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1. Introduction

The birth of fractional calculus was in a letter dated in 1695 when L’Hôpital wrote

to Leibniz and asked him about the nth-derivative of the function f(x) = x,
Dnx

Dxn
.

What could be the result if n =
1

2
? Leibniz responded: “An apparent paradox from

which, one day, useful consequences will be drawn.”
After this first discussion between L’Hôpital and Leibniz, fractional calculus be-

came above all for big mathematicians and can be traced back to L’Hôpital (1695),
Wallis (1697), Euler (1738), Laplace (1812), Lacroix (1820), Fourier (1822), Abel
(1823), Liouville (1832), Riemann (1847), Leibniz (1853), Grunwald (1867), Let-
nikov (1868) and many others. We refer the reader to [17,27,30] and the references
therein for a detailed exposition about the history of the classical fractional calculus.

Thanks to these classical definitions, fractional calculus becomes a venerable
branch of mathematics in the last century, and fractional operators give more de-
velopment to the fields of Potential theory, Probability, Hyper singular integrals,
Harmonic analysis, Functional analysis, Pseudo-differential operators, Semigroup
theory etc. In particular, the fractional Laplacian operator (−∆)s, s ∈ (0, 1) is a
pseudo-differential operator which has various definitions in different fields: Fourier
transform, distributional definition, Bochner’s definition, Balakrishnan’s definition,
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singular integral definition, quadratic definition, semigroup definition, definition as
harmonic extension, and definition as the inverse od Riez potential. We refer to
Kwasnicki [21] who collected all these definitions and established the equivalence
between them.

In the last decade, great attention has been given to the study of nonlinear
nonlocal case. More precisely, the problems involving the fractional p-Laplacian
operator (−∆)sp. We refer to Di Nezza et al. [26] for a comprehensive introduction
to the study of nonlocal problems. Basic properties, embedding theorems and reg-
ularity results are established. The paper opens the door for many mathematicians
to deal with general problems in the field of partial differential equations. In the
context of nonhomogeneous materials (such as electrorheological fluids and smart
fluids), the use of Lebesgue and Sobolev spaces Lp and W s,p seems to be inade-
quate, which leads to the study of variable exponent functional spaces. The study of
problems which involves the p(.)-Laplacian and the corresponding elliptic equations
constitutes promising a domain of research. The interest in studying such problems
was stimulated by their applications in many physical phenomena such as conserva-
tion laws, ultra-materials and water waves, optimization, population dynamics, soft
thin films, mathematical finance, phases transitions, stratified materials, anoma-
lous diffusion, crystal dislocation, semipermeable membranes, flames propagation,
ultra-relativistic limits of quantum mechanics, electrorheological fluids. We refer
the reader to [7–9,13,26,28,29,33] for details.

Now, what results can be recovered if the p(.)-Laplace operator is replaced by the
fractional p(x, .)-Laplacian of the form (−∆)sp(x,.)? In 2017, Kaufmann et al. in [19]

introduced the fractional Sobolev spaces with variable exponent W s,q(x),p(x,y)(Ω).
They established continuous and compact embedding theorems of these spaces into
variable exponent Lebesgue spaces with the restriction p(x, x) < q(x), and as ap-
plications, they also proved an existence result for nonlocal problems involving the
fractional p(x, y)-Laplacian. In [6], Bahrouni et al. presented some further qual-
itative properties of both on this function space and the related p(x, .)-Laplacian
operator Lp(x,.).

Under the restricted condition p(x, x) < q(x), the space W s,q(x),p(x,y)(Ω) is in
fact not a generalization of the typical fractional Sobolev space W s,p(Ω) with a
constant exponent. However, Ho et al. [18] and Azroul et al. [2] provided some
fundamental embeddings for the fractional Sobolev space with variable exponent
to cover the case p(x, x) = q(x) and their applications such as a priori bounds and
multiplicity of solutions of the fractional p(x, .)-Laplacian problems. We also refer
to [12] in which the authors proved a trace theorem in fractional Sobolev spaces
with variable exponents. Indeed, fractional Sobolev spaces with variable exponents
have been studied in depth during the last decade. We refer the interested reader
to [2, 5, 6, 10, 22, 23, 25] and the references therein for some recent existence results
for fractional type problems driven by a p(x, .)-Laplacian operator.

The purpose of this paper is to study the following fractional elliptic eigenvalue
system
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(Ps)



(−∆)sp(x,.)(u) + |u|p̄(x)−2u = λα(x)|u|α(x)−2u|v|β(x) in Ω,

(−∆)sq(x,.)(v) + |u|q̄(x)−2u = λβ(x)|u|α(x)|v|β(x)−2v in Ω,

u = v = 0 in RN\Ω,

where Ω is a bounded open subset of RN , with smooth boundary ∂Ω; λ > 0 is a real
number, s ∈ (0, 1) and p, q : Q −→ (1,+∞), α, β : Ω −→ (1,+∞) are continuous
bounded functions such that

1 < p− ≤ p+ < α− ≤ α+ < 2α+ < p∗−s

and

1 < q− ≤ q+ < β− ≤ β+ < 2β+ < q∗−s ,

(1.1)

where the critical fractional Sobolev exponent is given by

p∗s(x) =


Np(x, x)

N − sp(x, x)
if N > sp(x, x),

+∞ if N ⩽ sp(x, x),

and Q := R2N \ (CΩ× CΩ) and CΩ = RN \ Ω, while

p− = inf
(x,y)∈Q

p(x, y), p+ = sup
(x,y)∈Q

p(x, y), (1.2)

q− = inf
(x,y)∈Q

q(x, y), q+ = sup
(x,y)∈Q

q(x, y) (1.3)

and p̄(x) = p(x, x) for all x ∈ Ω.
The operator (−∆)sp(x) is called the fractional p(x, .)-Laplacian, and defined as

(−∆)sp(x,.)u(x) = p.v.

∫
RN

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+sp(x,y)
dy for all x ∈ RN ,

(1.4)
where p.v. represents the Cauchy’s principal value. This nonlocal operator is a
generalization of the fractional p-Laplacian operator (−∆)sp in the constant exponent
case, and it is the fractional version of the so-called p(x)-Laplacian operator which
is given by ∆p(x)u = div(|∇u|p(x)−2∇u).

Eigenvalue problems have recently been studied in many papers. In our context
we refer to Mihăilescu et al. [24] which considered the local case and established
that any λ > 0 sufficiently small is an eigenvalue of the following nonhomogeneous
quasilinear problem

(P1)

−div
(
|∇u|p(x)−2∇u

)
= λ|u|q(x)−2u, for x ∈ Ω,

u = 0, for x ∈ ∂Ω.
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More precisely, they showed that there exists λ∗ > 0 such that any λ ∈ (0, λ∗) is an
eigenvalue for problem (P1). The proof is based on Ekeland’s variational principle.
Note that the authors considered the subcritical case i.e.

max
x∈Ω

q(x) < min
x∈Ω

p(x).

Going further, Azroul et al. [2] generalized the above problem to include the frac-
tional case. The authors considered the following eigenvalue problem

(P2)


(
−∆p(x)

)s
u(x) + |u(x)|p̄(x)−2u(x) = λ|u(x)|q(x)−2u(x) in Ω,

u = 0 in RN\Ω,

Using adequate variational techniques, mainly based on Ekeland’s variational prin-
ciple, they established the existence of a continuous family of eigenvalues lying in
a neighborhood at the right of the origin. We also refer to Chung [10] who consid-
ered an eigenvalue problem for fractional p(x, .)-Laplacian equations with indefinite
weight.

While scalar fractional equations have been extensively studied, systems remain
less explored despite their relevance in modeling interactions between multiple com-
ponents. A notable example lies in biology, where the dynamics of competing species
in heterogeneous environments require models that account for variable interactions.
Similarly, in physics, the diffusion of particles in anisotropic or nonhomogeneous ma-
terials can be effectively captured by fractional operators with variable exponents.
These scenarios highlight the importance of extending the theory of fractional sys-
tems to better understand multi-component processes in such settings.

In [16], the authors have established stability inequalities for minimal solutions
and they have examined regularity of the extremal solution of nonlinear nonlocal
eigenvalue problem of the form

Lu = λF (u, v) in Ω,

Lv = γG(u, v) in Ω,

u, v = 0 on Rn\Ω,

with an integro-differential operator, including the fractional Laplacian, of the form

L(u(x)) = lim
ϵ→0

∫
Rn\Bϵ(x)

[u(x)− u(z)]J(z − x)dz,

when J is a nonnegative measurable even jump kernel.
In [11], the authors have studied the following fractional eigenvalue system

(−∆p)
r
u = λ

α

p
|u|α−2u|v|β in Ω,

(−∆p)
s
u = λ

β

p
|u|α|v|β−2v in Ω,

u = v = 0 in Ωc = RN\Ω.

They showed that there is a sequence of eigenvalues λn such that λn → ∞ as
n→ ∞.
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In our paper, we are concerned with the supercritical case and we aim to prove
that any λ > 0 sufficiently small is an eigenvalue of the system (Ps) using Mountain
Pass Theorem. Moreover, using Fountain Theorem, we show that (Ps) has infinitely
many eigenvalues.

Our study makes several key contributions to the field. First, it extends eigen-
value analysis to fractional systems governed by the (p(x, .), q(x, .))-Laplacian, ac-
counting for spatially dependent growth rates. Unlike systems with constant ex-
ponents, which assume uniform growth conditions, those with variable exponents
reflect the heterogeneity found in many real-world scenarios. This adaptability is
crucial for accurately modeling systems where local dynamics vary with spatial
location, such as anisotropic diffusion or heterogeneous biological environments.
Second, it leverages advanced techniques in fractional Sobolev spaces with variable
exponents to address the challenges posed by nonlocality and coupling. Finally, it
situates these eigenvalue problems within the broader context of spectral theory,
demonstrating their relevance to multi-component and heterogeneous systems.

Our existence results are formulated as follows.

Theorem 1.1. Let Ω be a bounded open set of RN (N ⩾ 2) and let s ∈ (0, 1). Let
p, q : Q −→ (1,+∞) be two continuous variable exponents with sp(x, y) < N and
sq(x, y) < N for all (x, y) ∈ Q satisfying (1.1). Then, there exists λ∗ > 0 such that
any λ ∈ (0, λ∗) is an eigenvalue of system (Ps).

Theorem 1.2. Let Ω be a bounded open set of RN (N ⩾ 2) and let s ∈ (0, 1). Let
p, q : Q −→ (1,+∞) be two continuous variable exponents with sp(x, y) < N and
sq(x, y) < N for all (x, y) ∈ Q satisfying (1.1). Then, system (Ps) has infinitely
many eigenvalues.

The rest of our paper is organized as follows. In section 2 we briefly review some
notations and basic properties about Lebesgue and Sobolev spaces with variable
exponents and their generalisation to the fractional case. In Section 3 we prove
Theorem 1.1 by showing that the energy functional associated with the problem
satisfies the Palais-Smale condition and two Mountain Pass geometric conditions.
Finally, in Section 4 we prove Theorem 1.2 using Fountain Theorem which assures
the existence of infinitely many eigenvalues of system (Ps).

2. Preliminaries and basic assumptions

2.1. Lebesgue spaces with variable exponents

Here we recall the definition and some important properties of the Lebesgue spaces
with variable exponents. For more details regarding these spaces, one can refer
to [15,20] and the references therein.

Consider the set

C+(Ω) =
{
γ ∈ C(Ω) : γ(x) > 1,∀x ∈ Ω

}
.

For any γ ∈ C+(Ω), we define the generalized Lebesgue space Lγ(x)(Ω) as

Lγ(x)(Ω) =

{
u : Ω −→ R measurable :

∫
Ω

|u(x)|γ(x)dx < +∞
}
.
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This space equipped with the Luxemburg norm

∥u∥γ(x) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)λ
∣∣∣∣γ(x)dx ⩽ 1

}
,

is a separable reflexive Banach space.

Let γ′ ∈ C+(Ω) be the conjugate exponent of γ, i.e.
1

γ(x)
+

1

γ′(x)
= 1. Then

we have the following Hölder-type inequality.

Lemma 2.1. (Hölder inequality). If u ∈ Lγ(x)(Ω) and v ∈ Lγ′(x)(Ω), then∣∣∣∣ ∫
Ω

uvdx

∣∣∣∣ ⩽ (
1

γ−
+

1

γ′−

)
∥u∥γ(x)∥v∥γ′(x) ⩽ 2∥u∥γ(x)∥v∥γ′(x).

The modular of Lγ(x)(Ω) is defined by

ργ(.) : L
γ(x)(Ω) −→ R

u −→ ργ(.)(u) =

∫
Ω

|u(x)|γ(x)dx.

Proposition 2.1. [14,20] Let u ∈ Lγ(x)(Ω). Then we have

1. ∥u∥γ(x) < 1 (resp = 1, > 1) ⇔ ργ(.)(u) < 1 (resp = 1, > 1).

2. ∥u∥γ(x) < 1 ⇒ ∥u∥γ+γ(x) ⩽ ργ(.)(u) ⩽ ∥u∥γ−γ(x).

3. ∥u∥γ(x) > 1 ⇒ ∥u∥γ−γ(x) ⩽ ργ(.)(u) ⩽ ∥u∥γ+γ(x).

Proposition 2.2. If u, uk ∈ Lγ(x)(Ω) and k ∈ N, then the following assertions are
equivalent

1. lim
k→+∞

∥uk − u∥γ(x) = 0.

2. lim
k→+∞

ργ(.)(uk − u) = 0.

3. uk −→ u in measure in Ω and lim
k→+∞

ργ(.)(uk) = ργ(.)(u).

Proposition 2.3. [14] Let Ω be a bounded open subset of RN , γ ∈ C(Ω̄). Then(
Lγ(x)(Ω), ∥u∥γ(x)

)
is a reflexive uniformly convex and separable Banach space.

2.2. Fractional Sobolev spaces with variable exponents

In this part, we discuss the properties of the fractional Sobolev spaces with variable
exponents. These spaces have been introduced for the first time in [19]. Also,
in [2,12,18], the authors have established some important properties of these spaces.
Let Ω be an open bounded set in RN and p(x, .) satisfying (1.1)-(1.2). For any
x ∈ RN , we denote

p̄(x) = p(x, x).

We define the usual fractional Sobolev space with variable exponent as:
W =W s,p(x,y)(Ω)

= {u ∈ Lp̄(x)(Ω) :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

µp(x,y)|x− y|N+sp(x,y)
dxdy <∞, for some µ > 0},
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which we endow with the Luxemberg norm

∥u∥W = ∥u∥p̄(x) + [u]s,p(x,y),

where [u]s,p(x,y) is a Gagliardo semi-norm with variable exponent defined by

[u]s,p(x,y) = inf

{
µ > 0 :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

µp(x,y)|x− y|N+sp(x,y)
dxdy ⩽ 1

}
.

Then (W ; ||.||W ) is a separable reflexive Banach space.
For studying nonlocal problems involving the operator (−∆)sp(x,.) with Dirichlet

boundary datum via variational methods, we define another fractional type Sobolev
spaces with variable exponents.

We set Q = R2n\(CΩ × CΩ) and define the new fractional Sobolev space with
variable exponent as

W s,p(x,y)(Q) =


u : Rn → R : u|Ω ∈ Lp̄(x)(Ω),∫
Q

|u(x)− u(y)|p(x,y)

µp(x,y)|x− y|N+sp(x,y)
dxdy <∞, for some µ > 0

 .

The space W s,p(x,y)(Q) is equipped with the norm

∥u∥s,p(x,y) = ∥u∥Lp̄(x)(Ω) + [u]W s,p(x,y)(Q),

where [u]W s,p(x,y)(Q) is the seminorm

[u]W s,p(x,y)(Q) = inf

{
µ > 0 :

∫
Q

|u(x)− u(y)|p(x,y)

µp(x,y)|x− y|N+sp(x,y)
dxdy ≤ 1

}
.

Then (W s,p(x,y)(Q), ∥.∥s,p(x,y)) is a separable reflexive Banach space. The modular

on W s,p(x,y)(Q) is the mapping ρp(.,.) :W
s,p(x,y)(Q) → R defined as follows

ρp(.,.)(u) =

∫
Q

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

|u(x)|p̄(x)dx.

Next, let us denote by X
s,p(x,y)
0 the following linear subspace of W s,p(x,y)(Q)

X
s,p(x,y)
0 =

{
u ∈W s,p(x,y)(Q) : u = 0 a.e. x ∈ CΩ

}
,

with the norm

∥u∥0,s,p(x,y) = [u]
X

s,p(x,y)
0

= inf

{
µ > 0 :

∫
Q

|u(x)− u(y)|p(x,y)

µp(x,y)|x− y|N+sp(x,y)
dxdy ≤ 1

}
.

The space (X
s,p(x,y)
0 , ∥u∥0,s,p(x,y)) is a separable reflexive Banach space (see [3,

Lemma 2.3]). We define the modular ρ0p(.,.) : X
s,p(x,y)
0 → R, by

ρ0p(.,.)(u) =

∫
Q

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy.

Consequently, ∥u∥ρ0
p(.,.)

= inf

{
µ > 0 : ρ0p(.,.)(

u

µ
) ≤ 1

}
= ∥u∥0,s,p(x,y).

Similar to Propositions 2.1, ρ0p(.,.) and ∥u∥0,s,p(x,y) satisfy the following asser-
tions.
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Proposition 2.4. ( [34], Lemma 2.1) Let u ∈ X
s,p(x,y)
0 and {uk} ⊂ X

s,p(x,y)
0 . We

have

1. ∥u∥0,s,p(x,y) < 1 (resp = 1, > 1) ⇔ ρ0p(.,.)(u) < 1 (resp = 1, > 1).

2. ∥u∥0,s,p(x,y) < 1 ⇒ ∥u∥p
+

0,s,p(x,y) ⩽ ρ0p(.,.)(u) ⩽ ∥u∥p
−

0,s,p(x,y).

3. ∥u∥0,s,p(x,y) > 1 ⇒ ∥u∥p
−

0,s,p(x,y) ⩽ ρ0p(.,.)(u) ⩽ ∥u∥p
+

0,s,p(x,y).

4. ∥uk∥0,s,p(x,y) −→ 0 (resp ∞) ⇔ ρ0p(.,.)(uk) −→ 0 (resp ∞).

Theorem 2.1. [2] Let Ω be a Lipschitz bounded domain in Rn and let s ∈ (0, 1).
Let p(x, .) satisfy (1.1) with sp+ < N . If r : Ω → (1,+∞) is a continuous variable
exponent such that

1 < r− < r(x) < p∗s(x) for all x ∈ Ω̄,

then, there exists a constant C = C(N, s, p, r,Ω) > 0 such that for any u ∈
W s,p(x,y)(Q),

∥u∥Lr(x)(Ω) ≤ C∥u∥W s,p(x,y)(Q).

That is, the space W s,p(x,y)(Q) is continuously embedded in Lr(x)(Ω). Moreover,
this embedding is compact.

Remark 2.1. Theorem 2.1 remains true if we replace W s,p(x,y)(Q) by X
s,p(x,y)
0 .

We define E = X
s,p(x,y)
0 ×X

s,q(x,y)
0 as the solution space corresponding to our

system (Ps), equipped with the norm ∥(u, v)∥ = ∥u∥0,s,p(x,y) + ∥v∥0,s,q(x,y).
Under the conditions on p(x, .) and q(x, .), the product space (E, ∥(u, v)∥) is re-

flexive, separable, and a Banach space because these properties are inherited from

the individual spaces X
s,p(x,y)
0 and X

s,q(x,y)
0 . Reflexivity is guaranteed, as it ensures

the boundedness and weak compactness properties necessary for reflexivity. Sep-
arability follows from the density of smooth functions in each Sobolev space with
variable exponents, which implies that the product of the two separable spaces re-

mains separable. Finally, the Banach property holds because both X
s,p(x,y)
0 and

X
s,q(x,y)
0 are complete, and the norm on the product space ∥(u, v)∥ is derived nat-

urally, preserving completeness.
Now we recall the Mountain Pass and the Fountain Theorems which we use to

prove our main results.

Theorem 2.2. [1] (Mountain Pass Theorem). Let J be a functional of class C1

on a Banach space X. Suppose that J satisfies the Palais-Smale condition and such
that:

• J (0) = 0 ; ∃ρ, α > 0 :∥u∥x = ρ =⇒ J (u) ≥ α;

• ∃u1 ∈ X:||u1||X ≥ ρ and J (u1) < α.

Let P = {p ∈ C0([0, 1], X), p(0) = 0, p(1) = u1} be the set of paths from 0 to u1 .
Then β = inf

p∈P
sup
u∈p

J (u) ≥ α is a critical value of J .

Theorem 2.3. [32] (Fountain Theorem). Let X be a Banach space with the
norm ∥.∥X and let Xj be a sequence of subspaces of X with dimXj < ∞ for
each j ∈ N. Further, X = ⊕

j∈N
Xj , the closure of the direct sum of all Xj. Set
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Yk = ⊕k
j=1Xj , Zk = ⊕∞

j=kXj . Assume that Ψ ∈ C1(X,R) satisfies the (PS) condi-
tion and Ψ(−u) = Ψ(u). For every k ∈ N, suppose that there exist Rk > rk > 0
such that

(A1) inf
u∈Zk

∥u∥X=rk

Ψ(u) −→ +∞ as k → ∞.

(A2) max
u∈Yk

∥u∥X=Rk

Ψ(u) ⩽ 0.

Then Ψ has an unbounded sequence of critical values.

Remark 2.2. Since X is a separable and reflexive space, there exist {ei}∞i=1 ⊂ X
and {fi}∞i=1 ⊂ X∗ such that

fi(ej) = δi,j =

1 if i = j,

0 if i ̸= j,

and X = span{ei, i = 1, 2, ...} and X∗ = span{fi, i = 1, 2, ...}. For k = 1, 2, ..., we
define

Xi = span{ei}, Yk =

k⊕
i=0

Xi, and Zk =

∞⊕
i=k

Xi.

Lemma 2.2. (see, [31]) Let r ∈ C+(RN ) such that 1 < r− ⩽ r(x) ⩽ r+ <
min{p∗s(x), q∗s (x)} ∀x ∈ RN . For k = 1, 2, ..., set

ηk = sup
u∈Zk

∥u∥X⩽1

∫
RN

|u|r(x) dx.

Then ηk −→ 0 as k → +∞.

3. Existence of eigenvalues for system (Ps)

Definition 3.1. We say that (u, v) ∈ E is a weak solution of (Ps) if∫
Q

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp(x,y)
dxdy+

∫
Ω

|u(x)|p̄(x)−2u(x)φ(x)dx

+

∫
Q

|v(x)− v(y)|q(x,y)−2(v(x)− v(y))(ψ(x)− ψ(y))

|x− y|N+sq(x,y)
dxdy+

∫
Ω

|v(x)|q̄(x)−2v(x)ψ(x)dx

−λ
(∫

Ω

α(x)|u(x)|α(x)−2u(x)|v(x)|β(x)φ(x)dx

+

∫
Ω

β(x)|u(x)|α(x)|v(x)|β(x)−2v(x)ψ(x)dx

)
=0,

(3.1)

for all (φ,ψ) ∈ E.

It is clear that problem (Ps) has a variational structure. The energy functional



Fractional Eigenvalue Elliptic System 1801

corresponding to problem (Ps) is defined as Jλ : E −→ R

Jλ(u, v) =

∫
Q

1

p(x, y)

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

1

p̄(x)
|u(x)|p̄(x)dx

+

∫
Q

1

q(x, y)

|v(x)− v(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy +

∫
Ω

1

q̄(x)
|v(x)|q̄(x)dx

−λ
∫
Ω

|u(x)|α(x)|v(x)|β(x)dx.

By a direct calculation we have that Jλ ∈ C1(E,R) and its Gateaux derivative is
given by

< J ′
λ(u, v), (φ,ψ) >=

∫
Q

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp(x,y)
dxdy

+

∫
Q

|v(x)− v(y)|q(x,y)−2(v(x)− v(y))(ψ(x)− ψ(y))

|x− y|N+sq(x,y)
dxdy

+

∫
Ω

|u(x)|p̄(x)−2u(x)φ(x)dx+

∫
Ω

|v(x)|q̄(x)−2v(x)ψ(x)dx

−λ
∫
Ω

α(x)|u(x)|α(x)−2u(x)|v(x)|β(x)φ(x)dx

−λ
∫
Ω

β(x)|u(x)|α(x)|v(x)|β(x)−2v(x)ψ(x)dx

for any (φ,ψ) ∈ E.

3.1. Some important lemmas

In the following lemma we prove that the energy functional Jλ satisfies the first
geometrical condition of the Mountain Pass Theorem.

Lemma 3.1. Let Ω be a bounded open subset of RN and let s ∈ (0, 1). Let p, q :
Q̄ −→ (1,+∞) be two continuous variable exponents with sp(x, y) < N and sq(x, y)
< N for all (x, y) ∈ Q̄ satisfying (1.1). Then there exists λ∗ > 0 such that for any
λ ∈ (0, λ∗) there exist R, k > 0 such that Jλ(u, v) ≥ k > 0 for any (u, v) ∈ E with
∥(u, v)∥ = R.

Proof. Let α, β ∈ L∞(Ω) be continuous such that

α(x) + α(x)

p∗s(x)
+
β(x) + β(x)

q∗s (x)
= 1. (3.2)

Put p1(x) =
p∗s(x)

α(x) + α(x)
and q1(x) =

q∗s (x)

β(x) + β(x)
. Since α(x)p1(x) < p∗s(x) and

β(x)q1(x) < q∗s (x) for all x ∈ Ω, by Theorem 2.1, there exist c1, c2 > 0 such that

∥u∥α(x)p1(x) ⩽ c1 ∥u∥0,s,p(x,.) and ∥v∥β(x)q1(x) ⩽ c2 ∥v∥0,s,q(x,.). (3.3)

Fix R1, R2 ∈ (0,
1

2
) such that R1 <

1

2c1
and R2 <

1

2c2
. Then, by relation (3.3), we

have

∥u∥α(x)p1(x) <
1

2
for all u ∈ X

s,p(x,y)
0 with ∥u∥0,s,p(x,.) = R1, (3.4)
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and

∥v∥β(x)q1(x) <
1

2
for all v ∈ X

s,q(x,y)
0 with ∥v∥0,s,q(x,.) = R2. (3.5)

Using Proposition 2.1 and combining relations (3.3)-(3.5), we get∫
Ω

|u(x)|α(x)p1(x) ⩽ c
α−p−

1
1 ∥u∥α

−p−
1

0,s,p(x,.) ⩽ cα
−

1 ∥u∥α
−

0,s,p(x,.) (3.6)

for all u ∈ X
s,p(x,y)
0 with ∥u∥0,s,p(x,.) = R1, and∫

Ω

|v(x)|β(x)q1(x) ⩽ c
β−q−1
2 ∥v∥β

−q−1
0,s,q(x,.) ⩽ cβ

−

2 ∥v∥β
−

0,s,q(x,.) (3.7)

for all v ∈ X
s,q(x,y)
0 with ∥v∥0,s,q(x,.) = R2.

Using Young’s inequality and Proposition 2.1, for all (u, v) ∈ E with ∥(u, v)∥ =
R = R1 +R2 < 1 there exists c = max {c1, c2} such that∫

Ω

|u|α(x)|v|β(x)dx ⩽
∫
Ω

1

p1(x)
|u|α(x)p1(x)dx+

∫
Ω

1

q1(x)
|v|β(x)q1(x)dx

⩽ c
(
∥u∥α

−

0,s,p(x,y) + ∥v∥β
−

0,s,q(x,y)

)
.

Then, by Proposition 2.4, for any (u, v) ∈ E with ∥(u, v)∥ = R , we get

Jλ(u, v) ⩾
1

p+
∥u∥p

+

0,s,p(x,y) +
1

q+
∥v∥q

+

0,s,q(x,y) − cλ
(
∥u∥α

−

0,s,p(x,y) + ∥v∥β
−

0,s,q(x,y)

)
⩾ min

(
1

p+
,
1

q+

)
∥(u, v)∥max(p+,q+) − cλ∥(u, v)∥min(α−,β−)

⩾ Rmin(α−,β−)

[
min

(
1

p+
,
1

q+

)
Rmax(p+,q+)−min(α−,β−) − cλ

]
.

By the above inequality, we can choose λ∗ in order to

MRmax(p+,q+)−min(α−,β−) − cλ > 0,

where M = min

(
1

p+
,
1

q+

)
. Therefore, if

λ∗ =
M

2c
Rmax(p+,q+)−min(α−,β−), (3.8)

then, for any λ ∈ (0, λ∗) and any (u, v) ∈ E with ∥(u, v)∥ = R , there exists k > 0
such that J(u, v) ≥ k > 0.

The following lemma shows that the functional Jλ satisfies the second geomet-
rical condition of the Mountain Pass Theorem.

Lemma 3.2. Let Ω be a bounded open subset of RN , and let s ∈ (0, 1). Let
p, q : Q̄ −→ (1,+∞) be two continuous variable exponents with sp(x, y) < N and
sq(x, y) < N for all (x, y) ∈ Q̄ satisfying (1.1). Then there exists (u, v) ∈ E \ {0, 0}
such that for ∥(u, v)∥ > R we have Jλ(u, v) ⩽ 0.
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Proof. Let (φ, ϕ) ∈ E \ ({0, 0}) and t > 1,

Jλ(tφ, tϕ) =

∫
Q

tp(x,y)

p(x, y)

|φ(x)− φ(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

tp̄(x)

p̄(x)
|φ(x)|p̄(x)dx

+

∫
Q

tq(x,y)

q(x, y)

|ϕ(x)− ϕ(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy +

∫
Ω

tq̄(x)

q̄(x)
|ϕ(x)|q̄(x)dx

− λ

∫
Ω

tα(x)+β(x)|φ(x)|α(x)|ϕ(x)|β(x)dx

⩽
tp

+

p−

[∫
Q

|φ(x)− φ(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

|φ(x)|p̄(x)dx
]

+
tq

+

q−

[∫
Q

|ϕ(x)− ϕ(y)|p(x,y)

|x− y|N+sq(x,y)
dxdy +

∫
Ω

|ϕ(x)|q̄(x)dx
]

− λtα
−+β−

∫
Ω

|φ(x)|α(x)|ϕ(x)|β(x)dx

⩽
tp

+

p−
ρ0p(x,y)(φ) +

tq
+

q−
ρ0q(x,y)(ϕ)

− λtα
−+β−

∫
Ω

|φ(x)|α(x)|ϕ(x)|β(x)dx.

Since α− + β− ⩾ p+ and α− + β− ⩾ q+, we get

Jλ(tu, tv) −→ −∞ as t −→ +∞.

Hence, there exist t0 > 0 and (u, v) = (t0φ, t0ϕ) ∈ E such that ∥(u, v)∥ > R and
Jλ((u, v)) < 0.

Lemma 3.3. Let Ω be a bounded open subset of RN and let s ∈ (0, 1). Let p, q :
Q̄ −→ (1,+∞) be two continuous variable exponents with sp(x, y) < N and sq(x, y) <

N for all (x, y) ∈ Q̄ satisfying (1.1). Then J
′

λ is of (S+) type, i.e. if (un, vn) ⇀

(u, v) in E and lim sup
n→+∞

〈
J

′

λ(un, vn)− J
′

λ(u, v), (un − u, vn − v)
〉

⩽ 0, this implies

that (un, vn) −→ (u, v) in E.

Proof. The proof is similar to [4, Lemma 3.5].

3.2. Proof of Theorem 1.1

In Lemma 3.1 and Lemma 3.2 we have shown that the functional energy satisfies
the first and the second geometric condition of the Mountain Pass Theorem. In
order to complete the proof of the theorem, we prove that Jλ satisfies the Palais-
Smale condition on E. Indeed, since by Lemma 3.3, J ′

λ is of type
(
S+

)
, to show

that Jλ satisfies the Palais-Smale condition on E, it is enough to verify that any
Palais-Smale sequence {(un, vn)} is bounded.

Let {(un, vn)} be a Palais-Smale sequence for the functional Jλ. Then, there
exists a constant C > 0 such that Jλ(un, vn) ⩽ C and lim

n→+∞
||J ′

λ(un, vn)||∗ −→ 0.

Arguing by contradiction, we suppose that {(un, vn)} is unbounded in E. With-
out loss of generality, we can assume that ∥un∥s,p(x,y) > ∥vn∥s,q(x,y) for all n ≥ 1.
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By the definition of Jλ, we have

c ⩾ Jλ(un, vn) =

∫
Q

1

p(x, y)

|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

1

p̄(x)
|un|p̄(x)dx

+

∫
Q

1

q(x, y)

|vn(x)− vn(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy +

∫
Ω

1

q̄(x)
|vn|q̄(x)dx

− λ

∫
Ω

|un|α(x)|vn|β(x)dx

≥
∫
Q

1

p(x, y)

|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

1

p̄(x)
|un|p̄(x)dx

+

∫
Q

1

q(x, y)

|vn(x)− vn(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy +

∫
Ω

1

q̄(x)
|vn|q̄(x)dx

− λ

∫
Ω

α(x) + β(x)

α(x) + β(x)
|un|α(x)|vn|β(x)dx

≥ 1

p+

∫
Q

|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

1

p+

∫
Ω

|un|p̄(x)dx

+
1

q+

∫
Q

|vn(x)− vn(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy +

1

q+

∫
Ω

|vn|q̄(x)dx

− λ

α− + β−

∫
Ω

(α(x) + β(x)) |un|α(x)|vn|β(x)dx

≥
(

1

p+
− 1

α− + β−

)[∫
Q

|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

|un|p̄(x)dx
]

+

(
1

q+
− 1

α− + β−

)[∫
Q

|vn(x)− vn(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy +

∫
Ω

|vn|q̄(x)dx
]

+
1

α− + β− [D1Jλ(un, vn)(un) +D2Jλ(un, vn)(vn)]

≥
(

1

p+
− 1

α− + β−

)[∫
Q

|un(x)− un(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

|un|p̄(x)dx
]

+

(
1

q+
− 1

α− + β−

)[∫
Q

|vn(x)− vn(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy +

∫
Ω

|vn|q̄(x)dx
]

− 1

α− + β− ∥D1Jλ(un, vn)∥(Xs,p(x,y)
0

)∗∥un∥s,p(x,y)

− 1

α− + β− ∥D2Jλ(un, vn)∥(Xs,q(x,y)
0

)∗∥vn∥s,q(x,y),

where

D1Jλ(un, vn)(φ) =

∫
Q

|un(x)− un(y)|p(x,y)−2(un(x)− un(y))(φ(x)− φ(y))

|x− y|N+sp(x,y)
dxdy

+

∫
Ω

|un(x)|p̄(x)−2un(x)φ(x)dx

− λ

∫
Ω

α(x)|un(x)|α(x)−2un(x)|vn(x)|β(x)φ(x)dx,

and

D2Jλ(un, vn)(ψ) =

∫
Q

|vn(x)− vn(y)|q(x,y)−2(vn(x)− vn(y))(ψ(x)− ψ(y))

|x− y|N+sq(x,y)
dxdy
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+

∫
Ω

|vn(x)|q̄(x)−2vn(x)ψ(x)dx

− λ

∫
Ω

β(x)|un(x)|α(x)|vn(x)|β(x)−2vn(x)ψ(x)dx.

Therefore,

c ≥
(

1

p+
− 1

α− + β−

)
∥un∥p−s,p(x,y) −

1

α− + β−

(
∥D1Jλ(un, vn)∥(Xs,p(x,y)

0

)∗

+ ∥D2Jλ(un, vn)∥(Xs,q(x,y)
0

)∗

)
∥un∥s,p(x,y).

In view of p− > 1, α− + β− > p+ and the boundedness of ||J ′
λ(un, vn)||∗, the above

inequality cannot hold if n → +∞. Therefore, {(un, vn)} is bounded in E and Jλ
satisfies the Palais-Smale condition.

Therefore, by the Mountain Pass Theorem, we conclude that, for any λ ∈ (0, λ∗),
the functional Jλ has at least one nontrivial critical point (u, v) in E. Hence, any λ ∈
(0, λ∗) is an eigenvalue of system (Ps). ⊡

4. Existence of infinitely many eigenvalues of sys-
tem (Ps)

In this section, we prove the existence of infinitely many eigenvalues of system (Ps).
Our strategy consists in applying the Fountain Theorem of Bartdch.

4.1. Proof of Theorem 1.2

Since E is a reflexive and separable Banach space, we can define two spaces Yk and
Zk as in Remark 2.2. In the above section, we have proved that Jλ satisfies the
Palais-Smale condition. Obviously, Jλ(−(u, v)) = Jλ(u, v). Now, we will study the
geometrical conditions of the functional Jλ.

• Claim 1: First geometric condition (A1) of the Fountain Theorem.
Let (u, v) ∈ Zk with ∥(u, v)∥ > 1. Using Young’s inequality and Proposition
2.4, we have

Jλ(u, v) ⩾
1

p+
∥u∥p

−

0,s,p(x,y)+
1

q+
∥v∥q

−

0,s,q(x,y) − c3λ
(
∥u∥2α

+

2α(x)+∥v∥2β
+

2β(x)+|Ω|
)
.

Set a = max{2α+, 2β+} , b = min{2α+, 2β+} and define

ηk = sup

{∫
Ω

|u|2α(x)dx, (u, v) ∈ Zk, ∥(u, v)∥ ≤ 1

}
and

ζk = sup

{∫
Ω

|v|2β(x)dx, (u, v) ∈ Zk, ∥(u, v)∥ ≤ 1

}
.
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Then, we get

Jλ(u, v) ⩾
1

max(p+, q+)
∥(u, v)∥min(p−,q−) − c4λ (ηk∥(u, v)∥)2α

+

−c4λ (ζk∥(u, v)∥)2β
+

− c4λ |Ω|

⩾
1

max(p+, q+)
∥(u, v)∥min(p−,q−) − c5λκ

b
k∥(u, v)∥a − c5λ |Ω| ,

where κk = ηk + ζk −→ 0 with the same argument in Lemma 2.2. At this
stage, we fix

rk =

(
1

2max(p+, q+)c5λκbk

) 1

a−min(p−,q−)

.

It is easy to see that rk −→ +∞ as k −→ ∞. Thanks to Lemma 2.2 and the
fact that a > min(p−, q−), we get that for any (u, v) ∈ Zk with ∥(u, v)∥ = rk,

Jλ(u, v) ⩾
1

2max (p+, q+)
r
min(p−,q−)
k − c5λ |Ω| −→ +∞ as k −→ +∞.

This ends Claim 1.

• Claim 2: Second geometric condition (A2) of the Fountain Theorem.
For every x ∈ Ω̄, s, t ∈ R the inequality:

|s|α(x) |t|β(x) ≥ c6

(
|s|α

−+β−
+ |t|α

−+β−
− 1

)
holds true. Indeed, consider the compact subset K of R2 defined by

K =

{
(s, t) ∈ R2 :

|s|α−
+ |t|β−

2
= 1

}
.

For every (s, t) ∈ K, we introduce the function

H(x, τ) =
∣∣∣τ 1

α−+β− s
∣∣∣α(x) ∣∣∣τ 1

α−+β− t
∣∣∣β(x)

defined on Ω̄× R. Then

τ
∂H

∂τ
=

s

α− + β− τ
1

α−+β− α(x)
∣∣∣τ 1

α−+β− s
∣∣∣α(x)−2 (

τ
1

α−+β− s
) ∣∣∣τ 1

α−+β− t
∣∣∣β(x)

+
t

α− + β− τ
1

α−+β− β(x)
∣∣∣τ 1

α−+β− s
∣∣∣α(x) ∣∣∣τ 1

α−+β− t
∣∣∣β(x)−2 (

τ
1

α−+β− t
)

=
α(x)

α− + β−

∣∣∣τ 1

α−+β− s
∣∣∣α(x) ∣∣∣τ 1

α−+β− t
∣∣∣β(x)

+
β(x)

α− + β−

∣∣∣τ 1

α−+β− s
∣∣∣α(x) ∣∣∣τ 1

α−+β− t
∣∣∣β(x)

=
α(x) + β(x)

α− + β−

∣∣∣τ 1

α−+β− s
∣∣∣α(x) ∣∣∣τ 1

α−+β− t
∣∣∣β(x)

≥H(x, τ) > 0.

Fix M > 0 such that |s|α
−+β−

+ |t|α
−+β−

≥ 2M. Then, we have

H(x, τ) ≥ H(x,M)

M
|τ | for any |τ | ≥M.
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Set

c̃ = min
x∈Ω̄

min
(s,t)∈K

H(x,M)

M
.

Then ∣∣∣τ 1

α−+β− s
∣∣∣α(x) ∣∣∣τ 1

α−+β− t
∣∣∣β(x) ≥ c̃|τ | − c′ ≥ c6(|τ | − 1), ∀τ ∈ R,

where c7 = min(c̃, c′). Moreover, every (s′, t′) ∈ R2 can be rewritten as

(s′, t′) =
(
(|s′|α

−+β−
+ |t′|α

−+β−
)

1

α−+β− s, (|s′|α
−+β−

+ |t′|α
−+β−

)
1

α−+β− t
)
,

where (s, t) ∈ K. Therefore, there is c7 > 0 such that

|s′|α(x) |t′|β(x) ≥ c7

(
|s′|α

−+β−

+ |t′|α
−+β−

− 1
)

∀(s′, t′) ∈ R2.

For any (u, v) ∈ Yk with ||(u, v)|| = 1 and t > 1, we have

Jλ(tu, tv) =

∫
Q

tp(x,y)

p(x, y)

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

tp̄(x)

p̄(x)
|u(x)|p̄(x)dx

+

∫
Q

tq(x,y)

q(x, y)

|v(x)− v(y)|q(x,y)

|x− y|N+sq(x,y)
dxdy +

∫
Ω

tq̄(x)

q̄(x)
|v(x)|q̄(x)dx

−λ
∫
Ω

|tu(x)|α(x)|tv(x)|β(x)dx

⩽
tp

+

p−

[∫
Q

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy +

∫
Ω

|u(x)|p̄(x)dx
]

+
tq

+

q−

[∫
Q

|v(x)− v(y)|p(x,y)

|x− y|N+sq(x,y)
dxdy +

∫
Ω

|v(x)|q̄(x)dx
]

−c7λtα
−+β−

∫
Ω

|u(x)|α
−+β−

−c7λtα
−+β−

∫
Ω

|v(x)|α
−+β−

−c8

⩽
tp

+

p−
ρp(x,y)(u) +

tq
+

q−
ρq(x,y)(v)

−c7λtα
−+β−

∫
Ω

|u(x)|α
−+β−

−c7λtα
−+β−

∫
Ω

|v(x)|α
−+β−

−c8.

Since α− + β− > max(p+, q+), we conclude that

Jλ(tu, tv) −→ −∞ as t −→ +∞.

This ends Claim 2.

Therefore, by Fountain Theorem, we conclude that, the functional Jλ has in-
finitely many nontrivial critical points (u, v) in E. Hence, system (Ps) has infinitely
many eigenvalues.
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