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Existence, Asymptotics and Computation of
Solutions of Nonlinear Sturm-Liouville Problems
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Abstract This paper deals with the existence, asymptotics and 
computa-tion of solutions of nonlinear Sturm-Liouville problems with general 
separated boundary conditions. The approach centers first on converting 
these prob-lems into Hammerstein integral equations with modified 
argument, and then applying the Banach and Rothe fixed point theorems to 
solve them. This ap-proach not only enabled us to prove existence theorems 
for these problems, but also to derive general and accurate asymptotic 
formulae for their solutions. Finally, an illustrative numerical example is 
presented using the Picard’s iter-ation method.
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1. Introduction

Consider the nonlinear Sturm-Liouville equation

−u′′(x) = λu(x)− f(x, u(x)), x ∈ I := [a, b], (1.1)

defined on the compact interval I and subject to the separated boundary conditions

a1u(a) + a2u
′(a) = 0, |a1|+ |a2| ̸= 0, a1, a2 ∈ C, (1.2)

b1u(b) + b2u
′(b) = 0, |b1|+ |b2| ̸= 0, b1, b2 ∈ C. (1.3)

Second-order nonlinear Sturm-Liouville equations are important due to their nu-
merous real-world applications. The simple pendulum is a typical example, which
is governed by the nonlinear equation

y′′ + k2 sin(y) = 0, (1.4)

where the constant k ̸= 0 depends on the length of the pendulum and on gravity.
Note that, by using the transformation u := sin

(
1
2y
)
, one can reduce equation (1.4)

to an equation of the form
−u′′ = λu−Au3, (1.5)

which is a special case of Sturm-Liouville equation (1.1) and is integrated by elliptic
functions. For more details, see [12]. Equipped with boundary conditions of the
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form (1.3), a system of equations (1.1) and (1.3) is called a (nonlinear) Sturm-
Liouville problem, which also occurs very frequently in applied mathematics. For
details related to the Sturm-Liouville theory, the reader is referred to the books
[18, 38]. These nonlinear problems have been studied for different purposes and
under diverse forms by many authors. For a study of the existence of solutions or
positive solutions see, for example, [2, 5, 8, 10, 16, 23, 24, 26, 30]. For a study of the
asymptotic behavior of the solutions see, for example, [4, 6,15,22,31,32]. However,
limited numerical studies have been carried out on them. The reader may see, for
example, [1, 29, 34, 37, 39]. Note that some problems in the previously mentioned
articles are special cases of problem (1.1)–(1.3).

In a recent article [17], we studied the existence and asymptotics of solutions of
problem (1.1)–(1.3) when the nonlinear term f has the form Qu, with Q ∈ L1(I),
using the homotopy perturbation method. We also have presented several numerical
examples illustrating our theoretical results. In this paper, the objective is the same
but the approach is different: we investigate the solvability of problem (1.1)–(1.3),
as well as the asymptotic behavior of the pair (λ, u) as |λ| → ∞, when the function
f is nonlinear. We also present an iterative scheme that computes the solutions
of problem (1.1)–(1.3). The approach adopted consists first in converting problem
(1.1)–(1.3) into a nonlinear integral equation of Hammerstein type with modified
argument, and then applying the Banach and Rothe fixed point theorems to solve it.
This conversion is of interest for two primary reasons: it is better suited for proving
the existence of solutions, and it enables the analysis of their qualitative properties.
Moreover, Hammerstein integral equations have been intensively investigated in the
literature, using many different approaches and methods, from both theoretical and
numerical viewpoints, see, for example, [3, 7, 9, 11, 13, 21, 27]; see also [14, 25, 35]
for integral equations with modified argument. For more details on the theory of
integral equations, we refer the reader to the books [19,20].

The outline of the paper is as follows: In Section 2, we state some preliminaries
and notations. In Section 3, we begin by solving the integral equation in ques-
tion using Rothe and Banach fixed point theorems. Then, we state and prove our
existence theorems. As a direct consequence of these results, we show that if the
boundary condition constants ai and bi, i = 1, 2, are real and f is continuous on
I × V , where V is some compact neighborhood of 0, then problem (1.1)–(1.3) has
infinitely many solutions, which are twice continuously differentiable on I. Finally,
we derive general and accurate asymptotic formulae for the solutions of problem
(1.1)–(1.3) for sufficiently large |λ|. In the last section, we consider equation (1.5)
with Dirichlet boundary conditions in order to illustrate our main results.

2. Preliminaries and notations

Some basic definitions and results are provided below (see, for example, [28,33,36]),
which will be used in the next section.

Definition 2.1. Let (X , d) be a compact metric space. We say that A ⊂ C(X ,C)
is uniformly bounded if there exists M > 0 such that |g(x)| ≤ M, ∀g ∈ A, ∀x ∈ X .

Definition 2.2. Let (X , d) be a compact metric space. We say that A ⊂ C(X ,C)
is equicontinuous if for every ε > 0, there exists δε > 0 such that for all x, y ∈ X
with d(x, y) < δε it follows that |g(x)− g(y)| < ε, ∀g ∈ A.
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Theorem 2.1 (Arzela-Ascoli Theorem). Let (X , d) be a compact metric space and
A ⊂ C(X ,C). Then, the following assertions are equivalent:

1. A is relatively compact, i.e., A is compact,

2. A is uniformly bounded and equicontinuous.

Theorem 2.2 (Rothe Fixed Point Theorem). Let E be a Banach space and B ⊂ E
be a closed convex subset such that the zero of E is contained in the interior of B,
and let T : B → E be a continuous map with T (B) relatively compact in E and
T (∂B) ⊂ B, where ∂B denotes the boundary of B. Then, there is a point x∗ ∈ B
such that Tx∗ = x∗.

Definition 2.3. Let (X , d) be a metric space. A mapping T : X → X is called a
q-contraction if there exists a positive constant q < 1 such that

d(T (x), T (y)) < qd(x, y) for all x, y ∈ X . (2.1)

Theorem 2.3 (Banach Fixed Point Theorem). Let (X , d) be a complete metric
space and let T : X → X be a q-contraction. Then, the following hold:

1. there is a unique point x∗ ∈ X such that Tx∗ = x∗;

2. the iterative sequence

xn+1 = Txn, n = 0, 1, · · · ; (2.2)

with arbitrary x0 ∈ X , converges to the unique fixed point x∗ of T ;

3. the following error estimate holds for each n ∈ N:

d(xn, x
∗) ≤ qn

1− q
d(x1, x0). (2.3)

Lemma 2.1 ( [17]). The eigenparameter µ ∈ C∗ satisfies the problem

v′′(x) + µ2v(x) = 0 (2.4)

with the boundary conditions (1.3) if and only if it is a zero of the characteristic
function

∆(µ) =

(
1

µ
a1b1 + a2b2µ

)
sin(µ(b− a)) + (a1b2 − a2b1) cos(µ(b− a)). (2.5)

The corresponding non-trivial solution is given by

v(x) = c

(
b1
sin(µ(b− x))

µ
+ b2 cos(µ(b− x))

)
, (2.6)

where c is an arbitrary nonzero constant.

Throughout this paper, the following notations are adopted:

1. the maximum norm in the space C(I,C) will be denoted by ∥.∥ and the usual
norm in the space L1(I,C) will be denoted by ∥.∥1, i.e.,

∥u∥ := max
x∈I

|u(x)| and ∥u∥1 :=

∫ b

a

|u(x)|dx; (2.7)
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2. the closed ball in C(I,C) of center 0 and radius ρ > 0 will be denoted by Bρ

and the closed disk in the complex plane of center 0 and radius ρ > 0 will be
denoted by Dρ, i.e.,

Bρ := {u ∈ C(I,C) | ∥u∥ ≤ ρ} and Dρ := {u ∈ C | |u| ≤ ρ} ; (2.8)

3. the set of zeros of the characteristic function ∆ satisfying the condition∫ b

a

v2(x, µ)dx :=

∫ b

a

v2(x)dx ̸= 0 (2.9)

will be denoted by Ω∆, i.e.,

Ω∆ :=

{
µ ∈ C∗ | ∆(µ) = 0 and

∫ b

a

v2(x, µ)dx ̸= 0

}
. (2.10)

3. Main results

We begin by studying the following integral equation:

u(x) = αv(x) +
1

αµ

∫ b

a

∫ b

a

K(x, t, s)F (t, s, u(t), u(s))dsdt =: Tu(x), x ∈ I, (3.1)

where the pair (µ, v) ∈ C∗ ×C(I,C) is given, α ∈ C∗ is arbitrary and for x, t, s ∈ I,

K(x, t, s) =
v(s)

β2
×


v(x)

∫ b

t

sin(µ(s− t))v(s)ds− β sin(µ(x− t)), t ≤ x,

v(x)

∫ b

t

sin(µ(s− t))v(s)ds, x ≤ t,

(3.2)

where β =

∫ b

a

v2(x)dx ̸= 0 and

F (t, s, u(t), u(s)) = u(t)f(s, u(s))− u(s)f(t, u(t)). (3.3)

Lemma 3.1. Let v ∈ C(I,C) be such that

∫ b

a

v2(x)dx ̸= 0 and assume that the

following conditions hold for α from (3.1) and for some ρ > 0:
(H1)

f ∈ C(I ×Dρ,C),

(H2)

γ :=
2(b− a)MK∥Mρ∥1

|αµ|
< 1 and

|α|∥v∥
1− γ

≤ ρ,

where MK > 0 and Mρ ∈ L1(I,R+) are such that

|K(x, t, s)| ≤ MK for all x, t, s ∈ I, (3.4)

|f(t, u)| ≤ Mρ(t) for a.e t ∈ I and all u ∈ Dρ. (3.5)

Then, the integral equation (3.1) has a solution u∗ ∈ Bρ.
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Proof. We apply the Rothe Fixed Point Theorem, where the space C(I,C) is
equipped with the maximum norm ∥.∥. Note that (C(I,C), ∥.∥) is a Banach space.
Let ρ > 0 satisfy assumption (H1) and let u ∈ Bρ. Clearly, Tu belongs to C(I,C)
for all u ∈ Bρ. We now show that T (Bρ) is relatively compact in C(I,C). First, we
show that T (Bρ) is equicontinuous. We have

|Tu(x)− Tu(y)| ≤|α||v(x)− v(y)|

+
1

|αµ|

∫ b

a

∫ b

a

|K(x, t, s)−K(y, t, s)||F (t, s, u(t), u(s))|dsdt.

Since f is continuous on I ×Dρ, there exists a positive constant Mf such that

|f(t, u)| ≤ Mf for all t ∈ I and all u ∈ Dρ.

Using this,

|F (t, s, u(t), u(s))| =|u(t)f(s, u(s))− u(s)f(t, u(t))|,
≤ 2ρMf

and

|Tu(x)− Tu(y)| ≤ |α||v(x)− v(y)|+ 2ρMf

|αµ|

∫ b

a

∫ b

a

|K(x, t, s)−K(y, t, s)|dsdt.

By the uniform continuity of v andK, it follows that, for all x, y ∈ I with |x−y| ≤ δ,

|Tu(x)− Tu(y)| ≤ |α|ε1 +
2ρMf

|αµ|
(b− a)2ε2,

which means that T (Bρ) is equicontinuous. Next, we have

|Tu(x)| ≤ |α|∥v∥+ MK

|αµ|

∫ b

a

∫ b

a

|u(t)f(s, u(s))− u(s)f(t, u(t))|dsdt,

≤ |α|∥v∥+ 2ρMKMf

|αµ|
(b− a)2.

Hence, T (Bρ) is uniformly bounded. By Arzela-Ascoli’s theorem, T (Bρ) is relatively
compact in C(I,C). On the other hand, we have

|Tu1(x)− Tu2(x)| ≤
MK

|αµ|

∫ b

a

∫ b

a

|u1(t)f(s, u1(s))− u1(s)f(t, u1(t))

+ u2(s)f(t, u2(t))− u2(t)f(s, u2(s))|dsdt.

The term u1(t)f(s, u1(s))− u2(t)f(s, u2(s)) can be rewritten as

(u1(t)− u2(t))f(s, u1(s)) + u2(t)(f(s, u1(s))− f(s, u2(s))).

Now, let us fix u1 and u2 ∈ Bρ with ∥u1−u2∥ ≤ δ. Then, by the uniform continuity
of f on I ×Dρ, we have

|Tu1(x)− Tu2(x)| ≤
2MK

|αµ|
(b− a)2(Mfδ + ρε),
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which means that T is continuous. Next, let us show that T (∂Bρ) ⊂ Bρ. Let
∥u∥ = ρ. Then, we have

|Tu(x)| ≤ |α|∥v∥+ 2(b− a)ρMK∥Mρ∥1
|αµ|

.

Thus, by assumption (H2), T (∂Bρ) ⊂ Bρ. The Rothe Fixed Point Theorem then
guarantees the existence of a solution u∗ ∈ Bρ of the fixed point equation u∗ = Tu∗,
which is equivalent to the integral equation (3.1). This completes the proof.

Lemma 3.2. Let v ∈ C(I,C) be such that

∫ b

a

v2(x)dx ̸= 0 and assume that the

following conditions hold for α from (3.1) and for some ρ > 0:
(H3) there exist two positive functions Lρ,Mρ ∈ L1(I,R+) such that

|f(t, u1)− f(t, u2)| ≤ Lρ(t)|u1 − u2| for a.e t ∈ I and all u1, u2 ∈ Dρ,

|f(t, u)| ≤ Mρ(t) for a.e t ∈ I and all u ∈ Dρ,

(H4)

q :=
2(b− a)MK (∥Mρ∥1 + ρ∥Lρ∥1)

|αµ|
< 1 and

|α|∥v∥
1− γ

≤ ρ.

Then, there is exactly one solution u∗ ∈ Bρ of the integral equation (3.1). Moreover,
the sequence of successive approximations

un+1 = Tun, n = 0, 1, · · · (3.6)

converges to u∗ for any initial guess u0 ∈ Bρ. The following error estimate holds:

∥un − u∗∥ ≤ qn

1− q
∥u1 − u0∥, n = 0, 1, · · · . (3.7)

Proof. Here, we apply the Banach Fixed Point Theorem. Similarly, we equip the
space C(I,C) with the maximum norm. Since Bρ is a closed subset of C(I,C), we
only need to show that Bρ is an invariant set for the operator T , i.e., T (Bρ) ⊆ Bρ,
and that T is a q-contraction. Let ρ > 0 satisfy assumption (H3) and let u ∈ Bρ.
Then, we have

|Tu(x)| ≤ |α|∥v∥+ MK

|αµ|

∫ b

a

∫ b

a

|u(t)f(s, u(s))− u(s)f(t, u(t))|dsdt,

≤ |α|∥v∥+ 2(b− a)ρMK∥Mρ∥1
|αµ|

.

Thus, by assumptions (H4), Tu ∈ Bρ. Next, we have, after a simple calculation,

∥Tu1 − Tu2∥ ≤ 2(b− a)MK (∥Mρ∥1 + ρ∥Lρ∥1)
|αµ|

∥u1 − u2∥ = q∥u1 − u2∥.

Therefore, by the first condition of assumption (H4), it results that the operator T
is a q-contraction. Applying the Banach Fixed Point Theorem completes the proof.
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Lemma 3.3. Assumptions (H2) and (H4) are equivalent to

(H′
2) Nρ ≤ ρ and |α| ∈ Jρ :=

[
R−

ρ , R
+
ρ

]
(3.8)

and

(H′
4) Nρ ≤ ρ < Rρ

(
R+

ρ

R−
ρ

)2
and |α| ∈ J ′

ρ :=

Jρ, ρ < Rρ,(
N ′

ρ, R
+
ρ

]
, Rρ ≤ ρ,

(3.9)

respectively, where

Nρ =
8(b− a)MK∥v∥∥Mρ∥1

|µ|
, N ′

ρ =
Nρ

4∥v∥

(
1 + ρ

∥Lρ∥1
∥Mρ∥1

)
, (3.10)

and

R±
ρ =

ρ±
√

ρ (ρ−Nρ)

2∥v∥
, Rρ =

∥Mρ∥1
∥Lρ∥1

R−
ρ

R+
ρ
. (3.11)

Proof. We only prove the first equivalence. For the second one, the proof can
proceed similarly. We have, after a simple calculation,

(H2) ⇔ |α| > γ′ :=
2(b− a)MK∥Mρ∥1

|µ|
and ∥v∥|α|2 − ρ|α|+ ργ′ ≤ 0,

⇔ |α| > γ′ and
(
ρ2 − 4ργ′∥v∥ ≥ 0 and |α| ∈ Jρ

)
,

⇔ ρ− 4γ′∥v∥ ≥ 0 and |α| ∈ Jρ,

since for any |α| ∈ Jρ we have |α| > γ′. We thus complete the proof.

Lemma 3.4. If u(x) is a solution of the integral equation (3.1) on I, then it satisfies∫ b

a

v(x)u(x)dx = α

∫ b

a

v2(x)dx. (3.12)

Proof. For simplicity, we rewrite the integral equation (3.1) as

u(x) = αv(x) +
1

αµ
w(x), (3.13)

where

w(x) =

∫ b

a

∫ b

a

K(x, t, s)F (t, s, u(t), u(s))dsdt.

Using equation (3.2), we get

w(x) =
v(x)

β2

∫ b

a

G(t)H(t)dt− 1

β

∫ x

a

sin(µ(x− t))H(t)dt,

where

G(t) =

∫ b

t

sin(µ(s− t))v(s)ds and H(t) =

∫ b

a

v(s)F (t, s, u(t), u(s))ds. (3.14)

Next, it is a simple matter to verify that∫ b

a

G(t)H(t)dt =

∫ b

a

v(s)

∫ s

a

sin(µ(s− t))H(t)dtds.
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Hence,

w(x) =
v(x)

β2

∫ b

a

v(s)

∫ s

a

sin(µ(s− t))H(t)dtds− 1

β

∫ x

a

sin(µ(x− t))H(t)dt. (3.15)

Now, multiplying both sides in equation (3.13) by v and integrating over I, we get∫ b

a

v(x)u(x)dx = α

∫ b

a

v2(x)dx+
1

αµ

∫ b

a

v(x)w(x)dx,

and by equation (3.15), we have∫ b

a

v(x)w(x)dx = 0.

This completes the proof.
Now, we are ready to state and prove our main results.

Theorem 3.1. Let µ ∈ Ω∆ and assume that assumptions (H1) and (H′
2) hold for

some ρ > 0. Then, problem (1.1)–(1.3) has a solution (λα,µ, uα,µ) := (λ, u) ∈
C× C2(I,C) for all |α| ∈ Jρ such that

λα,µ = µ2 +
1

αβ

∫ b

a

v(x)f(x, uα,µ(x))dx, (3.16)

and

|uα,µ(x)| ≤ ρ for all x ∈ I and all |α| ∈ Jρ, (3.17)

|λα,µ| ≤ |µ|2 + ∥v∥∥Mρ∥1
|αβ|

for all |α| ∈ Jρ. (3.18)

Proof. Let µ ∈ Ω∆. We first show that if u satisfies the integral equation (3.1),
then it satisfies the Sturm-Liouville equation (1.1), too. According to (3.15), the
integral equation (3.1) can be rewritten as

u(x) = σv(x)− 1

αβµ

∫ x

a

sin(µ(x− t))H(t)dt,

where H is given in (3.14) and

σ = α+
1

αβ2µ

∫ b

a

v(s)

∫ s

a

sin(µ(s− t))H(t)dtds.

The first and second derivatives of u are

u′(x) = σv′(x)− 1

αβ

∫ x

a

cos(µ(x− t))H(t)dt, (3.19)

u′′(x) = σv′′(x)− 1

αβ
H(x) +

µ

αβ

∫ x

a

sin(µ(x− t))H(t)dt, (3.20)

respectively. More precisely,

u′′(x) = σ
(
v′′(x) + µ2v(x)

)
− 1

αβ
H(x)− µ2u(x),
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= − 1

αβ
H(x)− µ2u(x),

since v′′(x) + µ2v(x) = 0. Now, replacing H by its expression yields

u′′(x) = − 1

αβ

∫ b

a

v(s) (u(x)f(s, u(s))− u(s)f(x, u(x))) ds− µ2u(x),

= −

(
µ2 +

1

αβ

∫ b

a

v(s)f(s, u(s))ds

)
u(x) +

(
1

αβ

∫ b

a

v(s)u(s)ds

)
f(x, u(x)).

According to Lemma 3.4, we have

1

αβ

∫ b

a

v(s)u(s)ds = 1

and consequently u′′ reduces to

u′′(x) = −

(
µ2 +

1

αβ

∫ b

a

v(s)f(s, u(s))ds

)
u(x) + f(x, u(x)).

Take

λ = µ2 +
1

αβ

∫ b

a

v(s)f(s, u(s))ds.

Then, u satisfies the Sturm-Liouville equation (1.1). Let us next show that u also
satisfies the boundary conditions (1.3). We have

a1u(a) + a2u
′(a) = σ (a1v(a) + a2v

′(a)) = 0

and

A : = b1u(b) + b2u
′(b),

= σ (b1v(b) + b2v
′(b))− 1

αβµ

∫ b

a

(
b1 sin(µ(b− t)) + b2µ cos(µ(b− t))

)
H(t)dt,

that is,

A = − 1

αβµ

∫ b

a

(
b1 sin(µ(b− t)) + b2µ cos(µ(b− t))

)
H(t)dt.

According to Lemma 2.1, we have

A = − 1

αβc

∫ b

a

v(t)H(t)dt,

= − 1

αβc

∫ b

a

v(t)

∫ b

a

v(s) (u(t)f(s, u(s))− u(s)f(t, u(t))) dsdt,

= 0.

Hence, u satisfies the boundary conditions (1.3). Moreover, (3.19) implies u′ ∈
C(I,C), and under assumption (H1) of Lemma 3.1, (3.20) implies u′′ ∈ C(I,C).
The proof is then completed by applying Lemmas 3.1 and 3.3.
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Theorem 3.2. Let µ ∈ Ω∆ and assume that assumptions (H3) and (H′
4) hold

for some ρ > 0. Then, problem (1.1)–(1.3) has a solution (λα,µ, uα,µ) := (λ, u) ∈
C×C1(I,C) for all |α| ∈ J ′

ρ, which satisfies the relationship (3.16) and the estimates
(3.17) and (3.18) for all |α| ∈ J ′

ρ. Moreover, uα,µ can be obtained as the limit of
the Picard Iterations given by (3.6) for any initial guess u0 ∈ Bρ.

Proof. The proof is similar to that of Theorem 3.1, where we apply Lemma 3.2
instead of Lemma 3.1.

Theorem 3.3. Assume that the following holds:
(H5) the set Ω∆ has infinitely many elements µk, k = 1, 2, · · · , such that

|µk| → ∞, as k → ∞.

Assume, in addition, that assumption (H1) (resp. (H3)) holds for some ρ > 0.
Then, problem (1.1)–(1.3) has a solution (λα,µk

, uα,µk
) for all |µk| ≥ c(ρ) with

suitable k and c(ρ), and all |α| ∈ Jρ (resp. |α| ∈ J ′
ρ), which is as in Theorem 3.1

(resp. 3.2).

Proof. We have from (3.2)

|K(x, t, s)| ≤ 2∥v∥3(b− a)

β2
e|ℑ(µ)|(b−a) for all x, t, s ∈ I and all µ ∈ Ω∆,

where ℑ(µ) denotes the imaginary part of µ. On the other hand, one can easily
verify, from (2.5), that for large |ℑ(µ)|, ∆(µ) has to grow like e|ℑ(µ)|(b−a), which
means that ∆(µ) cannot vanish for sufficiently large values of |ℑ(µ)|. It follows that
the kernel K is bounded for all x, t, s ∈ I and all µ ∈ Ω∆. Hence, if assumption
(H5) holds, then both assumptions (H′

2) and (H′
4) hold for all |µk| ≥ c(ρ) with

suitable k and c(ρ). Applying Theorem 3.1 (resp. 3.2) completes the proof.
As a corollary of Theorem 3.3, we get the following result:

Corollary 3.1. Let the boundary condition constants ai and bi, i = 1, 2, be real,
and assume, in addition, that assumption (H1) (resp. (H3)) holds for some ρ > 0.
Then, problem (1.1)–(1.3) has a solution (λα,µk

, uα,µk
) for all |µk| ≥ c(ρ) with

suitable k and c(ρ), and all |α| ∈ Jρ (resp. |α| ∈ J ′
ρ), which is as in Theorem 3.1

(resp. 3.2).

Proof. It is well known that if the boundary condition constants ai and bi, i = 1, 2,
are real, then ∆ has infinitely many zeros µk, k = 1, 2, · · · , such that (see, e.g., [38])

µ2
k ∈ R∗ and −∞ < µ2

1 < µ2
2 < µ2

3 < · · · ; µ2
k → ∞, as k → ∞.

Since all µ2
k are real, each µk is either real or pure imaginary, but clearly, the

condition
∫ b

a
v2(x, µk)dx ̸= 0 is satisfied in both cases. Hence, µk ∈ Ω∆ for all

positive integer k. Now, the conclusions of the corollary follow from Theorem 3.3.

In the following, we derive general and accurate asymptotic formulae for the
solution (λα,µ, uα,µ) for fixed α ̸= 0 and sufficiently large |µ|:

Theorem 3.4. Let assumption (H5) hold and assume, in addition, that f(x, u)
is continuous with respect to x ∈ I and differentiable with respect to u ∈ Dρ for
some ρ > 0. Then, problem (1.1)–(1.3) has a solution (λα,µk

, uα,µk
) for any fixed
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|α| ∈ Jρ and all sufficiently large integer k, which is as in Theorem 3.1 and satisfies
the following asymptotic formulae for all nonnegative integer j:

uα,µk
(x) = vj(x) +O

(
1

|µk|j+1

)
, (3.21)

λα,µk
= µ2

k +
1

αβ

∫ b

a

v(x)f(x, vj(x))dx+O

(
1

|µk|j+1

)
, (3.22)

as k → ∞, where

vj(x) =


αv(x), for j = 0,

αv(x) +
1

αµk

∫ b

a

∫ b

a

K(x, t, s)F (t, s, vj−1(t), vj−1(s))dsdt, for j ≥ 1.

Proof. The first conclusion immediately follows from Theorem 3.3. Next, since f
is bounded for all x ∈ I and all u ∈ Dρ and K is bounded for all x, t, s ∈ I and all
µk ∈ Ω∆, the second term in the integral equation (3.1) can be estimated so that∣∣∣∣∣ 1

αµk

∫ b

a

∫ b

a

K(x, t, s)
(
u(t)f(s, u(s))− u(s)f(t, u(t))

)
dsdt =: hk(x)

∣∣∣∣∣ , (3.23)

≤2MKρ∥Mρ∥1
|αµk|

(b− a). (3.24)

Since ρ and α are fixed, we have, as |µk| → ∞ (or as k → ∞),

hk(x) = O

(
1

|µk|

)
.

As a consequence,

uα,µk
(x) = αv(x) +O

(
1

|µk|

)
= v0(x) +O

(
1

|µk|

)
, as k → ∞.

On the other hand, one can easily verify, under assumption (H′
2), that |uα,µk

(x)| ≤ ρ
implies |vj(x)| ≤ ρ for all j ≥ 0. Using this, the formula above and a Taylor
expansion of f , with respect to the second variable, for sufficiently large k yields

f(x, uα,µk
(x)) = f

(
x, v0(x) +O

(
1

|µk|

))
= f(x, v0(x)) +O

(
1

|µk|

)
.

Now, inserting the two formulae above into the integral equation (3.1), we get

uα,µk
(x) = v1(x) +O

(
1

|µk|2

)
.

Similarly, using this new formula and a Taylor expansion for sufficiently large k
gives

f(x, uα,µk
(x)) = f

(
x, v1(x) +O

(
1

|µk|2

))
= f(x, v1(x)) +O

(
1

|µk|2

)
.
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Repeating this process j − 1 times yields

uα,µk
(x) = vj(x) +O

(
1

|µk|j+1

)
, as k → ∞,

and

f(x, uα,µk
(x)) = f (x, vj(x)) +O

(
1

|µk|j+1

)
, as k → ∞.

Inserting this latter formula into equation (3.16) completes the proof.

4. Numerical example

In this section, we give an example illustrating Theorems 3.1 and 3.2. Consider the
nonlinear Sturm-Liouville problem

−u′′(x) = λu(x)− 2u3(x) on I = [0, 1], (4.1)

u(0) = 0 = u(1), (4.2)

with the exact solutions

uk,m(x) = mνk,msn(νk,mx,m), k = 1, 2, · · · , (4.3)

λk,m = ν2k,m
(
1 +m2

)
, k = 1, 2, · · · , (4.4)

where the parameter m is such that 0 < m2 < 1, the function sn is the elliptic sine
given by

sn(z,m) = sin(am(z,m)), (4.5)

where φ := am(z,m) is called the Jacobi amplitude and satisfies

z =: Y (φ,m) =

∫ φ

0

dθ√
1−m2 sin2(θ)

, (4.6)

and where
νk,m = 2kY (π2 ,m), k = 1, 2, · · · . (4.7)

For more details see [12]. For comparison, the parameter m is determined by the
normalization condition∫ 1

0

sin(kπx)uk,m(x)dx = η, k = 1, 2, · · · , (4.8)

for some nonzero real number η. We now identify the values of ρ > 0 for which
assumptions (H′

2) and (H′
4) hold. Under the boundary conditions (4.2), Lemma 2.1

implies

vk(x) = ck sin(kπx), k = 1, 2, · · · , (4.9)

µk = kπ, k = 1, 2, · · · , (4.10)

where k is taken to be positive. Moreover, under the normalization condition (4.8),
Lemma 3.4 yields

α = 2η, (4.11)
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where we set ck = 1 for any positive integer k. After a simple calculation, we also
find that

∥vk∥ = 1, k = 1, 2, · · · , MK = 4 + 2
π , Mρ(t) = 2ρ3 and Lρ(t) = 6ρ2,

and for any positive integer k

Nρ,k = N ′
ρ,k = ρ3ω2

k, R±
ρ,k =

ρ

2

(
1±

√
1− ρ2ω2

k

)
and Rρ,k =

ρ

3

(
1−

√
1−ρ2ω2

k

ρωk

)2

,

where

ωk =
4

π

√
2 (2π + 1)

k
.

The assumption Nρ,k ≤ ρ implies the inequality ρωk ≤ 1, which means that as-
sumption (H′

2) holds for all ρ > 0 and all α ̸= 0 satisfying

ρ ≤ 1

ωk
, k = 1, 2, · · · , (4.12)

|α| ∈
[
ρ

2

(
1−

√
1− ρ2ω2

k

)
,
ρ

2

(
1 +

√
1− ρ2ω2

k

)]
, k = 1, 2, · · · , (4.13)

respectively. Similarly, the assumptions Nρ,k ≤ ρ and ρ < Rρ,k

(
R+

ρ,k

R−
ρ,k

)2

imply the

inequalities ρωk ≤ 1 and ρωk <
√
3
2 , respectively, which means that assumption

(H′
4) holds for all ρ > 0 and all α ̸= 0 satisfying

ρ <

√
3

2ωk
, k = 1, 2, · · · , (4.14)

|α| ∈
(
ρ3ω2

k,
ρ

2

(
1 +

√
1− ρ2ω2

k

)]
, k = 1, 2, · · · , (4.15)

respectively, since Rρ,k < ρ for any positive integer k. Thus, Theorem 3.1 (resp.
3.2) applies for all ρ > 0 and all α ̸= 0 satisfying (4.12)–(4.13) (resp. (4.14)–(4.15)).
In the following, we use the Picard Iterations given, for k = 1, 2, · · · , by

uα,k,n(x) =α sin(kπx) +
1

αkπ

×
∫ 1

0

∫ 1

0

Kk(x, t, s)F (t, s, uα,k,n−1(t), uα,k,n−1(s))dsdt, n = 1, 2, · · · ,

(4.16)

to compute the approximate eigenfunctions of problem (4.1)–(4.2), where

F (t, s, u(t), u(s)) = 2u(s)u(t) (u(s)− u(t)) (u(s) + u(t))

and where, for k = 1, 2 · · · and 0 ≤ s ≤ 1,

Kk(x, t, s) = 2 sin(kπs)×

K̃k(x, t)− sin(kπ(x− t)), 0 ≤ t ≤ x,

K̃k(x, t), x ≤ t ≤ 1,
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where

K̃k(x, t) = sin(kπx)

(
(1− t) cos(kπt) +

1

kπ
sin(kπt)

)
.

In order to compute the corresponding eigenvalues we use the relationship given,
for k = 1, 2, · · · , by

λα,k,n = k2π2 +
4

α

∫ 1

0

sin(kπx)u3
α,k,n(x)dx, n = 0, 1, · · · . (4.17)

α, ρ and the initial guess uα,k,0 are taken, for any positive integer k, as follows:

uα,k,0 = ρ =
1

6
and α ∈

(
4(2π+1)
27π2 ≈ 0.11, 1

12

(
1 +

√
1− 8(2π+1)

9π2

)
≈ 0.13

]
.

Numerical computations were performed using Python’s SciPy library. Integrals in
(4.16)–(4.17) were evaluated via the Composite Simpson’s rule (scipy.integrate.sim-
ps) with a step size of dx = 0.01. Equation (4.8) was solved for the parameter m
using Newton’s method (scipy.optimize.newton) with a tolerance of tol = 10−14.
The exact solutions to problem (4.1)–(4.2) were computed using Jacobian elliptic
functions (scipy.special.ellipj), parameterized by m2 instead of m. Table 1 presents
the first ten roots of (4.8) for η = α/2 = 0.0625 and various values of k, as computed
by Newton’s method. The first ten approximate eigenvalues for α = 0.125 are given
in Table 2 for different k and n, alongside their exact values. Corresponding absolute
errors are provided in Table 3. All values in Tables 1 and 2 are rounded to 12 decimal
places. Finally, the first five approximate eigenfunctions are plotted alongside their
exact counterparts in Figures 1–5 for various values of k and n.

k = 1 k = 2 k = 3 k = 4 k = 5

m 0.039769061900 0.019891907630 0.013262182903 0.009946876379 0.007957589680

k = 6 k = 7 k = 8 k = 9 k = 10

m 0.006631364830 0.005684047721 0.004973553525 0.004420943639 0.003978853892

Table 1. The first ten roots of equation (4.8) obtained for η = 0.0625 and different k.

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.025

0.050

0.075

0.100

0.125 u0.125, 1, 1(x)
u0.125, 1, 2(x)
u0.125, 1, 3(x)
Exact solution

Figure 1. First approximate eigenfunction (α = 0.125, n = 1, 2, 3) alongside the exact one.
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0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.05

0.00

0.05

0.10
u0.125, 2, 1(x)
u0.125, 2, 2(x)
u0.125, 2, 3(x)
Exact solution

Figure 2. Second approximate eigenfunction (α = 0.125, n = 1, 2, 3) alongside the exact one.

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.05

0.00

0.05

0.10

u0.125, 3, 1(x)
u0.125, 3, 2(x)
u0.125, 3, 3(x)
Exact solution

Figure 3. Third approximate eigenfunction (α = 0.125, n = 1, 2, 3) alongside the exact one.

Approximate eigenvalue Exact eigenvalue

k n = 1 n = 2 n = 3 η = 0.0625

1 9.893094765958 9.893039576552 9.893039583177 9.893039583178

2 39.501855516924 39.501854524610 39.501854524648 39.501854524664

3 88.849875923477 88.849876852115 88.849876852108 88.849876852144

4 157.937107943215 157.937107772424 157.937107772427 157.937107772492

5 246.763547137128 246.763547434372 246.763547434372 246.763547434474

6 355.329195944310 355.329195874655 355.329195874655 355.329195874797

7 483.634052989883 483.634053105859 483.634053105859 483.634053106051

8 631.678119171330 631.678119133238 631.678119133239 631.678119133483

9 799.461393905547 799.461393959306 799.461393959306 799.461393959606

10 986.983877609596 986.983877585384 986.983877585385 986.983877585738

Table 2. The first ten approximate eigenvalues obtained for α = 0.125 and different k and n.
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k n = 1 n = 2 n = 3

1 5.518278000060661 × 10−5 6.625999304787911 × 10−9 1.000088900582341 × 10−12

2 9.922600057166164 × 10−7 5.399414249041001 × 10−11 1.599431698195985 × 10−11

3 9.286670064057034 × 10−7 2.900435447372729 × 10−11 3.601030584832188 × 10−11

4 1.707230126157810 × 10−7 6.798472895752639 × 10−11 6.500044946733397 × 10−11

5 2.973459913846454 × 10−7 1.020055151457199 × 10−10 1.020055151457199 × 10−10

6 6.951302111701807 × 10−8 1.419948603142984 × 10−10 1.419948603142984 × 10−10

7 1.161679961114714 × 10−7 1.920170689118094 × 10−10 1.920170689118094 × 10−10

8 3.784691671171458 × 10−8 2.449951352900825 × 10−10 2.440856405883096 × 10−10

9 5.405900083133019 × 10−8 3.000195647473447 × 10−10 3.000195647473447 × 10−10

10 2.385797870374517 × 10−8 3.540208126651123 × 10−10 3.529976311256177 × 10−10

Table 3. Absolute errors of the approximate eigenvalues.

k n = 1 n = 2 n = 3

1 1.30901854286883 × 10−3 3.31020211727373 × 10−7 1.54284230703682 × 10−9

2 4.69196060305883 × 10−4 4.64134699155369 × 10−7 3.05404940573184 × 10−9

3 9.57055224726985 × 10−5 3.10891285328421 × 10−8 4.56827733887749 × 10−9

4 1.17269442008003 × 10−4 2.88300581532952 × 10−8 6.03138130064739 × 10−9

5 5.07068105644256 × 10−5 1.36751118796907 × 10−8 7.46621653391343 × 10−9

6 5.21320529252213 × 10−5 8.90919773025022 × 10−9 8.91012959941539 × 10−9

7 2.93778813117671 × 10−5 1.17456294829176 × 10−8 1.03646652649391 × 10−8

8 2.92728711561232 × 10−5 1.14650860194576 × 10−8 1.17145832409515 × 10−8

9 1.89588493897559 × 10−5 1.34537208699991 × 10−8 1.30510574083975 × 10−8

10 1.87642096026538 × 10−5 1.38181665623737 × 10−8 1.38183241307765 × 10−9

Table 4. Maximum absolute errors of the approximate eigenfunctions.

0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.05

0.00

0.05

0.10
u0.125, 4, 1(x)
u0.125, 4, 2(x)
u0.125, 4, 3(x)
Exact solution

Figure 4. Fourth approximate eigenfunction (α = 0.125, n = 1, 2, 3) alongside the exact one.
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0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.05

0.00

0.05

0.10

u0.125, 5, 1(x)
u0.125, 5, 2(x)
u0.125, 5, 3(x)
Exact solution

Figure 5. Fifth approximate eigenfunction (α = 0.125, n = 1, 2, 3) alongside the exact one.

As shown by the absolute and maximum absolute errors in Tables 3 and 4,
only three iterations yield a highly accurate approximation of the exact solution for
problem (4.1)–(4.2).
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Birkhäuser Basel, Berlin, 1995.

[21] A. Hammerstein, Nichtlineare integralgleichungen nebst anwendungen, Acta
Math., 1930, 54, 117–176.

[22] C. G. Lange, Asymptotic analysis of forced nonlinear Sturm-Liouville systems,
Stud. Appl. Math., 1987, 76(3), 239–263.

[23] J. Mao, Z. Zhao and N. Xu, Existence of positive solutions for singular non-
linear Sturm-Liouville boundary value problems, Nonlinear Funct. Anal. Appl.,
2016, 21(2), 181–194.



Existence, Asymptotics and Computation of Solutions of Nonlinear Sturm-Liouville Problems1829
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