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Abstract In our work, our objective is to prove the existence and uniqueness
of a weak solution to a class of nonlinear degenerate elliptic (p, q)-Laplacian
problem with Dirichlet-type boundary condition by giving L∞ data. The
principal technique utilized here is the variational method alongside the theory
of Orlicz spaces and Minty-Browder theorem.
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1. Introduction

The study of unbalanced integral functionals and double phase problems experi-
enced a revolution for the Italian school under the hands of Marcellini, Mingione,
Colombo, Baroni, et al, their study and remark is based entirely on the work of
Zikhov in order to describe the behavior of phenomena arising in nonlinear elas-
ticity. In reality, Zhikov aimed to offer prototypes for highly anisotropic materials
within the framework of homogenization. Specifically, Zhikov explored three distinct
functional models in connection with the Lavrentiev phenomenon. These models
are:

M(u) :=

∫
Ω

c(x)|∇u|2dx,

N (u) :=

∫
Ω

|∇u|p(x)dx, (1.1)

Tp,q(u) :=
∫
Ω

c(x)|u|pdx+ a(x)|∇u|qdx,

where 0 < 1/c(.) ∈ L1(Ω), 1 < p(.) < ∞, 1 < p < q, 0 ≤ a(.) ≤ L. The functional
M has been extensively investigated in the context of equations that incorporate
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Muckenhoupt weights. The functionalN has recently garnered significant attention,
leading to a substantial body of literature devoted to its study. The functional Tp,q
in (1.1) is presented as an enhanced form of N . Here as well, the coefficient a(.)
influences the geometry of the composite consisting of two differential materials
with hardening exponents p and q, respectively. The functionals depicted in (1.1)
belong to the category of functionals with nonstandard growth conditions of type
(p, q), as classified by Marcellini.

Let Ω ⊂ RN , (N ≥ 2) be an open bounded domain and let p, q ∈ (1,∞). Our
aim in this work is to study the existence and uniqueness of the weak solution to
the following nonlinear degenerate elliptic problem−div (Ap,q(x,∇u, θ(u))) + g(u) = f in Ω

u = 0 on ∂Ω,
(1.2)

whereAp,q(x,∇u, θ(u)) = |∇u−θ(u)|p−2(∇u−θ(u))+a(x)|∇u−θ(u)|q−2(∇u−θ(u))
and g(u) = |u|p−2u and θ are continuous function defined from R to RN , the datum
f is in L∞ and a : Ω → R is an Lipschitz continuous map, a(x) ≥ 0 for all x ∈ Ω.
These types of PDEs model several physical phenomena, including elastic mechan-
ics, electrorheological fluid dynamics, and image processing, among others, for ex-
ample.

Reaction-Diffusion Systems are mathematical models used to describe the
spatial and temporal evolution of multiple substances or populations under the in-
fluence of two key processes: reaction and diffusion. These systems have widespread
applications across various fields such as chemistry, biology, ecology, and physics,
due to their ability to model phenomena involving pattern formation, wave propa-
gation, and concentration dynamics.

Reaction refers to the interactions between substances (e.g., chemical reactions
or biological processes like predator-prey dynamics), where the concentration of one
or more substances changes over time due to chemical or biological reactions.

Diffusion describes the spreading or movement of substances from regions of
high concentration to low concentration, driven by concentration gradients.

A general mathematical model for a Reaction-Diffusion System is described by
a system of partial differential equations (PDEs).

−div(|∇u|p−2∇u+ a(x)|∇u|q−2∇u) +R(u) = 0

where a(x) is the modulating coefficient that switches between p and q-phase be-
haviors, and R is the reaction term.

This paper primarily focuses on the study of unbalanced double-phase problems.
We recall some basic properties of the Musielak-Orlicz and Sobolev spaces and
introduce a new non-homogeneous differential operator, which will be utilized in this
work. Using the Minty-Browder theorem and suitable assumptions, we prove the
existence of a weak solution to our problem. Additionally, we employ fundamental
lemmas to establish the uniqueness of the solution.

Recently, when a(x) ≡ 0, the existence and uniqueness of entropy solutions for
the p-Laplace equation were proved by A. Sabri and A. Jamea. When θ ≡ 0, the
study of existence and uniqueness of entropy solutions for the problem has been
further investigated. Moreover, R. Arora and S. Shmarev proved the existence and
uniqueness of strong solutions when θ ≡ 0, and for p non constant and A. Sabri,
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A. Jamea, H. T. Alaoui proved the existence of entropy solutions to nonlinear
degenerate parabolic problems in [16].

This paper is organized as follows: In Section 2, we introduce the basic as-
sumptions and recall some definitions and properties of generalized Sobolev spaces.
Section 3 is dedicated to proving the existence and uniqueness of the weak solution
to the problem by verifying the conditions of the Minty-Browder theorem (bounded,
hemi-continuous, coercive, and monotone).

2. Preliminaries and notations

In the present section we give some definitions, notations and results which will be
used in this work.

Let φ function from Ω× R+ to R+ be defined by

φ(x, y) = yp + a(x) yq,

where a and p, q verify condition (H1).

(H1) a : Ω → R is a Lipschitz continuous and p > Nq
N+q−1 i.e ( qp < 1 + q−1

N ).

The function φ is a generalized N -function and

φ(x, 2y) = 2pφ(x, y).

Now we define the Musielak-Orlicz space Lφ(Ω) by

Lφ(Ω) =

{
v : Ω → R : g is measurable and

∫
Ω

φ(x, |v|)dx <∞
}

endowed with the Luxemburg norm

∥v∥φ = inf

{
λ > 0,

∫
Ω

φ

(
x,

|v|
λ

)
dx ≤ 1

}
.

The Sobolev space corresponding to the Lφ space is

W 1,φ(Ω) = {v ∈ Lφ(Ω) such that ∇v ∈ Lφ(Ω)}

with the norm

∥v∥1,φ = ∥v∥φ + ∥∇v∥φ.

Theorem 2.1. i) If q ̸= N . For all r ∈ [1, q∗] we have W 1,φ(Ω) ↪→ Lr(Ω) with

q∗ =


Nq
N−q ifq ¡ N;

+∞ ifq ≥ N .

ii) If q = N . For all r ∈ [1,+∞[ we have W 1,φ(Ω) ↪→ Lr(Ω) .

iii) If q ≤ N . For all r ∈ [1, q∗] we have W 1,φ(Ω) ↪→ Lr(Ω) compactly.

iv) If q > N . W 1,φ(Ω) ↪→ L∞(Ω) compactly.

v) W 1,φ(Ω) ↪→ Lq(Ω).
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We define now the weighted Lebesgue space Lq
a(Ω) by

Lq
a(Ω) =

{
v : Ω → R : is mesurable and ∥v∥q,a =

∫
Ω

a(x)|v|qdx <∞
}
.

On the space Lφ(Ω) we consider the function ϱφ : Lφ(Ω) → R+ defined by

ϱφ(v) =

∫
Ω

φ

(
x,

|v|
λ

)
dx =

∫
Ω

[|v|p + a(x)|v|q]dx.

The connection between ϱφ and ∥.∥φ is established by the next result.

Proposition 2.1 ( [4]). Let u be an element of Lφ(Ω). The following assertions
hold:

i) ∥u∥φ < 1(respectively >,= 1) ⇔ ϱφ(u) < 1(respectively >,= 1),

ii) If ∥u∥φ < 1 then ∥u∥pφ ≤ ϱφ(u) ≤ ∥u∥qφ,
iii) If ∥u∥φ > 1 then ∥u∥qφ ≤ ϱφ(u) ≤ ∥u∥pφ,
iv) ∥u∥φ → 0 ⇔ ϱφ(u) → 0 and ∥u∥φ → ∞ ⇔ ϱφ(u) → ∞.

Definition 2.1. Let φ : [0,∞) → [0,∞]. We denote by φ∗(u) the conjugate
function of φ which is defined, for u ≥ 0, by

φ∗(u) := sup
t≥0

(tu− φ(t)).

Proposition 2.2 ( [4]). For any functions u ∈ Lφ(Ω), v ∈ Lφ∗
(Ω), and under the

assumption that hypothesis (H1) be satisfied, we have:∫
Ω

|uv|dx ≤ 2∥u∥φ∥v∥φ∗ .

In the following of this paper, the space W 1,φ
0 (Ω) denotes the closure of C∞

0 in
W 1,φ(Ω) with respect the norm ∥.∥1,φ (see [10]).

Proposition 2.3 ( [4]). The spaces (Lφ(Ω), ∥.∥φ) and (W 1,φ(Ω), ∥.∥1,φ) are sepa-
rable and uniformly convex (hence reflexive) Banach space.

We have

Lp(Ω) ↪→ Lφ(Ω) ↪→ Lp(Ω)
⋂
Lq
a(Ω).

Proposition 2.4 ( [3]). Suppose that Ω ⊂ RN is a bounded set, and let u ∈W 1,φ(Ω)

∥u∥φ ≤ C0∥∇v∥φ.

C0 is a strictly positive constant depending on the exponent diam(Ω) and the di-
mension N.

Proposition 2.5 ( [7]). Let 1 < p < +∞, there exist two positive constants µp and
ρp such that for every x, y ∈ RN , it holds that

µp(|x|+ |y|)p−2|x− y|2 ≤ ⟨|x|p−2x− |y|p−2y, x− y⟩ ≤ ρp(|x|+ |y|)p−2|x− y|2.



Double-Phase Elliptic Equations with Nonlinear Sources Existence and Uniqueness 1761

Definition 2.2. Given a constant k > 0. we define the cut function Tk : R → R as

Tk(s) =


s if |s| < k,

k if s > k,

−k if s < −k.

Lemma 2.1 ( [2]). For ξ, η ∈ RN and 1 < p <∞, we have:

1

p
|ξ|p − 1

p
|η|p ≤ |ξ|p−2ξ.(η − ξ),

where a dot denotes the Euclidean scalar product in RN .

Lemma 2.2 ( [2]). For a > 0, b > 0 and 1 ≤ p <∞ we have

(a+ b)p ≤ 2p−1(ap + bp).

Lemma 2.3 ( [6]). Let p and p′ be two real numbers such that p > 1, and 1
p+

1
p′ = 1.

There exists a positive constant m such that

|(|ξ|p−2ξ − |η|p−2η)|p
′
≤ m{(ξ − η)(|ξ|p−2ξ − |η|p−2η)}

β
2 {ξp + ηp

′
}1−

β
2 .

For all ξ, η ∈ RN , β = 2 if 1 < p ≤ 2, and β = p′ if p > 2.

Definition 2.3 ( [9]). Let Y be a reflexive Banach space and let A be an operator
from Y to its dual Y

′
. We say that A is monotone if

⟨Au−Av, u− v⟩ ≥ 0 ∀u, v ∈ Y.

Theorem 2.2 ( [9]). Let Y be a reflexive real Banach space and A : Y → Y
′
be a

bounded, hemi-continuous, coercive and monotone operator on space Y . Then the
equation Au = v has at least one solution u ∈ Y for each v ∈ Y

′
.

3. Assumptions and main result

In this section, we introduce the concept of weak solution to problem (1.2) and
we state the existence results for this type of solutions. Firstly and in addition to
hypotheses (H1) listed earlier, we suppose the following assumptions:

(H2) θ is a continuous function from R to RN such that θ(0) = 0 and for all real
numbers x, y we have |θ(x) − θ(y)| < λ0|x − y| where λ0 is a real constant
such that 0 < λ0 <

1
2C0

.

(H3) f ∈ L∞(Ω).

Definition 3.1. A function u ∈ W 1,φ
0 (Ω) is a weak solution of degenerate elliptic

problem (1.2) if and only if∫
Ω

Φ(∇u− θ(u))∇ψdx+

∫
Ω

𭟋(∇u− θ(u))∇ψdx+

∫
Ω

g(u)ψdx =

∫
Ω

fψdx (3.1)

for all ψ ∈W 1,φ
0 (Ω) ∩ L∞(Ω), where

Φ(ξ) = |ξ|p−2ξ,

𭟋(ξ) = a(x)|ξ|q−2ξ.

∀(x, ξ) ∈ Ω× RN .
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Our main result of this work is the following Theorem.

Theorem 3.1. Let hypotheses (H1), (H2) and (H3) be satisfied. Then the problem
(1.2) has a unique weak solution.

4. Proof of theorem

Let the operator T :W 1,φ
0 (Ω) → (W 1,φ

0 (Ω))′, where (W 1,φ
0 (Ω))′ is the dual space of

W 1,φ
0 (Ω).

T (u) = A(u) +A3(u)− L, and A(u) = A1(u) +A2(u)

where for u, v ∈W 1,φ
0 (Ω, ω)

⟨A1u, v⟩ =
∫
Ω

ωΦ(∇u− θ(u))∇vdx,

⟨A2u, v⟩ =
∫
Ω

𭟋(∇u− θ(u))∇vdx,

⟨A3u, v⟩ =
∫
Ω

g(u)vdx,

⟨L, v⟩ =
∫
Ω

fvdx.

We must use Theorem 2.2 to prove the existence of the weak solution. For that, it
is necessary to show that the operator T is bounded, monotone coercive and hemi
continuous.
Step 1. The operator T is bounded.

We use Hölder’s inequality, Lemma 2.2 and hypothesis (H3). For any u, v ∈
W 1,φ

0 (Ω) we have

|⟨Au, v⟩| ≤
∫
Ω

|∇u− θ(u)|p−1|∇v|dx+

∫
Ω

a(x)|∇u− θ(u)|q−1|∇v|dx

≤
∫
Ω

2p−2(|∇u|p−1 + |θ(u)|p−1)|∇v|dx

+

∫
Ω

a(x)2q−2(|∇u|q−1 + |θ(u)|q−1)|∇v|dx

≤2p−2

∫
Ω

(|∇u|p−1 + |θ(u)|p−1)|∇v|dx

+ 2q−2

∫
Ω

a(x)(|∇u|q−1 + |θ(u)|q−1)|∇v|dx

≤2p−2

(∫
Ω

(|∇u|p−1|∇v|dx+

∫
Ω

λp−1
0 |u|p−1|∇v|dx

)
+ 2q−2

(∫
Ω

a(x)(|∇u|q−1|∇v|dx+

∫
Ω

a(x)λq−1
0 |u|q−1|∇v|dx

)
≤2p−2

(
2∥∇u∥p−1

p ∥∇v∥p′ + 2λp−1
0 ∥u∥p−1

p ∥∇v∥p′

)
+ 2q−2

(
2∥∇u∥q−1

q,a ∥∇v∥q′,a + 2λq−1
0 ∥u∥q−1

q,a ∥∇v∥q′,a
)

≤2p−1(∥∇u∥p−1
p ∥∇v∥p′ + λp−1

0 C0
p∥∇u∥p−1

p ∥∇v∥p′)
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+ 2q−1(∥∇u∥q−1
q,a ∥∇v∥q,a + λp−1

0 C0
q∥∇u∥q−1

q,a ∥∇v∥q′,a)
≤2p−1(1 + C0

p)∥∇u∥p−1
p ∥∇v∥p′ + 2q−1(1 + C0

q)∥∇u∥q−1
q,a ∥∇v∥q′,a

≤C∥∇u∥p−1
φ ∥∇v∥φ∗

≤C∥u∥p−1
1,φ ∥v∥1,φ∗ ,

where
C = 2p(1 + C0

p),

and we have

|⟨A3u, v⟩| ≤
∫
Ω

|u|p−1|v|dx

≤ ∥u∥p−1
φ ∥v∥φ∗

≤ ∥u∥p−1
1,φ ∥v∥1,φ∗ .

We get immediately the boundedness of L and A3. Hence, T is bounded.
Step 2. The operator T is coercive.

For any u ∈W 1,φ
0 (Ω). remark that by application hypothesis (H3), there exists

a positive constant C3 such that∫
Ω

fudx ≤ ∥f∥∞∥u∥W 1,φ
0
.

On the other hand for u large enough and by Lemma 2.2, we get

⟨Au, u⟩ =
∫
Ω

|∇u− θ(u)|p−2(∇u− θ(u))∇udx

+

∫
Ω

a(x)|∇u− θ(u)|q−2(∇u− θ(u))∇udx

≥
∫
Ω

1

p
|∇u− θ(u)|pdx−

∫
Ω

1

p
|θ(u)|pdx

+

∫
Ω

a(x)
1

q
|∇u− θ(u)|qdx−

∫
Ω

a(x)
1

q
|θ(u)|qdx

By Lemma 2.3 we find

1
2p−1 |∇u|p − |θ(u)|p ≤ |∇u− θ(u)|p,

⟨Au, u⟩ ≥1

p

1

2p−1

∫
Ω

|∇u|pdx− 2

p

∫
Ω

|θ(u)|pdx

+
1

q

1

2q−1

∫
Ω

a(x)|∇u|qdx− 2

q

∫
Ω

a(x)|θ(u)|qdx.

By (H3) we have |θ(u)| ≤ λ0|u|

⟨Au, u⟩ ≥1

p

1

2p−1

∫
Ω

|∇u|pdx− 2

p

∫
Ω

λp0|u|pdx+
1

q

1

2q−1

∫
Ω

a(x)|∇u|qdx

− 2

q

∫
Ω

a(x)λq0|u|qdx.
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Then by Proposition 2.4 we have

⟨Au, u⟩ ≥1

p

1

2p−1

∫
Ω

|∇u|pdx− 2

p
C0

pλp0

∫
Ω

|∇u|pdx+
1

q

1

2q−1

∫
Ω

a(x)|∇u|qdx

− 2

q
C0

qλq0

∫
Ω

a(x)|∇u|qdx

≥
(
1

p

1

2p−1
− 2

p
C0

pλp0

)∫
Ω

|∇u|pdx+

(
1

q

1

2q−1
− 2

q
C0

qλq0

)∫
Ω

a(x)|∇u|qdx

≥M
∫
Ω

|∇u|p + a(x)|∇u|qdx

≥M∥u∥p1,φ,

where

M = sup

(
1

p

1

2p−1
− 2

p
C0

pλp0,
1

q

1

2q−1
− 2

q
C0

qλq0

)
.

Then

⟨Au, u⟩
∥u∥1,φ

−→ +∞ as ∥u∥1,φ −→ +∞,

|⟨A3u, u⟩| ≤
∫
Ω
|u|pdx

≤ ∥u∥p1,φ.

Then A and A3 is coercive.
Finally the operator T is coercive.

Step.3 The operator T is monotone.
Firstly, we have that T is bounded and coercive, so there exist M1 > 0 and C ′

such that
⟨Tu, u⟩ ≥M1∥u∥p1,φ

and
⟨Tu, v⟩ ≤ C ′∥u∥p−1

1,φ ∥v∥1,φ.

So

⟨Tu− Tv, u− v⟩ =⟨Tu, u⟩+ ⟨Tv, v⟩ − ⟨Tu, v⟩ − ⟨Tv, u⟩
≥M1(∥u∥p1,φ + ∥v∥p1,φ)

− C ′(∥u∥p−1
1,φ ∥v∥1,φ + ∥v∥p−1

1,φ ∥u∥1,φ)
≥M2[∥u∥p1,φ + ∥v∥p1,φ
− ∥u∥p−1

1,φ ∥v∥1,φ − ∥v∥p−1
1,φ ∥u∥1,φ],

⟨Tu− Tv, u− v⟩ ≥M2(∥u∥p−1
1,φ − ∥v∥p−1

1,φ )(∥u∥1,φ − ∥v∥1,φ) ≥ 0

with
M2 = min(M1, C

′).
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Finally, the operator is monotone.
Step 4. The operator T is hemi continues.

Let (un)n∈N ⊂ W 1,φ
0 (Ω) and u ∈ W 1,φ

0 (Ω) such that un → u strongly in
W 1,φ

0 (Ω).
Firstly, we will prove that A1 is continuous on W 1,φ

0 (Ω). Indeed, we have for

ψ ∈W 1,φ∗

0 (Ω)

|⟨A1un −A1u, ψ⟩| =
∣∣∣ ∫

Ω

|∇un − θ(un)|p−2(∇un − θ(un))∇ψdx

−
∫
Ω

|∇u− θ(u)|p−2(∇u− θ(u))∇ψdx
∣∣∣,

|⟨A2un −A2u, ψ⟩| =
∣∣∣ ∫

Ω

a(x)|∇un − θ(un)|q−2(∇un − θ(un))∇ψdx

−
∫
Ω

a(x)|∇u− θ(u)|q−2(∇u− θ(u))∇ψdx
∣∣∣.

We denote that

Fn = |∇un − θ(un)|p−2(∇un − θ(un)).

F = |∇u− θ(u)|p−2(∇u− θ(u)).

Gn = a(x)|∇un − θ(un)|q−2(∇un − θ(un)).

G = a(x)|∇u− θ(u)|q−2(∇u− θ(u)).

This implies that

⟨Aun −Au,ψ⟩ ≤
∫
Ω

|Fn − F ||∇ψ|dx+

∫
Ω

|Gn −G||∇ψ|dx.

We have un → u strongly in W 1,φ
0 (Ω), so θ(un) and ∇un are bounded. Finally we

have Fn and Gn bounded.

⟨Aun −Au,ψ⟩ ≤ ∥Fn − F∥W 1,φ∥ψ∥W 1,φ∗ + ∥Gn −G∥W 1,φ∥ψ∥W 1,φ∗ .

Since un → u strongly in W 1,φ
0 (Ω, ω) then

Fn → F strongly in (W 1,φ(Ω))N ,

Gn → G strongly in (W 1,φ(Ω))N ,

and
Aun → Au strongly in W 1,φ∗

(Ω).

This implies that A is continuous on W 1,φ∗
(Ω) and we can verify immediately

that A3 is continuous on W 1,φ∗
(Ω), while L is linear bounded, hence continuous.

Therefore, T is hemi-continuous onW 1,φ∗
(Ω). Finally, by Theorem 3.1, there exists

a weak solution to problem (1.2).
Uniqueness:
Let u and v be two weak solutions of the problem (1.2). For the solution u , we
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take ψ = u − v as test function and for the solution v we take ψ = v − u as test
function in Equation (3.1). Then we get

⟨Au−Av, u− v⟩+
∫
Ω

(g(u)− g(v))(u− v)dx = 0.

The operator A is monotone, so

⟨Au−Av, u− v⟩ ≥ 0.

Then ∫
Ω

(g(u)− g(v))(u− v)dx ≤ 0

and by Proposition 2.5, we find∫
Ω

µp(|u|+ |v|)p−2|u− v|2dx ≤
∫
Ω

(g(u)− g(v))(u− v)dx ≤ 0.

Then

|u− v|2 = 0 a.e in Ω.

Finally, we have

u = v a.e in Ω.

□

5. Conclusion

In this paper, we first prove the existence of a weak solution to the double-phase
elliptic equations by defining the Orlicz space corresponding to our variational prob-
lem and verifying the conditions of Theorem 2.2. Secondly, we prove the uniqueness
of this weak solution.
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