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Abstract In this paper, using the Mountain Pass Theorem, we present re-
sults on compactness and the existence of solutions for a class of local and non-
local p-Laplacian equations involving Robin boundary conditions, with critical
nonlinearity and a small perturbation.
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1. Introduction

This paper deals with the following elliptic problem:

K

(∫
Ω

|∇u|p dx+ β

∫
∂Ω

|u|pdσx
)
∆pu = γa(x)|u|q−2u+ |u|p

∗−2u+ g(x) in Ω,

|∇u|p−2 ∂u

∂u
+ β|u|p−2u = 0 on ∂Ω,

(1.1)
where Ω ⊂ RN is a bounded domain with smooth boundary, p∗ = Np/(N − p)
is the critical Sobolev exponent, 1 < p < N, γ is a positive parameter and a ∈
Lp∗/(p∗−q)(Ω), g ∈ Lp′

(Ω), with 1
p + 1

p′ = 1 and p∗ = Np
N−p .

Here the functional K verifies (K1) K : (0,+∞) → (0,+∞) continuous and
k0 = inf

s>0
K(s) > 0.

The problem (1.1) is called nonlocal because of the presence of the term K(.), so
it is no longer a pointwise identity. This leads us to some mathematical difficulties
which make the study of such a class of problems particularly interesting.

In fact, equations such as (1.1) received more attention after Lions [11] proposed
an abstract framework to the problem. Some important and interesting results can
be found, for example, in [21].

The critical exponent case poses a significant challenge due to the absence of
compactness, rendering standard arguments ineffective. To our knowledge, only
few results have studied the elliptic problems featuring critical exponents. Among
these references, some of the most noteworthy include [3, 8, 9, 12–15, 18] and their
associated literature. However, drawing inspiration from these seminal works from
which we will draw certain insights, our aim is to generalize and partially extend
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corresponding results to accommodate cases where p ̸= 2 and involve a perturbation
g.

First, we deal with the case of a local problem: Suppose that the operator
K = Id and 1 < q < p < N ; then we can state the following compactness note.

Theorem 1.1. There exists a constant L > 0 depending on p, q, and N such that
ϕγ satisfies the Palais-Smale condition in the interval Iγ :

Iγ = (−∞,
1

2N
S

N
2p − Lγ

p∗
p∗−q ),

for every γ > 0 with g small enough with respect to the norm ∥.∥∗.

Now, for the non-local case, we make the following assumption:

(K2) K̂(t) ≥ K(t)t for t > 0 , with K̂(t) =
∫ t

0
K(s)ds.

Accordingly, we can report our main result.

Theorem 1.2. Under the hypotheses (K1), (K2) and q ∈ (p, p∗), there exists γ∗ >
0, such that problem (1.1) has at least a nontrivial solution for all γ ≥ γ∗, provided
g is small enough in the norm ∥.∥∗ of (W 1,p(Ω))∗.

The existence of solutions for problem (1.1) remains largely uncharted territory
within the realm of variational methods. As in our forthcoming paper, problem
(1.1) can be construed as a Schrödinger equation entwined with a non-local term.
The interplay between this nonlocal term and the critical nonlinearity prevents us
from using the variational methods in a standard way. Establishing new estimates
adjusted to Kirchhoff equations, which entail the utilization of Palais–Smale se-
quences, is imperative for our endeavor. Let us point out that although the idea
was used before for other problems, adapting the procedure to our problem is not
trivial at all, owing to the appearance of the non-local term and Robin boundary
condition.

In [16], the authors presented a bifurcation-type theorem that describes the
dependence of the set of positive solutions for a Robin problem with a concave-
convex term.

The paper [10] addressed a nonlinear Robin problem driven by the (p, q)-Laplac-
ian in addition to an indefinite potential term. It is shown that, under minimal
conditions on the nonlinearity, the problem admits a nodal solution.

In [7], El Khalil investigates the existence of at least one nondecreasing sequence
of positive eigenvalues by applying minimax arguments on a C1-manifold.

Regarding the eigenvalues of the (p-q)-Laplacian with homogeneous Dirichlet
boundary conditions, the author in [19] established the existence of two nontrivial
(weak) solutions.

Throughout this paper, we consider the C1−functional energy:

Φγ(u) =
1

p
K̂

(∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|p dσx
)
− γ

q

∫
Ω

a(x)|u|qdx− 1

p∗

∫
Ω

|u|p
∗
dx

−
∫
Ω

g(x)udx.

Note that

Φ′
γ(u).v =K(∥ u ∥p)

(∫
Ω

∥∇u|p−2∇u.∇vdx+

∫
∂Ω

|u|p−2uv dσx

)
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− γ

∫
Ω

a(x)|u|q−2uvdx−
∫
Ω

|u|p
∗−2uvdx−

∫
Ω

g(x)vdx,

for all v ∈ X, where

X =W 1,p(Ω) := {u ∈ Lp(Ω) :

∫
Ω

|∇u|pdx <∞ }.

By a version of the Mountain Pass Theorem due to Ambrosetti and Rabinowitz
[17,20], without (P.S) condition, there exists a sequence (un)n ⊂W 1,p(Ω) such that

Φγ(un) → cα and Φ′(un) → 0,

where

cγ = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)) > 0

with

Γ = {α ∈ C([0, 1],W 1,p(Ω)) : α(0) = 0,Φ(α(1)) < 0}.

We recall that u ∈W 1,p(Ω) is a weak solution of problem (1.1) if it verifies

K (∥ u ∥p)
(∫

Ω

∇u|p−2∇u∇vdx+

∫
∂Ω

β|u|p−2u dσx

)
−

∫
Ω

γa(x)|u|q−2uvdx

−
∫
Ω

|u|p
∗−2uvdx−

∫
Ω

g(x)vdx = 0,

for all v ∈W 1,p(Ω). So the critical points of Φγ are solutions of problem (1.1).

2. Auxiliary results and proofs

Let Ls(Ω) be the Lebesgue space equipped with the norm |u|s =
(∫

Ω
|u|sdx

) 1
s , 1 ≤

s <∞ and let W 1,p(Ω) be the usual Sobolev space with respect to the norm

∥ u ∥=
(∫

Ω

|∇u|pdx+

∫
Ω

|u|p dx
) 1

p

.

From [1,6] the following norm,

(∫
Ω

|∇u|p dx+

∫
∂Ω

β|u|p dσx
) 1

p

, β > 0

is equivalent with the usual ∥u∥.
Now we can define the best Sobolev constant:

S = inf
u∈W 1,p(Ω)\{0}

∫
Ω
|∇u|pdx+

∫
∂Ω
β|u|p dσ

(
∫
Ω
|u|p∗dx)

p
p∗

.
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2.1. Proof of Theorem 1.1:

Assume that (un) is a Palais-Smale sequence for Φγ . A standard argument leads to
the boundedness of the sequence (un)n. Then there exists a subsequence still denoted
by (un)n, and u in X verifying un ⇀ u. Using the same arguments explored in [2],
it follows that there exists a constant L depending only on p, q and N such that

Φγ(u) ≥ −Lγ
p∗

p∗−q .

Putting ωn = un − u. Then by a lemma in Brezis and Lieb in [5], it follows that

∥ωn∥p = ∥un∥p − ∥u∥p + on(1),

|ωn|p
∗

p∗ = |un|p
∗

p∗ − |u|p
∗

p∗ + on(1).

Using the Lebesgue convergence theorem, we have,∫
Ω

gun dx→
∫
Ω

gudx,

∫
Ω

a(x)|un|q−2un dx→
∫
Ω

a(x)|u|q−2u dx

and ∫
∂Ω

β|un|p−2un dσx →
∫
∂Ω

β|u|p−2u dσx.

From the last three previous formulas, we obtain

∥ωn∥p − |ωn|p
∗

p∗ = on(1)

and
1

p
∥ωn∥p −

1

p∗
|ωn|p

∗

p∗ = c− Φγ(u) + on(1).

According to hypothesis that (un) is bounded in X. There exists a ≥ 0 such that

∥ωn∥p → a.

Thus,

|ωn|p
∗

p∗ → a.

Let S denote the best Sobolev constant in the embedding X ⊂ Lp∗
(Ω). Using

the inequality (6) in Theorem 1 in [4],

(S − ε)|u|pp∗ ≤ ∥u∥
p

+Bε|u|pp, ∀u ∈W 1,p(Ω),

which is a variant to Cherrier’s inequality for the fourth order case, and passing to
the limit, for arbitrary ε > 0, we get

(S − ε)a
p
p∗ ≤ a,

then,

Sa
p
p∗ ≤ a.
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We claim that a = 0; if not, assume that a > 0. Then from the previous inequality

a ≥ S
N
p .

On the other hand, we have
1

N
a = c− ϕγ(u),

thereby,

c ≥ 1

N
S

N
p − Lγ

p∗
p∗−α .

However, this conclusion contradicts the hypothesis. Therefore,

a = 0

and
un → u in X.

2.2. Proof of Theorem 1.2

In the sequel, we compare the minimax level cγ with a suitable number which
involves the constant S.

Lemma 2.1. There exist σ > 0, ρ > 0 and e ∈W 1,p(Ω) with ∥ e ∥> ρ such that
(i) inf∥u∥=ρ Φγ(u) ≥ σ > 0;
(ii) Φγ(e) < 0.

Proof.
(i) From the Hölder’s inequality and the compact embedding theorem, we have

Φγ(u) ≥
k0
p

∫
Ω

|∇u|pdx+
k0β

p

∫
∂Ω

|u|p dσx − γ

q

∫
Ω

a(x)|u|qdx

− 1

p∗

∫
Ω

|u|p
∗
dx−

∫
Ω

g(x)udx

≥C0 ∥ u ∥p −C1γ

q
|a|θ ∥ u ∥q − 1

p∗S
p∗
p

∥ u ∥p
∗
−|g|p′ |u|p

≥C0 ∥ u ∥p −C1γ

q
|a|θ ∥ u ∥q −C2 ∥ u ∥p

∗
−C3∥g∥∗ ∥ u ∥, (2.1)

with θ = p∗/[p∗ − q] and C0, C1, C2, C3 > 0.
Since q ∈ (p, p∗), then for ∥ u ∥= ρ > 0 small enough, we may find σ > 0 such

that
inf

∥u∥=ρ
Φγ(u) ≥ σ > 0,

where ∥g∥∗ is small.
(ii) Fix v0 ∈ C∞

0 (Ω)\{0} with v0 ≥ 0 in Ω and ∥ v0 ∥= 1.

Φγ(tv0) ≤M |t|p − γ|t|θ
∫
Ω

a(x)vθ0dx+ C − |t|p∗

p∗

∫
Ω

vp
∗

0 dx− |t|
∫
Ω

g(x)v0dx,

with M and C two positive constants, then it follows that

Φγ(tv0) → −∞ as |t| → ∞.
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Lemma 2.2. limγ→+∞ cγ = 0.

Proof. Let v0 be the function defined in Lemma 2.1. Then there is tγ > 0 such
that Φγ(tγv0) = max

t≥0
Φγ(tv0), thereafter,

K(∥ tγv0∥p)tpγ ∥ v0∥p = γtqγ

∫
Ω

a(x)|v0|qdx+ tp
∗

γ

∫
Ω

|v0|p
∗
dx+ t2γ

∫
Ω

g(x)v20dx. (2.2)

From (K2), there is c > 0, such that

K̂(s) ≤ c|s| for all s > s0 > 0.

Hence

ctpγ ∥ v0 ∥p≥ γtqγ

∫
Ω

a(x)|v0|qdx+ tp
∗

γ

∫
Ω

|v0|p
∗
dx+ t2γ

∫
Ω

g(x)v20dx

and then tγ is bounded, so there exists a sequence γn → +∞ and t∗ ≥ 0 with
tγn

→ t∗ as n→ +∞, and thus

K(∥ tγn
v0 ∥p)tpγn

∥ v0 ∥p< C,∀n ∈ N,

with C a positive constant, then we assert that

γnt
q
∗

∫
Ω

a(x)|v0|qdx+ tp
∗

∗

∫
Ω

|v0|p
∗
dx ≤ C,∀n ∈ N.

Hence, we claim that t∗ = 0; if not, let t∗ > 0 and then the last inequality becomes

γnt
q
∗

∫
Ω

a(x)|v0|qdx+ tp
∗

∗

∫
Ω

|v0|p
∗
dx→ +∞

as n→ +∞, which is absurd, so t∗ = 0.
Taking γ0(t) = te, with γ0 ∈ Γ, then we get

0 < cγ ≤ max
t∈[0,1]

Φγ(γ0(t)) ≤
1

p
K̂(tpγ).

As we have K̂(tpγ) → 0, so limγ→∞ cγ = 0.

As a consequence of Lemma 2.2, there exists γ∗ > 0 such that for every γ ≥ γ∗,

cγ < (1− p

p∗
)(k0S)

N
p .

Lemma 2.3. Let (un)n ⊂ W 1,p(Ω), with Φγ(un) → cγ , and Φ′(un) → 0. Then
(un)n is bounded in W 1,p(Ω).

Proof. Assume that Φγ(un) → cγ , and Φ′
γ(un) → 0. Then we have

pcγ + o(1) + o(1) ∥ un ∥ = pΦγ(un)− (Φ′
γ(un).un)

≥ A1γ(1−
p

q
)|a|θ ∥ un ∥q +A2(1−

p

p∗
) ∥ un ∥p

∗
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+(p− 1)

∫
Ω

g(x)undx,

where A1 and A2 > 0. We conclude that (un)n is bounded in W 1,p(Ω).
As mentioned previously, we apply a version of the Mountain Pass theorem

without Palais-Smale condition to obtain a sequence (un)n ⊂ W 1,p(Ω) such that
Φγ(un) → cγ and Φ′

γ(un) → 0.
Because (un)n is a bounded sequence in W 1,p(Ω), passing to a subsequence, we

may find γ > 0 with
∥ un ∥→ γ,

and it follows from the continuity of K that

K(∥ un ∥p) → K(γp).

On the other hand, we know that un ⇀ u in W 1,p(Ω), then

un → u in Ls(Ω), for 1 < s < p∗,

and
un(x) → u(x) a.e x ∈ Ω.

By the Lebesgue Dominated Theorem,∫
Ω

a(x) | un |q dx→
∫
Ω

a(x)|u|qdx.

Further,
|∇un |p⇀ |∇u |p +µ weak∗ − sense of measure,

|un|p
∗
⇀ |u|p

∗
+ ν weak∗ − sense of measure.

Afterwards, as a consequence of the concentration compactness principle due to
Lion (cf. [11]), there is an at most countable index set I such that

ν =
∑
i∈I

νiδi, µ ≥
∑
i∈I

µiδi

and
Sν

p/p∗

i ≤ µi,

for any i ∈ I with (µi)i, (νi)i ⊂ [0,∞), δi is the Dirac mass and (µi)i, (νi)i are
positive measures. We claim that I = ∅, otherwise, we have I ̸= ∅ and fix i ∈ I.
Take ψ ∈ C∞

0 (Ω, [0, 1]) such that ψ ≡ 1 if |x| < 1 and ψ ≡ 0 when |x| > 2 with
|∇ψ|∞ ≤ 2. Set ψρ(x) = ψ((x−xi)/ρ) for ρ > 0. Note that (ψρun) is bounded thus
Φ′

γ(un).(ψρun) → 0, that is

K

(∫
Ω

|∇un|p
)(∫

Ω

|∇un |p−2 ∇un.∇ψρundx+

∫
∂Ω

β|un|p−2unψρun dσx

)
=−K

(∫
Ω

|∇un|p
)
×
(∫

Ω

|∇un |p ψρ∇undx

+

∫
∂Ω

β|un|pψρun dσx

)
+

∫
Ω

|un|p
∗−2un.ψρundx
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+ γ

∫
Ω

a(x)|un|q−2unψρundx+

∫
Ω

g(x)ψρun dx+On(1).

As it is known that B2ρ(xi) is the support of the functional ψρ and by applying
Hölder inequality so, we obtain

|
∫
Ω

|∇un|p−2∇un.∇ψρundx| ≤
∫
B2ρ(xi)

|∇un|p−1 |un∇ψρ|dx

≤
(∫

B2ρ(xi)

|∇un|p
) 1

p′
(∫

B2ρ(xi)

|un∇ψρ|pdx
) 1

p

≤ C
(∫

B2ρ(xi)

|un∇ψρ|pdx
) 1

p

.

By the Dominated Convergence Theorem, we entail that∫
B2ρ(xi)

|un∇ψρ|pdx→ 0

when n→ ∞ and ρ→ 0.
Thus,

lim
ρ→0

[lim
n

∫
Ω

un|∇un|p−2∇un.∇ψρ] = 0.

On the other hand, we recall that K(∥ un ∥p) converges to K(αp), so we reach

lim
ρ→0

[lim
n
K(∥ un ∥p)

∫
Ω

un|∇un|p−2∇un.∇ψρ] = 0.

Similarly,

lim
ρ→0

lim
n
[K(∥ un ∥p)

∫
∂Ω

β|un|p−2unψρun dσx] = 0,

lim
ρ→0

lim
n
[

∫
Ω

a(x)|un|q−2unψρun dx] = 0,

lim
ρ→0

lim
n
[

∫
Ω

g(x)ψρun dx] = 0,

therefore ∫
Ω

K(γp)ψρdµ+Oρ(1) ≤
∫
Ω

ψρdν.

Tending ρ to zero we conclude that

νi ≥ K(γP )µi ≥ k0µi.

From the definition of ν and µ we have

νi ≥ (k0S)
N/p.

It does not make sense. Indeed, let i ∈ I be such that

νi ≥ (k0S)
N/p.

Since (un)n is a (PS)cγ for the functional Φγ , then
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pcγ = pΦγ(un) = pΦγ(un)− Φ′
γ(un).un +On(1)

≥ (1− p

p∗
)

∫
Ω

ψρ|un|p
∗
dx+On(1). (2.3)

Letting n→ +∞, we obtain

pcγ ≥ (1− p

p∗
)
∑
i∈I

ψρ(xi)νi = (1− p

p∗
)
∑
i∈I

νi ≥ (1− p

p∗
) (k0S)

N
p ,

which cannot occur ( because limγ→∞ cγ = 0), thereafter I is empty and thereby
un → u in Lp∗

(Ω).
On the other hand,

K (∥un∥p)
(∫

Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un −∇u) dx

+

∫
∂Ω

β
(
|un|p−2un − |u|p−2u

)
(un − u) dσx

)
=Φ′

γ(un). (un − u) + γ

∫
Ω

a(x)|un|q−2un(un − u)dx+

∫
Ω

g(x)(un − u)dx

+

∫
Ω

|un|p
∗−2un(un − u)dx−K (∥un∥p)

(∫
Ω

|∇u|p−2∇u (∇un −∇u) dx

+

∫
∂Ω

β|u|p−2u (un − u) dσx

)
.

In view of un ⇀ u, a standard argument (similar to those found in [13]) shows that

∇un(x) → ∇u(x) a.e x ∈ Ω,

and
un(x) → u(x) a.e x ∈ Ω,

then

K (∥un∥p)
(∫

Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un −∇u) dx

+

∫
∂Ω

β
(
|un|p−2un − |u|p−2u

)
(un − u) dσx

)
→ 0.

Using the following inequality,
∀x, y ∈ RN

| x− y |η≤ 2η(| x |γ−2 x− | y |η−2 y).(x− y) if η ≥ 2,

| x− y |2≤ 1

η − 1
(| x | + | y |)2−η(| x |γ−2 x− | y |η−2 y).(x− y) if 1 < η < 2,

where x.y is the inner product in RN , we get

c k0

(∫
Ω

|∇un −∇u|p dx+

∫
∂Ω

β|un − u|p dσx
)
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≤ K (∥un∥p)
(∫

Ω

(
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un −∇u) dx

+

∫
∂Ω

β
(
|un|p−2un − |u|p−2u

)
(un − u) dσx

)
.

Consequently,
∥ un − u ∥→ 0,

which will imply that
un → u in W 1,p(Ω).

Thus
Φγ(u) = cγ , Φ

′
γ(u) = 0

and we get the solution uγ , which is a mountain pass type.
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[6] Z. Denkowski, S. Migórski and N. S Papageorgiou, An Introduction to Nonlin-
ear Analysis: Theory, Springer, New York, 2003.

[7] A. El Khalil, On the spectrum of Robin boundary p-Laplacian problem, Moroc-
can J. of Pure and Appl. Anal. (MJPAA) Volume 5(2), 2019,s 279–293.

[8] M. F. Furtado, L. D. de Oliveira, J. P. P. da Silva, Multiple solutions for a
Kirchhoff equation with critical growth, Z. Angew. Math. Phys. 70 (11) (2019),
1–15.

[9] N. Fukagai and K. Narukawa, Positive solutions of quasilinear elliptic equations
with critical Orlicz-Sobolev nonlinearity on RN, Funkciallaj Ekvacioj 49 (1981),
235–267.

[10] S. Leonardi, N.S. Papageorgiou, Arbitrarily Small Nodal Solutions for Para-
metric Robin (p, q)-Equations plus an Indefinite Potential, Acta Mathematica
Scientia, Volume 42(2022), 561–574.



On Local and Nonlocal Robin Boundary Value Problem with Critical Nonlinearity 1869

[11] P. L. Lions, The concentraction-compactness principle in the calculus of vira-
tions. The limit case, Part 1, Rev Mat Iberoamericana, 1985, 1: 145–201.

[12] M. Massar, On a fourth-order elliptic Kirchhoff type problem with critical
Sobolev exponent, Advances in the Theory of Nonlinear Analysis and its Ap-
plications 4 (2020) No. 4, 394–401.

[13] A. Ourraoui, On a p-Kirchhoff problem involving a critical nonlinearity, C. R.
Acad. Sci. Paris, Ser. I(2014).

[14] A. Ourraoui, On an elliptic equation of p-Kirchhoff type with convection term,
Comptes Rendus Mathematique Volume 354, Issue 3, March 2016, Pages 253–
256.

[15] A. Ourraoui, Existence result for a class of p-Biharmonic problem involving
critical nonlinearity, Mathematicki Vesnik, 71, 3 (2019), 277–283.

[16] N.S. Papageorgiou, A. Scapellato, Concave-Convex Problems for the Robin
p-Laplacian Plus an Indefinite Potential, Mathematics 2020, 8(3), 421;
https://doi.org/10.3390/math8030421.

[17] P. Pucci, Geometric description of the mountain pass critical points, Contem-
porary Mathematicians, Vol. 2, Birkhäuser, Basel, 2014, 469–471.
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