aa(0) + A1) [7DaF (0) | + o DyF ()]

1
HIPDFOI 1 DFON [ (10 Jac

2

<

O

Remark 3.1. By setting ¢ — 17 in Theorem 3.1, we attain the subsequent in-

equality:
‘plg /:F(%)d%— % [QF(O—) —F (U;p> +2F(p)”

5(p—(7) ’ /
—51 (F@I+[F ),

IN

which is obtained in [10].

Theorem 3.2. Consider the conditions outlined in Lemma 3.1 hold. If |?D,F(¢)|*

and |, D4F(¢)|” are convez on [0, p| and I%—}—% = 1 with p, s > 1, then the subsequent
inequality is valid:

)2(,01_0) U:F(%)pdq%+/” F(%)ﬂdq%} 7é [QF(O') —F (0;/)) +2F(P)”

(/Oé ‘qC _ % pdq§> { (‘JDQF(J)IS + (1 +29) |quF(p)|S>l

4[24
. <|aDqF(P)|S + (1+29) aDqF(U)IS)

anl, } ’ </

x{(ﬂﬁ%ﬂﬂs+(1+2®VDJ@W)i
7,

q

=

-2

S

1

P P
%

@ |-

qC—g

(3.12)

31, DgF(p)° + (1 + 29) |, D,F (o) *
*( P, ) H'

Proof. By utilizing ¢-Holder’s inequality in (3.9), it yields

[ s [ ] - or-(552) 0]

(3.13)
ép;U [(/02 ’qc—g

1
1

%Qp{<é“www+«a—mW%Qs
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(i)
X { (/ [P DgF(p + C(o = p))I° qu> S + (/ quF(U+C(p—a))|qu§> S H .

2

|

1
QC—g

+ ( / " 1o DoF(o + (o — o))l‘“”dqc>

As |PD,F|” and |,D4F|” are convex on [o, p], it yields

/05 "DaF(p+ (o = p))I" dgC < /0E [CIPDgF (o) + (1 = Q) 1P DgF(p)["] dyC (3.14)

1 s 142¢q s
- P P
Similarly,
1
2 s 1 s 1+2¢g s
/ lo DgF(o + ((p—0))I" deC < 75 o DgF(0)” + —5— o DgF(0)[",  (3.15)
0 4[2] 4[24
1
s 3 s -1+ 2(] s
| PP+ G = )" di < o PP+ = Z D) (310)
1 4[2), 42]
and
1
s 3 s -1+ 2(] s
/ loDgF(o + C(p = )" doC < 7o o DeF(p)[" + —i— [o DgF (o). (3.17)
3 4[2], 42,
By substituting (3.14)-(3.17) in (3.13), we achieve the desired result. O

Remark 3.2. By setting ¢ — 17 in Theorem 3.2, we attain the subsequent in-
equality:

’pla/: F(%)d%_% {QF(U)_F(U;p> +21F(p)” l
oot () (o' (o sy
(F’(p)ls +83|F’(0)|s)§ N <3|F'(p)|s;— |F’(g)|s>i] |

=

+

which is obtained in [9, Corollary 3.1].

Theorem 3.3. Consider the conditions outlined in Lemma 3.1 hold. If |? D F(¢)|?
and | s D4F(C)|* are convex on [a, p| for s > 1, then the subsequent inequality is valid:

‘2(,01—0—) U; F(I%)qu%+ /: F(%)adq%} - % {QF(U) _F (";p) 4 2F(p)] ‘

A1(g) 1P DaF (o) + Aa(g) [ DaF (p)|*)* + (A1() [ DgF(p)[*

@) {(As(@) PDF@)] + Au@) D F(p)I)

IA
)
||
Q
| —
—
P
ot
—
)
=
~—
—
|
|
=
—~

+A2(q) |0DqF(U)|S)
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+ (A3(0) [ DgF (0)I° + As(@) e DyF(0)") 7 }] (3.18)
where
z 2 4
As(q) =/O 96— 5| deC = 1;[_2]62,
) ) o 0<a <3,
o) = [ lac - gl = { o 1 <2
’ %, % <g<l1

A1(q) — A4(q) are defined as in Theorem 3.1.

Proof. By employing g-power mean inequality in (3.9), we acquire

‘2(/)10) U:F(%)pdq%+/: F(%)qu%} —% [QF(U) _F (U‘;p) +2F(p) ‘
Sp;aK/oé dqc>1s{</0é d
" (/ |0qu(a+<(p_g>)|sdqg>i} " (/
{1 |

-

As |PD,F|” and |,D,F|” are convex on [0, p] and the equalities attained in the proof
of Theorem 3.1, it yields

2 2
(IC—§ QC—§

|quF(P +((o — P))ls qu)

-
dq§>

2
QC—g

1
qc—g

1
QC—§

?DgF(p+ (o —p))I° d,,g)

1
QC*§

IaDqF(U+C(p0))|quC> H (3.19)

1

/

B2 ‘ .
< [ |~ 3| cniFor + 4 - 0 D FI
0

=A1(q) [P DgF(0)|” + A2(q) " DgF(p)|” -

2
QCfg

”DgF(p+ (o = p))I” dyC (3.20)

Similarly,

[ o= 3| 1-DiFte +clo = ) 46 < Ai@) 1 DF I + Aa(@) L DI
(3.21)

1
/1 9 - % "DgF(p +¢(o = p))I" doC < As(q) [ DgF(0)]” + As(q) I”DgF(p)],

(3.22)
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and
! 1
ﬁ 9¢ = 3| lo DaF (o + Clp = 0))I" dyC < As(a) [o DoF ()" + As(a) [ DF (0)]"-
3
(3.23)
By substituting (3.20)-(3.23) in (3.19), we achieve the desired result. O
Remark 3.3. By setting ¢ — 17 in Theorem 3.3, we attain the subsequent in-
equality:
1 P 1 o+p
’pa/, F(o)doe — & [2F(U) —F( : ) -|—2F(p)”
1 1
o= [(F@I +4F P\, (AP @+ FEP)
- 24 5 5 ’

which is obtained in [10, Remark 2].

4. Examples

In this section, we provide examples that validate our theorems.

Example 4.1. Consider the function F : [0,1] — R defined as F(») = 53. Then F
is g-differentiable. Under these assumptions, we have

PDGF(3¢) = 'DF(5) = 1+ s+ 5% + q(5* + 5 — 2) + ¢*(x — 1),

and
oDgF(3¢) = 0DyF () = [3]51%2-
3

These functions are convex on [0,1]. By Theorem 3.1 to the function F(3r) = 3,
we attain

é [QF((» —F (" ; p) + 2F<p>} = 0.625,
and
sy [ v [ o] [ e [ 2]
_! {1 3 3] .
2 P2, Bl

Thus, the left-hand side of (3.8) is

‘2(/)1_0_) U: F(30)Pdys + /ap F(%)adq%} = é [QF(J) _F (o —2|- p) + 2F(p)] ‘

:‘; [1_[21+[3?]J —0.625'. (4.1)

Now, we let

‘quF(U” = ‘1DqF(O)| = (1 - Q)Qa \quF(p)| = |ODqF(1)| = [3]q7
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”DgF(p)| = ['DgF(1)] = 3, o DgF(a)| = oDgF(0)| = 0.
Hence, the right-hand side of (3.8) is
p—oc ,
5 [(Ai(a) + As(q) [I"DoF(a)] + [0 DgF (p)l]

+ (A2(q) + Aa(9)) [I”DgF(p) | + |o DyF ()]

L[(4ita+e 2 4+ 9q +9¢% + 2¢*
[(WI-&-A?,(Q)) (1-9q) +[3]q]+3( 2 Bl A4(q))].

By inequality (3.8), we have

2

‘; - o [j]] - 0.625‘ < [(”M Fa(@) [0 -0 4B (42

3 (4+9q+9q2+2q3
24[2]4[3],

+A4(q)>] .

Figures 1-3 demonstrate the validity of inequality (4.2).

T
1 —#—The left terms.
—%— The right terms | -

Figure 1. The graphs of left-hand side and right-hand side of the inequality (4.2) for q € (O7 %1

! )
—#—The left terms.
—%— The right terms
D A
el ¢

Pre
oo
PPN S5 o o 7

a—

F
02 I I I I I I
0.3 0.35 04 0.45 0.5 0.55 06 0.65 0.7

Figure 2. The graphs of left-hand side and right-hand side of the inequality (4.2) for q € (%, %]
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—+—The left terms
—%—The right terms o <

o6 07 ors o8 o 05 05 1
Figure 3. The graphs of left-hand side and right-hand side of the inequality (4.2) for q € (%, 1)

Example 4.2. Consider the function F : [0,1] — R defined as F(») = »* and
p = s = 2. Then F is ¢-differentiable. Under these assumptions, we have

PDGF(G| = ['DaF()|” = (14 32+ 5 + g3 + 30— 2) + P (2 — 1)),

and
o DgF(30)|° = [oDgF (50)|* = [3]25¢*.

q

These functions are convex on [0,1]. By utilizing Theorem 3.2, the left-hand side
of inequality (3.12) is similar to (4.1).
On the other hand, by (3.12), we have

”DyF(o)|* = ['D,F(0)]" = (1 - )",
o DaF(p)]* = [oD,F(D)? = 3%,
PDF(p)* = ['D,F(1)|* =9,

and

o DyF(0)[" = |0 DgF(0)[* = 0.

Hence, the right-hand side of (3.12) is

A ( / : pdq<>’l’ {(I”DqF(o)IS + f[;]fq) |quF<p>|S)i
( DyF(p)|* + (1 +2q) [sDyF (o) [* )}
(

2
QCfg

4[2]

P [ (3PDFO + (14 29) PDF() )
q<> {( i, )

3| DyF(p)|* + (=1 + 29) |0DqF<a>‘“>iH
42,

C,,




1740 W. Haider, H. Budak, A. Shehzadi, F. Hezenci & H. Chen

1| /16 +8¢+17¢> + ¢*\ ? (l—q)4+9(1+2q)% 317 :
T2 ( 72(2]4[3]4 ) ( 4[2] ) +<4[2]q>

4-98¢+35¢> +31¢*\? | /3(1—q)* +9(-1+2¢)\* (3[3]2 :
*‘( 722,13, ) ( i, ) <4Dh>

By inequality (3.12), we have

’; { ) [23](1 " BS]J - 0'625‘ (4.3)
S RG]

4-98¢+35¢> 313\ ? | /301 —@)* +9(-1+2¢9)\*  (3[B2)°
*( 720,13, ) ( i, ) +@m)

Figure 4 demonstrates the validity of inequality (4.3).
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Figure 4. In Example 4.2, depending on ¢ € [0, 1], MATLAB has been used to compute and plot the
graph of both sides of (4.3). Therefore, the validity of inequality (4.3) has been verified.

Example 4.3. Consider the function F : [0,1] — R defined as F(») = »* and
s = 2. Then F is g-differentiable. Under these assumptions, we have
|2

PDGF(50)|" = |'"DgF(50)|" = (14 s+ 5 + q(5° + 2 — 2) + ¢*(x — 1)2)2 ;

and
|0 DF (50)|* = [0 DgF (5)|* = [3]25¢".

These functions are convex on [0,1]. By utilizing Theorem 3.3, the left-hand side
of inequality (3.18) is similar to (4.1).
On the other hand, by (3.18), we have

”DyF(o)|* = ['D,F(0)]" = (1 - ),
e DaF(p)|” = oD F(1)” = [3]2

q’
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s 2
"DyF(p)|* = ['DF(1)|” =9,
and
o DF(@)]* = [oDgF(0)* = 0.
Hence, the right-hand side of (3.18) is

P57 [(As@)' ™ {(Au@) 1P DF(0))° + Asla) P DAF(p)])* + (Ar(@) s DaF (p)I°
+42(0) [ DaF (o))} + (As(@)' ™ { (As(@) I"DoF (o))" + Au(@) " DF(p)])*
+ (A3(0) [ DyF (p)I° + Au(g) |- DF ()] ]

<4+q)é <<4+q+q2><1—q>4 9<4+9q+9q2+2q3>>5
122], 2412], 3], 24[2],13],

(4+a+a)e\’
*( 2423, )}
+ (@) { (As(a) (1 = ) + As(@)(9) 7 + (As(a)[312)

By inequality (3.18), we have

1
AN s

1

)

Nl=

i

2l Bl
1 <4+q>% <(4+q+q2)(1—q)4 9(4+9q+9q2+2q3))5
=2 |\1202], 2412, 3, 2412, 3],
(A+q+¢)B2\°
24121, 3],
+ (As(@) ! { (As(@)(1 - ) + Au@)9)* + (As(@)B2) Y] @)

Figures 5-7 demonstrate the validity of inequality (4.4).
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Figure 5. The graphs of left-hand side and right-hand side of the inequality (4.4) for q € (07 %}
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Figure 6. The graphs of left-hand side and right-hand side of the inequality (4.4) for q € (%, %]
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Figure 7. The graphs of left-hand side and right-hand side of the inequality (4.4) for q € (%, 1)

5. Conclusion

In this study, we reported novel inequalities for determining error bounds in Milne’s
rule within classical and quantum calculus. We derived these inequalities by em-
ploying a quantum integral identity and leveraging convexity properties, which are
crucial for open Newton-Cotes formulas. This research opens avenues for future
exploration into similar inequalities for different integral operators. Future research
endeavours may focus on expanding the scope of these inequalities and explor-
ing their implications in diverse mathematical disciplines. Our approach is more
straightforward and less conditional compared to existing methods.
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