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Neimark-Sacker Bifurcation of a Semi-Discrete
Lasota-Wazewska Model
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Abstract In this paper, we derive and analyze a semi-discrete Lasota-Wazew-
ska model. First, the existence, uniqueness, and local dynamical properties of
the positive fixed point are systematically investigated. Subsequently, we ex-
plore the existence of Neimark-Sacker bifurcation and the stability of the bifur-
cated invariant curve. Finally, numerical simulations are provided to illustrate
the theoretical findings.
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1. Introduction

In 1976, M. WaZewska-CzyZewska and A. Lasota [16] proposed the following delayed
differential equation:

AN (1)
dt

which is a reduced system to describe the number of red blood cells (RBCs) in
an animal, where N(t) represents the population of RBCs at time ¢, p € (0,1)
denotes the mortality rate for RBCs, p,y € (0,+00) are constants characterizing
the ability to generate new RBCs per unit time, and the delay h > 0 denotes the
time required for RBCs to generate new cells. And system (1.1) is usually called
the Lasota-Wazewska system.

The Lasota-Wazewska system and its generalized systems have been extensively
studied since they were proposed. Significant progress has been made on the ex-
istence and stabilities of the positive equilibrium, positive periodic solutions, posi-
tive almost periodic solutions and positive pseudo-almost periodic solutions and so
on [3-6,8,9,15,17].

These models are generally categorized into two types: continuous models de-
fined by differential equations, and discrete models derived through discretization of
continuous systems. The discrete framework is often regarded as more suitable for
modeling real-world phenomena. Consequently, discretized models have garnered
considerable research interest, with several discrete Lasota-Wazewska systems be-
ing proposed and analyzed in recent studies [1,2,7,14]. Chen [1] discussed positive
periodic solutions for a discrete Lasota-Wazewska model with impulse. Chen [2] et

= —uN(t) + pe N1, (1.1)
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al. studied dynamic behaviors for a delay Lasota-Wazewska model with feedback
control on time scales, which unified the continuous and discrete models.

In 2002, Tamas and Gabor [12] introduced a semi-discretization method for
studying delayed systems, which provided a simple yet effective approach to han-
dling delayed terms. Subsequently, this method has been applied to propose and
analyze several new semi-discretized models. For instance, in [10], the authors pro-
posed a semi-discrete hematopoiesis model and analyzed its dynamical behaviors,
including the stabilities of the fixed points and the Neimark-Sacker bifurcation.
Some other studies on semi-discrete models can be found in [11,13] and related
references. Additionally, Yao and Li [18] demonstrated differences in bifurcation
behavior induced by distinct discretization methods within a discrete predator-prey
model, highlighting the significance of methodological comparisons in discrete dy-
namical systems.

Inspired by the aforementioned studies, we shall investigate a semi-discrete ver-
sion of system (1.1) in this paper. Our main aim is to find some new phenomena
in the system. The existence, uniqueness and local dynamical behaviors of the
positive fixed point are discussed. We also show that the system will undergo
Neimark-Sacker bifurcation by both theoretical analysis and numerical simulations,
and the stability of the bifurcated invariant curve is presented by computing the first
Lyapunov coefficient. Notably, while the positive fixed point lacks an explicit ana-
lytical solution, we successfully analyze its local characteristics through the implicit
function theorem and auxiliary analytical techniques.

The remainder of this paper is organized as follows. In Section 2, we derive
a semi-discrete model for system (1.1), which is subsequently transformed into a
discrete planar system through appropriate coordinate transformations. Section 3
presents the dynamical analysis of the proposed system, including the existence
and local stability of the positive fixed point, conditions for Neimark-Sacker bifur-
cation occurrence, and the stability of the bifurcated invariant curve. Numerical
simulations validating our theoretical results are provided in Section 4. Finally, we
conclude the paper with a brief discussion in Section 5.

2. Problem and assumptions

We shall establish the semi-discrete model for system (1.1) using the method in [12]
in this section. First, introduce the transformations s = + and N(t) = N(sh) =
n(s), then (1.1) is changed to

dn —yn(s—1)

FP —on(s) + pe , §>0, (2.1)
where & = ph, p = ph, and the delay h is turned into 1, which makes the problem
simple. Assume [s] is the integer that not bigger than s, and consider the semi-
discrete model of (2.1):

dn —n([s=1)
di = _577([3])"’27@ R 9 87&071727"' . (22)
S
Obviously, equation (2.2) has piecewise constant arguments. We can directly
have the following conclusion.

Lemma 2.1. The solution n(s) of equation (2.2) satisfies
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(i) n(s) is continuous on [0, +00);

+oo
(ii) % exists on QO(S,S +1);
(iii) equation (2.2) is true on every interval [k, k + 1) for k=0,1,2,....

So, we can integrate equation (2.2) from n to s for any s € [n,n+ 1), n €
{0,1,2,3,...}, and the following difference equation can be obtained as:

n(s) = n(n) = (= dn(n) +pe~ """V (s =),

Let s — (n+ 1)~ in the above equation, and then we derive the discrete system for
(1.1) as
n(n+1) = (1= 6)n(n) +pe 7=,

Introducing the normal transformation
Tp = 77(” - 1)7
Yn = n(n),
we may achieve the semi-discrete planar dynamical system of (1.1) as follows:
Tn+1 = Yn, . (23)
Yn+1 = (1 — 6)yn +pe 7,

where 0 < < 1, v,p > 0, 2o,y € (0,+00).
Next, we shall discuss the dynamics on system (2.3) in detail.

3. Local dynamics for the fixed point

In this section, we shall deal with the existence and local dynamical properties of
the fixed point for system (2.3). First, we introduce the following result about the
existence and uniqueness of the fixed point.

Theorem 3.1. There is a unique positive fized point E.(x.,y«) for system (2.3)
satisfying
T = U (3.1)
(Sy* = Pe_w*’
and x. = y. € (0,%).

Proof. To obtain the fixed point of system (2.3), we need to solve the following

equation
r=1Y,
oy = pe T,

That is to say, we should discuss the root of dz = pe™7*. It is obvious that > 0.
Taking f(x) = dz — pe~7*, for all x € (0,400), we have:

(@) =0+pye > 0.
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Notice that f(04+0) = —p < 0, f(§) =p— pe~% > 0. So, there is a unique root
z, € (0,%) satisfying f(z,) = 0, which means system (2.3) has a unique positive
fixed point (2., y,) fulfilling

Ty = y*7

0y = pe~ 7,

and z, = y. € (0,%). O
Next, we investigate the stability of the fixed point F.(z4,yx).
Before that we need to present an important result first, which will be used in
the following studies.

Lemma 3.1. [10] Let F(\) = A2+ BA+C, where B and C are two real constants.
Suppose A1 and Ay are two roots of F(\) = 0. Then the following statements hold.
(i) If F(1) > 0, then
(i.1) [M] <1 and || <1 4f and only if F(—1) >0 and C < 1;
(i.2) My =—1 and A2 # =1 if and only if F(=1) =0 and B # 2;
(i.3) |M] <1 and |2 > 1 if and only if F(—1) < 0;
(i4) || >1 and |A2| > 1 if and only if F(—1) >0 and C > 1;
(i.5)

i.5) A1 and Xy are a pair of conjugate complex roots and |[\| = [A2| = 1 if

and only if =2 < B <2 and C=1;
(i.6) Ay =Xo=—1 if and only if F(—1) =0 and B = 2.

(ii) If F(1) = 0, namely, 1 is one root of F(\) =0, then the other root \ satisfies
[A| > 1(resp.]A\| < 1) if and only if |C| > 1(resp.|C| < 1).

(iii) If F(1) < 0, then F(X\) =0 has one root lying in (1,400). Moreover,
(iii.1) the other root A satisfies A < (=) — 1 if and only if F(—1) < (=)0;
(iil.2) the other root A satisfies —1 < A < 1 if and only if F(—1) > 0.

Since the Jacobian matrix of system (2.3) at the fixed point E, is as follows

0 1 0 1
J(E*) = == )
—ype 7 1 -4 —y0x, 1 -9
the characteristic polynomial of (2.3) at E, is
F(\) =X —BX+C,
where B =1— 9, C' = vydx,. Obviously,
F(1) =6 + vdx, > 0,

and
F(=1)=2—-3§+ydx,. > 0.

€%, equation (3.1) turns into

L = Y,
OYx :p67%e .

Notice that for v =~y = %

o=
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It is easy to see z, = Yy, = %e’% is exactly the unique solution at this case.

So, for v =y = %e%, C =~dx, = %e% X %e_% =land B=1-§¢€ (-2,2).
By Lemma 3.1, we may know the eigenvalues A1 2 of system (2.3) at E, are a pair
of conjugate complex satisfying |\1| = |A2] = 1, which means the fixed point E, is
non-hyperbolic and the system may undergo Neimark-Sacker bifurcation.

While v(z.,) satisfies the equation F(z.,7) = 0z, — pe 7+ =0, and

F

OF
=0+ ype 7 >0,

0%y

using the implicit function theorem we know there exists an implicit function x, =
x4 () satisfing D+, = {(v,2+) : x4 € (0,400),7 > 0} , and

E, Type VT

!/ D Ay S
117*(’Y) - F;E* - (5+'ype_’m* <

Noticing the expression of C, we have

5%z,

l _ ! —
C'ly) = o () + 0y2i(n) = 5o >

which implies C'(v) is strictly increasing with 4. Combining the fact C(y) = 1,
one obtains C' < 1 for v < 7, and the fixed point E, is then a sink by Lemma
3.1; while for v > 7, we have C' > 1, which means the fixed point F, is a source.
Summing up the results obtained above, we achieve the following theorem.

Theorem 3.2. For vy = e%, the following conclusions are true for the fixed point

E. of system (2.3).

1
p

(i) The fized point E,. is non-hyperbolic for v = ~o, where system (2.3) may
undergo Neimark-Sacker bifurcation.

(ii) The fized point E, is a sink as vy < o and il is a source as vy > 7o.

Remark 3.1. The theorem shows that the positive fixed point E, is stable for
v < 7o and is unstable for v > ~q.

3.1. Neimark-Sacker bifurcation

We know from the above analysis that when v = ¢ =
system (2.3) has a unique fixed point F. (2., y«). Set

11
SE:{(’vaa(S) 0<d< 1,p>(5,’y:70:§@3}.

Theorem 3.2 tells us that system (2.3) may undergo a Neimark-Sacker bifurcation
when (v,p,d) € Sg as y varies in the neighborhood of . Next we shall discuss the
existence of Neimark-Sacker bifurcation and the stability of the bifurcated invariant
curve.
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Firstly, choose = as the bifurcation parameter, and introduce a perturbation -,
of the parameter . Then we obtain the following perturbed system

{”3 Y (3.2)

y — (1 —08)y + pe~(otr)z,

where |v.| < 1.
Next, take u = & — x,,v = y — y«. Then the fixed point can be transformed to
the origin O(0,0), and system (3.2) becomes

{u»—M), (3.3)

v — (1 — 5)1} +pe_(70+’)’*)(u+fl'*) — 5y*

The characteristic function of the linearization of system (3.3) at the origin O is as
follows

F(A) =M = a(7.)X + b(7),
where a(v.) = 1 — 6,b(7%) = p(yo + 7x)e~0F1)% = 5z (v9 + v.). With simple
computation, we have

Ma(n) = glalr) +1 V) — @00

As we know, to guarantee the existence of Neimark-Sacker bifurcation, the following
conditions must be fulfilled:

d| A1 2]

s O

. #0;

C.1
( ) ¥+ =0
(C2) N,#1,k=1,2,34.

Notice that a(7.)| _o=1—dand b(fy*)|7 _o = 1. Therefore

A2 = %[(1 —0)£iv/(3-9)(1+9)],

which means the condition (C.2) is true. Furthermore,

d|A1 2 ' (74)

Ay =0~ 2/b00)

I L
=0 2(6+1)

S

<0,

which guarantees the condition (C.1) hold.
Therefore, system (2.3) undergoes Neimark-Sacker Bifurcation as 7, varies in

d
% < 0, we know
T ly=0

the fixed point O is a sink for v, < 0, and O is a source as v, > 0. Hence, a
invariant curve will occur when ~, > 0.

In the following, we shall discuss the stability of the invariant curve by three
steps.

Step 1. Performing a Taylor series expansion of the right-hand side of system
(3.3) at the origin (0,0), we have

the neighborhood of 7 for 0 < § < 1. And according to

U —> a1oU + ap1v + a20u2 + ajjuv + a02v2 + a30u3
+a2uv? + as uv + agzv’ + O(p4),
v — biou + bprv + b20u2 + briuv + bog’U2 + b30u3

+b1ouv? + boyu?v + bogv> + O(p4),
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where p = /||ul|? + ||v]|?,

1 0 f(u,v)
'L“:--% b) ‘7.:071’2737...’
i il Oudiv  (u,0)=(0,0) I
1 0 g(u,v)
bzzii’ ) .a.:Oa172737”'
TG 0t (w,0)=(0,0) b

Since f(u,v) = v, g(u,v) = (1 — &)v + pe~10®+) _ 5y in system (3.3), then we
have

apr = 1, ajg = agp = a11 = ap2 = azp = az1 = a2 = ag3z = 0,

0]

6

big = —1, bor =1 —09,b11 = boz = b12 = ba1 = bo3 = 0,b9 = %7 bzo = —

Step II. Taking the invertible matrix

0 1
V3125382 1-5 |’
2 2

it is not difficult to see the inverse matrix of T' is

6—1 2
71— | V3+26-0% V3+25-06°
1 0

Introduce the invertible transformation (u,v)” = T(X,Y)?, and the normal form
of system (3.4) is arrived:

XH%&)(_@Y_FF(X,Y)-FO([#L (3.5)
Y s BEEE X 1Sy 4 G(X,Y) + O(p), '

2
where F(X,Y) = 2= V? - oo dleg V3, G(X,Y) = 0, p = VI + V2],
and by computation we get

FXXX’((L()) = FXXY|(O,0) = FXYY|(0’0) - 0’

Fyy‘ T FYYY’ Z—A
(0,0) 312502 (0,0) 3+20—6% (3.6)

FXX|(0,0) - FXY|(0,0) - GXX|(0,0) - GXY|(0,0) - GYY|(0,0) =0,

GXXX‘(OVO) = GXXY|(O7O) = GXYY’(O7O) = GYYY}(OVO) = 0.

Step III. The first Lyapunov coefficient is

—2
1 -2\ 1 —
a* = —Re %LllLQO — §|L11|2 — }L02|2 + Re()\Lgl), (37)
where
1 .
Lo = 3 [(Fxx — Fyy +2Gxvy) +i(Gxx — Gyy — 2Fxv)],
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1 .
Li = 7 [(Fxx + Fry) +i(Gxx + Gxy)],
1 .
Lo> = 8 [(Fxx — Fyy —2Gxy) +i(Gxx — Gyy + 2Fxy)],
1 .
Loy = 16 [(Fxxx+Fxyy+Gxxy+Gyyy) +Hi(Gxxx +Gxyy —Fxxy —Fryy)].

Put the result obtained in (3.6) into the above equations and then we obtain

Yo Yo

Log=———ot L= ——

SRRV Sy e - A W S R
ol ~2

Loy = ——F———= :

0 .
. Ly = ——0
Wit o0 AT sfZrm oot

Therefore by computation and simplification, one may achieve

205
a* = Y0 (6 3)

= Tero5 g <0 f
63+ 2097y -0 for(v.p.0) €5k,

which shows that the bifurcated invariant curve is stable.
Consequently, we may achieve the following theorem by summing up the above
results.

Theorem 3.3. System (2.3) undergoes a supercritical Neimark-Sacker bifurcation
at the fized point E, with v varying in the neighborhood of vy, namely, an invariant
curve will occour as v > ~o. Furthermore, the bifurcated invariant curve is stable.

4. Numerical simulations

Select 6 = 0.5, p = 2, and the initial point Ey = (0.15,0.15). By the theoretical
analysis in Section 3.1, one has 9 = 3.6945, a* = —0.5687. The according numerical
simulations are shown in Figure 1.

. L L

o ? _ o

o [ o HO |
(a) local (b) global

Figure 1. The Neimark-Sacker bifurcation as v is varying when p =2, § = 0.5, Eg = (0.15,0.15)

In Figure 1(a), figures (a)-(c) show that the fixed point E, is a sink when
v < 3.68; while for v = 3.69, a stable invariant curve occurs, as shown in figures (d)-
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(f) in Figure 1(a), which can be also shown in Figure 1(b). Figure 1 demonstrates
that the numerical simulation results validate Theorem 3.3.

Figure 2 shows the maximum Lyapunov exponent (MLE) is varying with the
parameter 7y, which displays the MLE is always less than zero when v < 3.6945,
while for v > 3.6945, the MLE will fluctuate below 0, which implies the chaotic
phenomenon does not occur in system (2.3) in this case.

e

Figure 2. The Maximum Lyapunov Exponent as « varying for p =2, § = 0.5

The Neimark-Sacker bifurcation phenomenon describes the changes in hematopoi-
etic behavior caused by the promotion of RBCs, which is induced by the changes
of the constant v denoting the abilities of generating new RBCs per unit time. The
dynamical behaviors, including a stable invariant curve induced by the bifurcation
and the absence of chaos, mean that metabolism is still normal.

In addition, compared to the continuous case, the semi-discrete model reduces
the difficulties caused by the delay term without changing the existence of the fixed
point in the system. At the same time, the discrete system exhibits more complex
dynamic behaviors compared to one-dimensional delay differential equation (1.1),
such as the Neimark-Sacker bifurcation and stable invariant curve.

5. Conclusions

The semi-discretization method is a simple but efficient method that is based on
the discretization with respect to the delayed term, as demonstrated in this study.
We propose and analyze a semi-discrete Lasota-Wazewska model in this paper.
First, we rigorously establish the existence, uniqueness, and local stability of the
fixed point E,. Second, we prove that the system undergoes a Neimark-Sacker
bifurcation, where an invariant curve emerges as parameters vary. Notably, the
bifurcated invariant curve is shown to be stable. Finally, numerical simulations are
presented to illustrate our theoretical findings, while computation of the maximal
Lyapunov exponent confirms that there is no chaotic behavior in the proposed
system under the specified parameter conditions.

While verifying the theoretical analysis results, the numerical simulation results
also reflect the more complex and exciting dynamical behaviors of the semi-discrete
model. The analysis indicates that when the constant v which denotes the ability of
generating new RBCs per unit time undergoes minor changes, the biological balance
of the hematopoietic system is not easily disrupted.
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