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Abstract By applying the Mountain Pass Theorem, we establish the exis-
tence of a weak solution for a class of nonlinear elliptic problem involving
an a(z)-biharmonic operator and with an I(z)-hardy term in a bounded do-
main of RY. Provided that certain additional assumptions are made regarding
the nonlinearities, the corresponding functional will satisfy the Palais-Smale
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1. Introduction

In this paper, we investigate the existence of weak solution of the following elliptic
problem involving an «(z)-biharmonic operator and I(z)-hardy term

(z)—2
Y MQE 20+ dyg(z,v) i D,

2 _
Aa(z)v =M NOZE

(1.1)

Av=v=0 on 09,

where ® is a bounded domain in RY with smooth boundary. We indicate by v(z) :=
dist(z,09) the distance from the point z € © to the boundary 9D, Ai(z)v =
A (‘AU‘O‘(Z)72AU) is the «(z)-biharmonic operator, the exponents «, 8 and [ are

continuous functions on D, Ay, Aa, A3 are three positive parameters, g : ® x R — R
is a Carathéodory function and @ is an indefinite weight function.
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Nonlinear singular elliptic problems have been a popular topic of study in recent
years. They arise in some parts of science, such as boundary layer phenomena for
viscous fluids, chemical heterogeneous catalysts, nonlinear electrorheological fluids
and the flow in porous media. This has led to a great deal of excitement and interest
from a number of authors in recent years, as the investigation of the existence and
multiplicity of solutions for problems involving biharmonic, a-biharmonic and «(z)-
biharmonic operators, where « is a continuous function, has attracted significant
interest (see [2,4,13-15,18,20,23-25]).

The same problem, for A = A3 = 0 is studied by Laghzal and Touzani [18].
The authors determined that there is at least one non-decreasing sequence of non-
negative eigenvalues for their problem.

In [1], Taarabti, El Allali and Hadddouch studied the existence of solutions to
a nonhomogeneous eigenvalue problem with Ay = Ay = 0, by considering different
situations with respect to the growth and they proved that a continuous family of
eigenvalues exists.

In [16], the present author studied the existence of the following fourth-order,
nonlinear elliptic problem

A2

a(z

o+ a(2)|v]*®) =20 = Af(z,v) inD,

v=Av=0 on 09,

for A > 0, by using the Mountain Pass Theorem.

The remaining sections are organised as follows. In Section 2, we present fun-
damental results for the generalized Lebesgue-Sobolev L*(*) (D) and W™(*)(D).
Moreover, the Mountain Pass Theorem is recalled (Theorem 2.2). Section 3, we
prove that weak solutions exist for (1.1) by presenting several lemmas.

2. Preliminaries

For the reader’s convenience, we recall in what follows some necessary background
knowledge and propositions concerning the generalized Lebesgue-Sobolev spaces
L3 (D) and W) (D) where D is an open subset of RN (see for example [3,6,7,
9,11,12,17,19,22]).
Let
Ci(®)={aeC®):az) > 1, for every z € D}.

For every o € C4 (D), we define
ot = max{a(z); z € D} and o~ = min{a(z); 2z € D}.

The generalized Lebesgue space L) (D) is defined as
Lo®(®) = {U :® = R, measurable and / lu(2)[*#dz < oo} .
o)

We endow it with the Luxemburg norm

. Uz
||Ua(z)=1nf{9>0:/©‘(0)

a(z

bz < 1}.
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Proposition 2.1. [9,10,21] The space (L“(Z)(Q), ||.Ha(z)) is separable, uniformly
convex, reflexive and its conjugate space is LB(Z)(Q) where B(z) is the conjugate
function of a(z), i.e

() —&—% =1 foreveryze®.

For v € L*3)(D) and v € LP3)(D), the Hélder inequality

] /@ v(2)v(z)dz

holds true.

1 1
S (a + B) ||U||(x(z ||UH,6 z) < 2||UH01(Z)||U||B(Z)’

We denote by modular p the quantity

pv) = [ fol
D

Proposition 2.2. [9,17] if v € L**)(D) and o < oo, then
L llacz) < (= 1;> 1) equivalent p(v) < 1(=1;> 1);
2. if [[ollagsy > 1, then J0llS) < p(v) < [l0)laf,
8. if [vllasy <1, then [[ollsc,) < p(v) < ol

For every positive integer m, the Sobolev space with the variable exponent
Wm(2) is given by

W) (D) = {v € L)) : D% € L*® (D), o < m} :

equipped with the norm

||U||ma(Z)_ Z ‘DK

|k|<m

a(z)

where Dv =

Zivzl Fog.
The space W (2) (D) is also a separable and reflexive Banach space. We refer
the reader to the papers to [8,9,17].

olxl . o s s —
57525 0N U with K = (k1,...,kN) a multi-index and |k| =

Theorem 2.1. Let us consider the case where o and s are elements of C(D), such
that s(z) < ai,(z) for all z € ©, In this situation, a continuous embedding is
available:

Wm,a(z) (@) c Ls(z)(:D)7

where

(0%

sy = [Tt i ma(m) <N,
" +oo if ma(z) > N.

A change from the symbol < to < results in a compact embedding.
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We'll call Wgn’a(z)(ig) the closure of C§°(®D) in W™*()(D).
In this paper, we shall look in the following space for a weak solution to problem

(1.1).
W =Wy (@) n e (),
equipped with the norm
lvllw = [[vll1,ac) + [V]2,a02)-

As stated in [26], the norm ||.[|yy is equivalent to the norm [|A.||4 (. in the space W.
Therefore, the norms |[.|[2,a(2), ||.|lw and [|A.|[4(:) are equivalent. We may consider
the following norm to be an equivalent norm in the space W:

[oll = lAv]la(z),

i.e.

a(z)

|v|| = inf {a >0 /@ ’Ave(z)

From Proposition 2.2 we get the following modular-type inequalities.

Proposition 2.3. [9,17] If v € L**)(D) and ot < oo, then

dz < 1}.

1. |lv]| < 1(= 1;> 1) equivalent /i) |Av|*F)dz < 1(=1;> 1);
2 i ol > 1, then ol < [ 102z < o
i ol < 1 then ol** < [ |80]*Caz < o,
D
In the third section we need the I(-)-Hardy-Rellich inequality, which is given in

the following lemma.

Lemma 2.1. [18] Assume that 1 <1~ <1t <a” <ot <& and It < aj(2), for
any z € ®. Then there exists a positive constant C' such that the I(-)-Hardy-Rellich

inequality
IS

/j3 $|Av|a(z)dz < C/S %77(2)21(2) dz,
holds in one of the following cases for all v € W(]Q’a(z)(i)).'
o |v| <y(2)? and |Av| > 1.
o |[v| > 7(2)? and |Av| < 1.
Now, we present the theorem underlying this work, the Mountain Pass Theorem:

Theorem 2.2. Let (X, ||.|x) be a Banach space. Assume that ¢ € C'(X,R),
#(0) = 0 and satisfies the three conditions

1. There exists p,b > 0 such that ¢(v) > b for ||v||x = o.
2. There exists vg € X with |vo||x > o and such that ¢ (vy) < 0.
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3. ¢ satisfies the condition of (PS)., that is, any sequence (v,), C X such that
d(vp) = ¢ and ¢'(v,) — 0 in X* as n — 0o, has a convergent subsequence..

Then c is a critical value of ¢, with

= inf h
¢ ngAhIél[%,,}i](b(L( ),

where A is the set of all paths connecting the origin to vy of X :
A={eC(0,1],X), ¢(0) =0, (1) = vo} .

3. Basic assumptions and technical lemmas

In this section, we look at the existence of weak solutions to (1.1). To establish
the existence result, we outline the assumptions pertinent to our problem. We as-
sume that ® C RY is a bounded domain with smooth boundary 09, a € C (D)
satisfies the log-Hélder continuity condition, 8,1 € C4 (D) and a(z) < & with
1<l <lt<a <at<f” <" <aj(z) and g: D xR — R is a function such
that:

($1) g is a Carathéodory function, such that

lg(z,v)| < r(2)|v %7 for all (z,v) € ® x R,
where r € L*1(*)(®) is non-negative function and %(z) + ﬁ =1.
($2) There exists a™ < © < 37, such that
0 < 0G(z,v) <wvg(z,v), forall zeD,
where G(z,v) = [ g(z,t)dt.
(93) The potential Q € L (D) N L*>*) (D) is non-negative function, and ﬁ +
=1.

B (z)
Before presenting our main result, let us first recall the definition of weak solu-
tions to equation (1.1).

Definition 3.1. v € W is a weak solution of (1.1), if for all ¢ € W
|U|l(z) 2y

/D |AU|a(Z)_2AUAQDdZ — )\1 W

godz )\2/ Q(2)[v|P A 2vpdz

— /\3/ g(z,v)pdz = 0.
D

Theorem 3.1. If the hypotheses (91)-(93) are satisfied, then problem (1.1) has a
non-trivial weak solution for all A1 € (0,1), A2 € (0,3) and A3 € (0, A5).

The energy functional corresponding to the problem (1.1) is defined by the
following equation

A |’U|l(z) Qz
a(z) _ 1 B(=)
Dar a3 (V) = / )|AU| dz /91(2)7( 1) & / B |U‘ dz
/)\3 2,0)
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Lemma 3.1. The functional ¢, x, 3 is well defined and C*(W, R). Moreover

‘U|l(z)72v

a(z)—2
<¢A1 Ao 3(0); / |Av| G2 AvApdz — >‘1/ 7 (2)2H=) pdz
—)\2/ Q(z)|v|5(z)_2v<pdz—>\3/ 9(z,v)pdz.
D )

By combining (£1) with (£)3), it is easy to see that (b/)q,/\z,/\s belongs to the
topological dual of W.

Lemma 3.2. There exist A\f, A5, A5 > 0 such that for any \y € (0,A]), A2 €
(0,A5) and A3 € (0, A}) there exist 0,b > 0 such that ¢, x, 2, (V) > b on ||v]| = 0.

Proof. By I(z)-Hardy-Rellich inequality, we have

e \U|

a(z) o |U|
/@ |Av|*®)dz Al/l 721(2)‘12
> — /|Afu|a(z)dz =)z
1

> a(z)
> (oﬁ C’oﬁ)/ |Av|**dz.

On the other hand, by the use of the Holder inequality, we get

/|sz|dz<

< 5_ IITHel(z)II v|?

then

()

‘()

< ol 1120

with a(z) < ab(z). Theorem 2.1 which gives us the embedding W < L**)(D) is
continuous, and we can find a constant ¢; > 0 such that:

[v]la(z) < erllv]], Vo € W.

Then
160 < il ol

where
i=+ if Ju||l=1

/ ‘%Mm&
o | B(2)

And we obtain

2
dzgi Q sa(z ’Uﬂ(Z)
B,II ls2(2) 110 o

9 i
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Since the embedding W < L% (2)8(2) (D) is continuous, we can find a constant co > 0
such that:

[0llsg(2)8(2) < e2llvll, Yo e W.

/ ‘%MB(Z)
o | B(2)

i=+ if |l =1

Then
202

b

with

The above gives us

1 1 |U|l(z) z)
= _— a(z) g, _ = B(2)
¢>\17/\2,>\3(U) /@Q(2)|AU| dz )\I/CDZ(Z) 2l(z) /)\2 Z |U| dz
7/ A3G(z,v)dz
o)

1 2)\ c
> _ a(z) 2C2
> (= W)/ Aoz - 222 g

2)\301
7llsy (2 10117
1 2XaCo 2X3¢1
> (a+ e = (221l + 22 ) 11
and ¢y, ¢o are positives constants, for any v € W, with ||v|| = o, we have
1 ot 2)\202 2)\301 i
Sranann® 2 (o = Gz ) I = (220000 + 5 Wlaco ) ol
1 1 ol 2)\202 2)\361 i
(- Cm) o = (21l + 5 o) o
i_pgi 2)\262 2/\361
— () 1@l = 222 v
where
i=+ it |ou|=1
Putting
) R oo
ANi=——~<(C, M=——"—"——— AN=——"-"——
! 5_ 2 a+62”QH52(Z) ° O‘+01||TH51(Z)

then for any A1 € (0,A]), A2 € (O A3), Az € (0,A3) and v € G, with [v]| =

sufficiently small, there exists b = such that

o' =8’
a,B

Bxaq a0 (V) =D > 0.

Lemma 3.3. There exists vg € W with |[vg|| > o such that ¢, a, xs(v0) < 0.
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Proof. Now, we demonstrate that vy # 0 i.e. vy is a weak nontrivial solution of
problem (1.1). Let zp € Dg. Since o, 8 € C(D), we can choose a > 0 small enough

such that B, (20) C Do and o = mil,ep, () a(2) < By = max,ep, () B(2).
Now, let us choose ¢ € C3° (D) with |¢] < 1, ”wHWzva(z)(Ba(zU))ﬁWOl’a(Z)(Ba(zo)) <
c(a) and [Y| sy (B, (z9)) > 0- Thus, for any 0 < ¢ < § we deduce from (3.1) that

Brr,20,03(t)

1 a(z A |t1[)|l(z> Q(Z) B
= — A ( )d _ 1 LA T 3, Q) A( )d B \ .
/D a(z)| i : /@ 1(2) v(2)26(=) z /9 2 B(z) [ta)] z /):) 3G(z, t)dz

ay ay B
e L N e ACIOI e
D 5+ D

taa a~ pd Alta a” at 2)\26t57 B(z2)
< = max{c(a) 0, c(a)Po } o min {c(a) 0, c(a)*o } - /@Q(z)h/;\ dz.
Since ag < By, we get da, x5 (1) < 0 by taking 0 < t; < § small enough.
Hence, ¢, 1,23 (Vo) < ;05,03 (E190) < 0. O

Lemma 3.4. The functional ¢x, x, 23 Satisfies the Palais-Smale condition (PS).,
for any c € R.

Proof. Let (v,) be a (PS). sequence for the functional ¢y, , a3 in W ie. ¢ (vy,)
is bounded and ¢} , \3 (vn) — 0. Then the sequence v, is bounded in W.
In fact, since ¢x, x,,x3 (vy) is bounded, we have

’

C Z¢/\1,A2,>\3 (UTL)

1 alz A n Uz) Q P
:/9 (Oé(z)mvn - l(zl)JE}ZJzz(z) — A2 5((5))|Un|ﬁ( )>dz - /@ 3G (z,vn)dz

A ‘Un|l(z)

1 ax) g, A o™ Q(2) (Z)>
Z/}g(a(z)mvn dz l<z)7(2)21(2)dz )\Qﬁ(z> lun|#®) ) dz

Agvn
- g (z,vp)dz.
L7

Since
U, ‘l(z)

<¢/>\17)\27)\3(’Un),1)n>:/ |Avn|a(z)dzf)\1/ Wdz—)\g/ Q(z)|vn\5(2)dz
D o V(%) D
—)\3/ 9(z, vn)vndz,
D

then
C >— |AU | (= dZ - )\ 7|Un| - = /\ Q(Z)|’U | (Z)dz
- n 1 2l(z) ﬁ 2 n

8() [un, |l(z)
®<¢/\1,,\27A3 (vn) ’Un - /|AU| dz + — //\1 2l(z)
+7/ X2Q(2)|vn|?Fdz
0 /s
11 11 |y |[1(2)
(L1 Av, ) N / AUn| "
2 (g ) [1awrOa s (=) [ 2t

11 1
+ (@ - 6_> /’D )\2Q(z)"un|ﬁ(Z)dZ + é <¢/)\1,>\27)\3 (U") ’U"> :
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By contradiction, we assume that (v,) is unbounded in W. In particular, for n
large enough, we can choose |Ju,|| > 1. Therefore, there exists C* > 0 in such a
way that . ,

—C oy < <¢i\17/\2,>\3 (vn) 7Un> < C vall,

because ¢ , y, (vn) — 0. To that end,

, 11 - 11 |0, |1?)

S 2 ) oall® (2= =) [ a2y
¢z (a+ @) el (@ l>/@ BEIERY
1 1 1
+(—_> [ @@z = S ol

@ Q]

1 1 - 1 "
> (= - = f—— )

If we divide by ||v,||* in the last inequality and let n — oo, we get a contradiction.
The consequence is that the sequence {v,} is bounded in W. Without loss of
generality, we assume that {v,} is weakly convergent to v in W. Then for all
s(z) < a3(2), {vn} converges strongly to v in L*(*) (D).

Since ¢, y, a3 — 0 in W*, we conclude that <([)£\17)\27>\3 (V) ,Un — v> — 0.

We also have <¢’)\1 Aoz (V)5 Un — U> — 0 as m —> oo because v,, converges weakly

to v in W.
Thus,

<¢l/\1,)\2,)\3 (Uﬂ) - ¢>\17>\2,/\3(U)? Up — U> — 0.

Using 1, we get

%0 [ 0in) = g(2.0) (0, = 0) s

<ha [ 19(200) = gz}l = vlds
)
g)\g/ r(2) (\vn|“(z) + [0]*® 20,0 + 0|2 + |Un|"‘(z)’2vnv> dz.
o)
By the Holder inequality, we have
oz oz €
[ r@loal @z < 2l ol Do < 5
)
Using Young’s inequality, we get
| @l pldz < [ r(a) (Jol"® 4 101) d
o) o)

< 2rllosey (1oal @ llags + 101°Facs))

€
< -.
4

Similarly, we show that the last two terms are less than §. Then

— 0, when n — 0. (3.2)

Xs /@ (9 (220m) — 9(2,)) (vn — v) d
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On the other hand, we show that

)\2/ Q(z)(|vn|ﬂ(z)*2vn = |v|ﬂ(z)*2)(vn —v)dz| — 0, when n — 0.
)

Indeed,

z 2 9
[ @0z < 21l oDl < 5
Using Young’s inequality, we get

B(z)— B(2) B(2)
| @@l el < [ Q) (ol + 10179

< 21Ql o) (101" lage) + 1o
3

<=
— 4

Then

A2 /@ Q(2) (Jval*@ 20, — [v|*F72) (v, — v)dz

3.3
SM/Q@Owwﬂﬂw@*wwmwm+mW”%WVz o
)

<e.

On the other hand,

|Un|l(z)_2vn _ |U|l(z)—2v
L (e (o =0z
</ |Un|l(z)72vn _ |U|l(2)721)
{z€D:v(2)>1}

- AP
)
{zeD:v(2)<1}

|vn, — v|dz

|Un|l(z)72vn _ |U‘l(z)72v
’7/(2’)2[(2)

|vn, — vldz.

Therefore,

|,Un|l(z)—2vn _ |U‘l(z)_2’U
/ ( 3102) (v, —v)dz
D 7(2)

< (1on 4 ol 4 o O 4 [off)) dz
{zeD:7(2)>1}

1 (|Un‘l(z) + 0] o0 + o[ 20,0 + |U|l(2))

+ / dz.
(zeDn(z)<1y V(2)? ~7(2)20G)~-1)
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By applying Holder’s inequality, we obtain

|Un |l(z)—2vn _ |U|l(z)—2v
L (s (i =0}z

I(z I(z)—1 1(2)—1
Sc7(||vn|g(2) + ||v||;23z) ||vn||ﬁ<z> + ol an@(z)

I(z
S5+ )

I(z)—1
5(:) sy |

s2(z)

I(z
+ (o2 4 | =

a(z)

<> <>2 AL
Un_ i(z)-1 (=)
=21 = e + =12 )

By (3.1), we have

Un|l(z)_2’Un _ U|l(z)_2’U
(e
D 7(2)

I(z z)—1 I(z
Sc7(||vn||;(3)+|| 1525 Hlomllace) + lon 1205 vllac) + lonlliE)

1 I(z 1 I(z)—1
e (nAvnnB&z) + 1A Avl e

I(z
||A unl IS5 I AVSEL + [ Avlae) ) )-
(2)

|’Un |l(z)—2,Un _ |U|l(z)—2,U
J (e o vz

= (kl(llvnlll(z) + IO ol + [oa O~ ol + [loa|°F)

Then

l I(z)—1 l 1 l
<|| n\|<z)+ [ n||+ o' [l ||+|v||(z>))

where k; is a constant given by the embedding of WOQ’(X(')(Q) in L) (D). Hence

|Un|l(z)—2vn _ |U|l(z)—2U
/ < 310 (v, —v)dz
D 7(2)

1
<er (k N ) <||vn||l<z> n ||v||l<z>)
C
1 o N
+er (’f + c) (|v||l< ol + o] 1||v||)

<e.

01920, — [off)-2,
A ( NBEE (0 —v)dz

The last step consists of using the following elementary inequalities (see [5]):

Since

— 0, when n — 0. (3.4)
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, A 1 .
(P2 =[P 725) (v =) =2 5w =<, 522, (3.5)
(P20 =[P 2) v = Qv+ > 2 (G- Dlv =<’ 1<j<2, (3.6)
for all ¢,v € RN. Put
Uz ={z €D a(z) 22}, Yo ={2z€D:1<a(z) <2},

Then, from (3.5) and (3.6) it follows that

/ |Av, — Av|[* P dz < Cg/ AY (Av,, Av) dz, (3.7)

$ho(z) D

/ Vo, — Vo|*Fdz < cs/ AN (Yo, Vo) dz, (3.8)
Va(z) D

a(z)

)<2—a<z>>¥ p

/ |Avy, — Av\a(z)dz < 09/ (A(l) (Avp, Av)) 2 (Tm (Avy,, Av) 2,
Bz D
(3.9
N e (2-a(x) 2
/ Vo, — Vo|*Pdz < Cg/ (A< ) (Yo, Vv)) (v( ) (Vun, VU)) dz,
Voy(z) D
(3.10)

where AF) T#) . R¥ x RF — R,k =1, N, are defined by the following expressions
AB (,6) 1= (IO = | O72) (= ). XD (w1) 1= v + I,
for all ¢,v € R¥ k=1, N.
Now, according to the definition of the function ¢y, »,a3 and relations (3.7),

(3.2), (3.3) and (3.4) we have

0 §/ (|Avn|a(z)_2Avn - |Av\a(z)_2AU) (Av, — Av) dz
D

I(z)—2 (z)—2
Un Un — |U v
= <¢l)\1,)\2,)\3 (U") - 80,)\1,)\2,)\3 (U)vv’ﬂ - U> + )‘1 / (‘ | | | ) (Un - U)dZ

o RBES

z Un p(2) 2’Un— () Bz)-2 Un —V)az 3 Z,Un)— zZ,U Un —U z,
+M/QUU| vl )( M+A/@( )—g(2,v)) ( )d
-0

when n — o0o. It follows that

lim [ AY (Av,,Av)dz = lim [ A (Vu,, Vo)dz = 0. (3.11)

We can therefore assume that 0 < / AW (Av,, Av)dz < 1.
)

Then, if / AW (Av,, Av)dz = 0, then A (Av,,, Av) = 0 since A (Av,,, Av) >
D

0in ®.
Ifo < f@ MY (Av,, Av)dz < 1, then, due to the Young inequality

Al B 1 1
AB<_+Z_ VARB —4 =1, d de
= d + d, 9 9 > 07 d + d, 9 ) e ( 7+OO)7
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with
—a(z)
2

a(z)
A= (A<1> (A, )) ? / AD (A, Av)dz :
RUNS)

><2 a(z)) e

b

B= (T<1> (Avy, Av)
2

d=— andd = — =

a(z) an 2 —a(z)’

we conclude that

(L
(2—a(z)) 2

X (T(l) (Avn,Av)) dz

1
2

- a(z)
A(l) (A'Un, A’U) dz) / (A(l) (Avm Av)) p}
Va(z)

a(z)

_a(=)

a(z) 2
g/ (A(l) (Avn,Av)) 2 (/ AD (Avn,Av)dz>
Ry RUNS)

a(z)

(2—a(2)
X (C(l) (Avn,AU)) ® dz

g/ AD (Avn, Av) (/ AD (Av,, Av) dz)
m(x(z) m(x(z)

a(2)
§1+/ (T(l) (Avn,Av)) dz.
D

1
2

+ (T(U (Avn, Av)) W)) dz

Hence, by relation (3.9),

1
— |Av, — Av|*Z)dz
€9 Ju, )

H a(z)
< (/ AW (Av,, Av) dz) (1 —|—/ (T(l) (Avn,AU)) dz) .
DI o)

We also have
1

— Vv, — Vv|°‘(z)dz
Co ua(z)

S(A

By (3.7), (3.9), (3.11) and (3.12), we have

[SE

AN (an,Vv)dz> <1+ / (r (an,Vv))a(Z)dz). (3.12)
)

a(z)

/ |Av, — Av|*®)dz = / |Av, — Av|*P)dz + / |Av, — Av|*®dz — 0,
o) Ua(z) D)

if n = oo. In a similar way, from (3.8), (3.10), (3.11) and (3.12) we get

/ Vv, — Vo|*®)dz = / |V, — Vo|*®dz + / Vv, — Vo|*®dz — 0.
D Ho(z) Vo (z)
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Therefore,
|vn — v|a4r < / (|Avn — Av|*®) 4 |V, — VU\O‘(Z)) d—0,
D

when n — oo. So, the sequence {v,, } strongly converges to v € W and the functional
®xr, 00,03 Satisfies the (PS), condition in W.
Proof of Theorem 3.1: Set

A={eC(0,1],), ¢(0)=0, «(1)=1wvo},

= inf h)).
°= kg o

The energy functional ¢y, 1, a3 satisfies the geometric conditions of the Mountain
Pass Theorem according to Lemmas 3.2, 3.3 and 3.4. Hence c is a critical value of
®x1.00,13 associated with a critical point v € W, which is exactly a solution of (1.1).
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