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Abstract In this paper, we establish the existence, uniqueness and construct
fourth-order numerical method for solving fully third-order nonlinear differen-
tial equation with integral boundary conditions. The method is based on the
discretization of an iterative method on continuous level with the use of the
trapezoidal quadrature formulas with corrections. Some examples demonstrate
the applicability of the theoretical results of existence and uniqueness of solu-
tion and the fourth-order convergence of the proposed numerical method. The
approach used for the third-order nonlinear differential equation with integral
boundary conditions can be applied to differential equations of any order.
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1. Introduction

Third-order differential equations arise in many different fields of mechanics and
physics, for example, in the deflection of a curved beam having a constant or varying
cross section, a three-layer beam, electromagnetic waves or gravity driven flows and
so on [9]. Recently, third-order two-point or multipoint boundary value problems
(BVPs) have attracted a lot of attention (see e.g., [1, 2, 4, 8, 14, 19] and references
therein). It is known that BVPs with integral boundary conditions cover multipoint
BVPs as special cases. It is worth mentioning here some works on third-order BVPs
with integral boundary conditions [3, 10–12,21–23].

In this paper we consider the following boundary value problem (BVP)

u′′′(t) = f(t, u(t), u′(t), u′′(t)), t ∈ (0, 1), (1.1)

u(0) = c1, u
′′(0) = c2, u(1) =

∫ 1

0

g(s)u(s)ds+ c3, (1.2)
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where f, g are continuous functions and c1, c2, c3 are real numbers. Some simplified
versions of the above problem were studied in [11, 12, 22]. Namely, in [22] Zhao et
al. investigated the existence, nonexistence, and multiplicity of positive solutions
for the problem

u′′′(t) = f(t, u(t)), t ∈ (0, 1), (1.3)

u(0) = 0, u′′(0) = 0, u(1) =

∫ 1

0

g(s)u(s)ds (1.4)

in ordered Banach spaces by means of fixed-point principle in cone and the fixed-
point index theory for strict set contraction operator. One example was given to
illustrate the existence of positive solutions although this solution was not shown.
Later, in 2012 and 2013 Guo et al. [11,12] by using the fixed-point index theory in
a cone and nonlocal Green function obtained the existence of at least one positive
solution for the problem of the type (1.3)-(1.4), where f = f(t, u, u′′) and f =
f(t, u, u′), respectively. In [12] a complicated example was designed to satisfy the
sufficient conditions of the existence.

Remark that except for boundary conditions (1.2), other types of integral bound-
ary conditions for the fully or not fully third-order differential equations have also
attracted attention from many authors. Among them there are the boundary con-
ditions

u(0) = 0, u′(0) = 0, u(1) =

∫ 1

0

g(s)u(s)ds. (1.5)

Some authors, e.g., Guendouz et al. [10] studied the existence of positive solutions
of the BVPs (1.1), (1.5); Smirnov [17] investigated the existence and uniqueness
of solutions by using the Green function of the differential equation with nonlo-
cal boundary conditions. A year after, Smirnov studied the existence of multiple
positive solutions of the equation (1.3) with the boundary conditions

u(0) = 0, u′(0) = 0, u(1) = λ[u], (1.6)

where λ[u] =
∫ 1

0
u(s)dΛ(s)ds is a linear functional on C[0, 1] given by Stieltjes

integral with ı̂ a suitable function of bounded variation. Boundary conditions (1.6)
include as special cases multipoint conditions and integral conditions. In [21] Zhang
and Sun investigated the existence of monotone positive solutions for the following
nonlocal problem

u′′′ + f(t, u, u′) = 0, t ∈ (0, 1),

u(0) = 0,

au′(0)− bu′′(0) = α[u],

cu′(1) + du′′(1) = β[u],

where α[u] =
∫ 1

0
u(s)dA(s)ds, β[u] =

∫ 1

0
u(s)dB(s)ds are linear functionals on

C1[0, 1] given by Riemann-Stieltjes integrals. Very recently, Szajnowska and Zim
[23] studied the existence of positive solutions to the third-order differential equation
of the form

−u′′′ +m2u′ = f(t, u, u′),

subject to the non-local boundary conditions

u(0) = 0, u′(0) = α[u], u′(1) = β[u],
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where m is a positive parameter and α and β are functionals (not necessarily linear)
acting on the space C1[0, 1].

It should be said that the mentioned above works are only concerned with the
existence of solutions or positive solutions but not with the finding of solutions. To
our best knowledge, only in [15] Pandey proposed the finite difference method for
solving the problem

u′′′(t) = f(t, u(t)), t ∈ (0, 1),

u(0) = α, u′′(0) = β, u(1) =

∫ 1

0

g(s)u(s)ds.

For the linear test problem when f = f(t) the author proved that the proposed finite
difference method has the accuracy at least O(h2). Recently, in [7] we established
the existence and uniqueness of solutions and proposed an iterative on continuous
level for finding the problem (1.1), (1.5). The methodology used in this paper is
similar to the one in our previous work [5], where for the fourth-order nonlinear
equation with integral boundary conditions we constructed an iterative method on
continuous level and its discrete version with the accuracy O(h2).

Motivated by the above facts, in this paper we construct a higher order numerical
method, namely, method of fourth order of convergence for the problem (1.1)-(1.2).
Before doing this we establish the existence and uniqueness of solutions of it. Many
numerical examples confirm the accuracy of O(h4) for the proposed method.

2. Existence and uniqueness of solution

To study the problem (1.1)-(1.2) we reduce it to an operator equation. For this
purpose we set

φ(t) = f(t, u(t), u′(t), u′′(t)), (2.1)

and

α =

∫ 1

0

g(t)u(t)dt. (2.2)

Then the problem becomes

u′′′(t) = φ(t), 0 < t < 1,

u(0) = c1, u
′′(0) = c2, u(1) = α+ c3.

(2.3)

Now, we introduce the mixed space of functions φ(t) ∈ C[0, 1] and numbers α ∈ R
denoted by B = C[0, 1]× R. For elements w = (φ, α)T ∈ B we define the norm

∥w∥B = max(∥φ∥, r|α|), (2.4)

where ∥φ∥ = max0≤t≤1 |φ(t)|, r is a number, r > 0, to be determined later in every
particular case.

Now, let w = (φ, α)T be an arbitrary element of B. In the space B define the
operator A : φ → Aφ by the formula

Aw =

 f(t, u(t), u′(t), u′′(t))∫ 1

0
g(t)u(t)dt

 , (2.5)

where u(t) is the solution of the problem of the form (2.3).
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Lemma 2.1. If w = (φ, α)T is a fixed point of the operator A in the space B, i.e.,
is a solution of the operator equation

Aw = w (2.6)

in B, then the function u(t) defined from the problem (2.3) is a solution of the
original problem (1.1)-(1.2).

Conversely, if u(t) is a solution of (1.1)-(1.2), then the pair (φ, α)T given by
(2.1) and (2.2) is a solution of the operator equation (2.6).

Proof. Suppose w = (φ, α)T is a fixed point of the operator A, i.e., Aw = w.
Then, from the definition of the operator A and by (2.5) and (2.3) it follows that
u(t) is the solution of the problem (1.1)-(1.2).

Conversely, suppose that u(t) is a solution of (1.1)-(1.2). Then, by settings (2.1)
and (2.2) and the definition of A by (2.5) we have Aw = w, where w = (φ, α)T .
The lemma is proved.

Hence, according to the above lemma, the solution of the problem (1.1)-(1.2) is
reduced to finding the fixed point of the operator A.

Let G0(t, s) be the Green function of the operator u′′′(t) = 0 associated with
the homogeneous boundary conditions u(0) = u′′(0) = u(1) = 0. It has the form

G0(t, s) =


1

2
(1− t)(s2 − t), 0 ≤ s ≤ t ≤ 1,

−1

2
t(1− s)2, 0 ≤ t ≤ s ≤ 1.

(2.7)

Then the solution of the problem (2.3) is represented in the form

u(t) =

∫ 1

0

G0(t, s)φ(s)ds+ P2(t) + αt, 0 ≤ t ≤ 1, (2.8)

where P2(t) is the polynomial of second degree satisfying the conditions

P2(0) = c1, P
′′
2 (0) = c2, P2(1) = c3.

It is easy to see that

P2(t) =
1

2
c2t

2 + (c3 − c1 −
1

2
c2)t+ c1. (2.9)

Taking derivatives of (2.8) we obtain

u′(t) =

∫ 1

0

G1(t, s)φ(s)ds+ P ′
2(t) + α,

u′′(t) =

∫ 1

0

G2(t, s)φ(s)ds+ P ′′
2 (t),

(2.10)

where Gi(t, s) are the first and second derivatives of G0(t, s) with respect to t,
(i = 1, 2). They have the forms

G1(t, s) =


−1

2
(1− 2t+ s2), 0 ≤ s ≤ t ≤ 1,

−1

2
(1− s)2, 0 ≤ t ≤ s ≤ 1.

(2.11)
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G2(t, s) =

1, 0 ≤ s < t ≤ 1,

0, 0 ≤ t < s ≤ 1.
(2.12)

From (2.8) and (2.10) we have the estimates

∥u∥ ≤ M0∥φ∥+ ∥P2∥+ |α|,
∥u′∥ ≤ M1∥φ∥+ ∥P ′

2∥+ |α|,
∥u′′∥ ≤ M2∥φ∥+ ∥P ′′

2 ∥
(2.13)

where

Mi = max
0≤t≤1

∫ 1

0

|Gi(t, s)|ds, (i = 0, 1, 2)

and ∥.∥ is the max-norm in C[0, 1]. It is easy to verify that

M0 =
1

9
√
3
, M1 =

1

3
,M2 = 1. (2.14)

Now, as usual, denote by B[0,M ] the closed ball centered at 0 with radius M in B,
i.e.,

B[0,M ] =
{
w = (φ, α)T | ∥φ∥ ≤ M, r|α| ≤ M

}
.

In the space [0, 1]× R3, for any number M > 0, define the domain

DM =
{
(t, u, y, z) | 0 ≤ t ≤ 1, |u| ≤ (M0 +

1

r
)M + ∥P2∥,

|y| ≤ (M1 +
1

r
)M + ∥P ′

2∥, |z| ≤ M2M + ∥P ′′
2 ∥

}
.

(2.15)

Further, set

a0 =

∫ 1

0

|g(t)|dt, a1 =

∫ 1

0

t|g(t)|dt, a2 =

∫ 1

0

|g(t)P2(t)|dt (2.16)

and suppose that the following hypothesis is satisfied:

(H0) ra0M0 + a1 ≤ 2
3 , ra2 ≤ 1

3 , q1 = ra0M0 + a0 < 1.

Theorem 2.1 (Existence and uniqueness). In addition to hypothesis (H0) suppose
that there exist numbers M ≥ 1, L0, L1, L2 ≥ 0 such that the following hypotheses
are satisfied:

(H1) |f(t, x, y, z)| ≤ M, ∀(t, x, y, z) ∈ DM .

(H2) |f(t, x2, y2, z2)− f(t, x1, y1, z1)| ≤ L0|x2 − x1|+ L1|y2 − y1|+ L2|z2 − z1|,
∀(t, xi, yi, zi) ∈ DM , i = 1, 2.

(H3) q := max{q1, q2} < 1 where q1 was defined in (H0) and

q2 = L0(M0 +
1

r
) + L1(M1 +

1

r
) + L2M2. (2.17)

Then the problem (1.1)-(1.2) has a unique solution u ∈ C3[0, 1].
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Proof. In order to prove the theorem we shall prove that the operator A defined by
(2.5) has a unique fixed point w = (φ, α)T in the space B, then according to Lemma
2.1 the solution of the problem (2.3) is the solution of the problem (1.1)-(1.2).

First we prove that the operator A maps the closed ball B[0,M ] ⊂ B into itself.
Let w = (φ, α)T ∈ B[0,M ], i.e., ∥w∥B ≤ M , or equivalently, ∥φ∥ ≤ M, r|α| ≤ M.
Let u(t) be the solution of the problem (2.3). Then, as shown above, the estimates
(2.13) hold. In these estimates, by replacing ∥φ∥ ≤ M, |α| ≤ 1

rM we obtain

∥u∥ ≤ (M0 +
1

r
)M + ∥P2∥,

∥u′∥ ≤ M1∥φ∥+ ∥P ′
2∥+ |α|,

∥u′′∥ ≤ M2M + ∥P ′′
2 ∥.

Therefore, for any t ∈ [0, 1] we have (t, u(t), u′(t), u′′(t)) ∈ DM . Now we estimate
∥Aw∥B. By definition we have

∥Aw∥B = max
(
∥f(., u(.), u′(.), u′′(.))∥, r

∣∣∣ ∫ 1

0

g(t)u(t)dt
∣∣∣).

Since (t, u(t), u′(t), u′′(t)) ∈ DM ,∀t ∈ [0, 1] by Hypothesis (H1) we have

|(t, u(t), u′(t), u′′(t))| ≤ M,∀t ∈ [0, 1].

Consequently,
∥f(., u(.), u′(.), u′′(.))∥ ≤ M. (2.18)

Next we estimate

I := r|
∫ 1

0

g(t)u(t)dt|.

Substituting the expression of u(t) by (2.8) we have the estimate

I ≤r

∫ 1

0

∣∣∣ ∫ 1

0

G0(t, s)φ(s)ds||g(t)
∣∣∣dt+ r

∫ 1

0

|g(t)P2(t)|dt

+ r|α|
∫ 1

0

|g(t)|dt.

Taking into account the notations (2.16) we obtain

I ≤ (ra0M0 + a1)M + ra2 ≤ (ra0M0 + a1 + ra2)M ≤ M (2.19)

in view of the assumption M ≥ 1 and hypothesis (H0).
From (2.18) and (2.19) it follows that ∥Aw∥B ≤ M . It means that the operator

A maps B[0,M ] into itself.
Second, we show that A is a contraction mapping in B[0,M ].
Let wi = (φi, αi)

T ∈ B[0,M ], (i = 1, 2). We have w2−w1 = (φ2−φ1, α2−α1)
T .

From the definition of the norm in the space B it follows

∥φ2 − φ1∥ ≤ ∥w2 − w1∥B, |α2 − α1| ≤
1

r
∥w2 − w1∥B. (2.20)

Further, let ui(t) be the solutions of the problems

u′′′
i (t) = φi(t), 0 < t < 1,

ui(0) = c1, u
′′
i (0) = c2, ui(1) = αi + c3.
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Then, as (2.8), we have for i = 1, 2

ui(t) =

∫ 1

0

G0(t, s)φi(s)ds+ P2(t) + αit, 0 ≤ t ≤ 1. (2.21)

Hence,

u2(t)− u1(t) =

∫ 1

0

G0(t, s)(φ2(s)− φ1(s))ds+ (α2 − α1)t.

Consequently,

∥u2 − u1∥ ≤ M0∥φ2 − φ1∥+ |α2 − α1|.

Taking into account (2.20) we obtain

∥u2 − u1∥ ≤ (M0 +
1

r
)∥w2 − w1∥B. (2.22)

Analogously, we have

∥u′
2 − u′

1∥ ≤ (M1 +
1

r
)∥w2 − w1∥B, ∥u′′

2 − u′′
1∥ ≤ M2∥w2 − w1∥B. (2.23)

Now we are ready to estimate ∥Aw2 −Aw1∥B. We have

Aw2 −Aw1 =

 f(t, u2(t), u
′
2(t), u

′′
2(t))− f(t, u1(t), u

′
1(t), u

′′
1(t))∫ 1

0
g(t)(u2(t)− u1(t))dt

 . (2.24)

As shown above (t, ui(t), u
′
i(t), u

′′
i (t)) ∈ DM ∀t ∈ [0, 1], using Hypothesis (H2) and

the estimates (2.22)-(2.23) we obtain

T1 :=|f(t, u2(t), u
′
2(t), u

′′
2(t))− f(t, u1(t), u

′
1(t), u

′′
1(t))|

≤(L0(M0 +
1

r
) + L1(M1 +

1

r
) + L2M2)∥w2 − w1∥B

=q2∥w2 − w1∥B (see notation (2.17)) .

(2.25)

It remains to estimate the second component in (2.24). In view of (2.22) and the
notation a0 in (2.16) we have

T2 :=
∣∣ ∫ 1

0

g(t)(u2(t)− u1(t))dt
∣∣ ≤ a0(M0 +

1

r
)∥w2 − w1∥B. (2.26)

From (2.25), (2.26), the notation q1 in Hypothesis (H0) and Hypothesis (H3) it
follows that

∥Aw2 −Aw1∥B ≤ q∥w2 − w1∥B (2.27)

with q < 1. So, the operator A is a contraction mapping in B[0,M ]. By the
contraction mapping principle, the operator has a unique fixed point. Thus, the
theorem is proved.
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3. Iterative method on continuous level

To solve the problem (1.1)-(1.2) we propose the following iterative method on con-
tinuous level:

1. Given w0 = (φ0, α0)
T ∈ B[0,M ], for example,

φ0(t) = f(t, 0, 0, 0), α0 = 0. (3.1)

2. Knowing φk(t) and αk(t) (k = 0, 1, ...) compute

uk(t) =

∫ 1

0

G0(t, s)φk(s)ds+ P2(t) + αkt, (3.2)

yk(t) =

∫ 1

0

G1(t, s)φk(s)ds+ P ′
2(t) + αk, (3.3)

zk(t) =

∫ 1

0

G2(t, s)φk(s)ds+ P ′′
2 (t). (3.4)

3. Update

φk+1(t) = f(t, uk(t), yk(t), zk(t)), (3.5)

αk+1 =

∫ 1

0

g(t)uk(t)dt. (3.6)

It is easy to recognize that the above iterative method is a realization of the succes-
sive approximation method for finding the fixed point w = (φ, α)T of the operator
A. Therefore, it converges and there holds the estimate

∥wk − w∥B ≤ pk,

where wk − w = (φk − φ, αk − α)T , and

pk =
qk

1− q
∥w1 − w0∥B. (3.7)

From here and the definition of the norm in B it follows

∥φk − φ∥ ≤ ∥wk − w∥B ≤ pk,

|αk − α| ≤ 1

r
∥wk − w∥B ≤ 1

r
pk.

Now, taking into account the representations (2.8), (2.10) and the formulas (3.2)-
(3.4) we obtain the estimates

∥uk − u∥ ≤
(
M0 +

1

r

)
pk,

∥yk − u′∥ ≤
(
M1 +

1

r

)
pk,

∥zk − u′′∥ ≤ M2pk.

(3.8)

Thus, we have proved the theorem:

Theorem 3.1. Under the hypotheses of Theorem 2.1 the iterative method (3.1)-
(3.6) converges, and for the approximate solution uk(t) and its derivatives u′

k =
yk, u

′′
k = zk there hold the estimates (3.8).
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4. Construction of discrete iterative method

4.1. Trapezoidal quadrature formula with corrections

Let h = 1/n, where n is a positive integer, and si = (i− 1)h, i = 1, . . . , n+1. Then
the Euler-Maclaurin formula has the form (see [13])∫ 1

0

Φ(s)ds = TΦ(h)−
p−1∑
l=1

B2l

(2l!)

(
Φ(2l−1)(a)− Φ(2l−1)(0)

)
+O(h2p), (4.1)

where Φ ∈ C2p[0, 1], B2l are Bernoulli numbers,

TΦ(h) =
h

2
(Φ1 +Φn+1) +

n∑
i=2

hΦi, (4.2)

with Φi = Φ(si). Now, for a fixed t ∈ [0, 1], let

Φ(s) = g(t, s)φ(s),

where g(t, s) is continuous in [0, 1]×[0, 1], and may have discontinuous derivatives at
the point s = t, meanwhile φ(s) ∈ C2p[0, 1]. Then using the above Euler-Maclaurin
formula, Sidi and Pennline [16] obtained the following formula∫ 1

0

Φ(s)ds =TΦ(h)−
p−1∑
l=1

B2l

(2l!)

{
[Φ(2l−1)(1)− Φ(2l−1)(0)]

− [Φ(2l−1)(t+)− Φ(2l−1)(t−)]
}
+O(h2p),

(4.3)

where φ(t+) and φ(t−) are the one-sided limits of the function φ(t) at t. In the
particular case p = 2 we have∫ 1

0

Φ(s)ds = TΦ(h)−
h2

12

{
[Φ′(1)− Φ′(0)]− [Φ′(t+)− Φ′(t−)]

}
+O(h4). (4.4)

If the function Φ(s) has a jump at point t ∈ (0, a) then in the above formula
instead of TΦ(h) it should be TΦ∗(h), where

Φ∗(s) =

Φ(s), s ̸= t,
1

2
[Φ(t+) + Φ(t−)], s = t.

4.2. Construction of some quadrature formulas

4.2.1. Computing the integrals of the type in (3.2)

Now we apply the formulas (4.4) to construct numerical methods of order 4. Recall
that the Green function associated with the problem under consideration has the
form

G0(t, s) =


1

2
(1− t)(s2 − t), 0 ≤ s ≤ t ≤ 1,

−1

2
t(1− s)2, 0 ≤ t ≤ s ≤ 1.
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We have G0(t, 1) = 0 and

∂G0(t, s)

∂s
=

 s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.

For a fixed t put

Φ(s) = G0(t, s)φ(s),

where φ ∈ C1[0, 1]. It is easy to verify that

Φ′(1)− Φ′(0) = −1

2
t(1− t)φ′(0),

Φ′(t+)− Φ′(t−) = 0.

Therefore, from (4.4) we obtain∫ 1

0

G0(t, s)φ(s)ds = TΦ(h)−
h2

24
t(1− t)φ′(0) +O(h4). (4.5)

We have immediately ∫ 1

0

G0(ti, s)φ(s)ds = 0, (i = 1;n+ 1) (4.6)

since G(0, s) = G(1, s) = 0. At the points ti = (i− 1)h, i = 2, ..., n, we obtain∫ 1

0

G0(ti, s)φ(s)ds = L4(G, ti)φ+O(h4), (4.7)

where

L4(G, ti)φ =

n+1∑
j=1

hρjG0(ti, tj)φj −
h2

24

{
ti(1− ti)D

(1)
2 φ1

}
, i = 2, ..., n. (4.8)

Here, D
(1)
2 φi (i = 1, ..., n + 1) is the difference approximation with the accuracy

O(h2) of the first derivative of the function φ(t) at the point ti, i.e., D
(1)
2 φi =

φ′(ti) +O(h2). In the above formula ρj are the weights

ρj =

{
1/2, j = 0, n

1, j = 1, 2, ..., n− 1

and for short we denote φj = φ(tj), j = 1, ..., n+ 1.
Due to (4.6) we set

L4(G, t1)φ = L4(G, tn+1)φ = 0. (4.9)

4.2.2. Computing the integrals of the type in (3.3)

Now we establish the formula for computing
∫ 1

0
G1(t, s)φ(s)ds.
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Recall that

G1(t, s) =


−1

2
(1− 2t+ s2), 0 ≤ s ≤ t ≤ 1,

−1

2
(1− s)2, 0 ≤ t ≤ s ≤ 1.

Therefore,

∂G1(t, s)

∂s
=

−s, 0 ≤ s < t ≤ 1,

1− s, 0 ≤ t < s ≤ 1.

And it is easy to obtain

∫ 1

0

G1(t, s)φ(s)ds = TΦ1(h)−
h2

12

{1

2
(1− 2t)φ′(0)− φ(t)

}
+O(h4), (4.10)

where Φ1(s) = G1(t, s)φ(s), t is fixed. At the points ti, i = 1, ..., n+ 1 we obtain∫ 1

0

G1(ti, s)φ(s)ds = L4(G1, ti)φ+O(h4), (4.11)

where

L4(G1, ti)φ =

n+1∑
j=1

hρjG1(ti, tj)φj −
h2

12

{1

2
(1− 2ti)D

(1)
2 φ1 − φi

}
, i = 1, ..., n+ 1.

(4.12)

4.2.3. Computing the integrals of the type in (3.4)

Now we establish the formula for computing
∫ 1

0
G2(t, s)φ(s)ds.

Recall that

G2(t, s) =

1, 0 ≤ s < t ≤ 1,

0, 0 ≤ t < s ≤ 1.

Therefore,
∂G2(t, s)

∂s
= 0, s ̸= t.

Analogously as for the integrals of the types in (3.2) and (3.3) we obtain∫ 1

0

G2(ti, s)φ(s)ds = L4(G2, ti)φ+O(h4), (4.13)

where

L4(G2, ti)φ =

n+1∑
j=1

hρjG
∗
2(ti, tj)φj −

h2

12

{
D

(1)
2 φi −D

(1)
2 φ1

}
, i = 2, ..., n+ 1. (4.14)

Here,

G∗
2(t, s) =


1, 0 ≤ s < t ≤ 1,

1
2 , s = t,

0, 0 ≤ t < s ≤ 1.
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We also set
L4(G2, t1)φ = 0 (4.15)

since G2(t1, s) = 0.

4.2.4. Computing the integrals of the type in (3.6)

Now we establish the formula for computing the integral∫ 1

0

u(s)ds (4.16)

with the accuracy O(h4). Setting Φ(s) = g(s)u(s) we have∫ 1

0

Φ(s)ds = TΦ(h)−
h2

12

{
g′(1)u(1) + g(1)u′(1)− g′(0)u(0)− g(0)u′(0)

}
+O(h4).

(4.17)
Approximating u′(1) and u′(0) with the accuracy O(h2) we have∫ 1

0

Φ(s)ds =TΦ(h)−
h2

12

{
g′(1)u(1) + g(1)D

(1)
2 un+1

− g′(0)u(0)− g(0)D
(1)
2 u1

}
+O(h4).

(4.18)

Rewrite the above formula in the form∫ 1

0

g(s)u(s)ds = L4(g)u+O(h4), (4.19)

where

L4(g)u =

n+1∑
i=1

hρjg(tj)u(tj)−
h2

12

{
g′(1)u(tn+1) + g(1)D

(1)
2 un+1

− g′(0)u(t1)− g(0)D
(1)
2 u1

}
.

(4.20)

4.3. Discrete iterative method for the BVP (1.1)-(1.2)

Cover the interval [0, 1] by the uniform grid ω̄h = {ti = (i − 1)h, h = 1/n, i =
1, 2, ..., n+ 1} and denote by Φk(t), Uk(t), Yk(t), Zk(t) the grid functions, which are
defined on the grid ω̄h and approximate the functions φk(t), uk(t), yk(t), zk(t) on
this grid, respectively. We denote also by α̂k the approximation of αk. Consider
the following

Iterative Method:

1. Given
Φ0(ti) = f(ti, 0, 0, 0), i = 1, ..., n+ 1; α̂0 = 0. (4.21)

2. Knowing Φk(ti), α̂k (k = 0, 1, ...; i = 1, ..., n+1), compute approximately the
definite integrals (3.2)-(3.4) by the trapezoidal formulas with corrections:

Uk(ti) = L4(G, ti)Φk + P2(ti) + α̂kti,

Yk(ti) = L4(G1, ti)Φk + P ′
2(ti) + α̂k,

Zk(ti) = L4(G2, ti)Φk + P ′′
2 (ti), i = 1, ..., n+ 1,

(4.22)
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where L4(G, ti)Φk, L4(G1, ti)Φk, L4(G2, ti)Φk are defined by (4.8)-(4.9), (4.12)
and (4.14)-(4.15), respectively, by replacing the function φ on the grid by the
grid function Φk.

3. Update

Φk+1(ti) = f(ti, Uk(ti), Yk(ti), Zk(ti)), i = 1, ..., n+ 1.

α̂k+1 = L4(g)Uk.
(4.23)

Now we study the convergence of the above iterative method.

Proposition 4.1. Under the assumptions that the function f(t, u, y, z) has all con-
tinuous partial derivatives up to fourth order in the domain DM and the function
g(s) ∈ C4[0, 1], for any k = 0, 1, ... there hold the estimates

∥Φk − φk∥ = O(h4), |α̂k − α| = O(h4), (4.24)

∥Uk − uk∥ = O(h4), ∥Yk − yk∥ = O(h4),

∥Zk − zk∥ = O(h4),
(4.25)

where ∥.∥ = ∥.∥C(ω̄h) is the max-norm of function on the grid ω̄h.

Proof. The proposition can be proved by induction in a similar way as Proposition
3 in [5] if taking into account the order 4 of quadrature formulas used in design of
the discrete method and the linearity of L4(G, ti) as an operator acting on the grid
function φk.

Now combining the above proposition and Theorem 2.1 we obtain the following
theorem.

Theorem 4.1. Under the assumptions of the above proposition and Theorem 2.1,
for the approximate solution of the problem (1.1)-(1.2) obtained by the above discrete
iterative method on the uniform grid with gridsize h, we have the estimates

∥Uk − u∥ ≤
(
M0 +

1

r

)
pk +O(h4), ∥Yk − u′∥ ≤

(
M1 +

1

r

)
pk +O(h4),

∥Zk − u′′∥ ≤ M2pk +O(h4),

(4.26)

where Mi (i = 0, 1, 2) are defined by (2.14) and pkd are defined by (3.7).

Proof. The first above estimate is easily obtained if representing

Uk(ti)− u(ti) = (uk(ti)− u(ti)) + (Uk(ti)− uk(ti))

and using the first estimate in Theorem 2.1 and the first estimate in (4.25). The
remaining estimates are obtained in the same way. Thus, the theorem is proved.

5. Examples

First we show an example for illustrating the applicability of the theoretical results
on existence and uniqueness of solution, and the fourth-order convergence of the
proposed numerical method. After that we show some more examples to confirm
the fourth convergence order of the method. Among these examples there are also



Numerical Method for Third-Order Nonlinear ODE with Integral Boundary Conditions 1899

two examples from [15] for comparing the convergence order. In all the numerical
experiments, the iterative method is performed until ∥Φk+1 − Φk∥ ≤ 10−14.

Example 5.1. Consider the fully third-order nonlinear boundary value problem

u′′′(t) =− 2

3
cos(t)− 1

2
cos(sin(t))− 1

6
e−| sin(t)|

+
1

2
cos(u)− 1

3
u′ +

1

6
e−|u′′|, t ∈ [0, 1],

u(0) =0, u′′(0) = 0, u(1) =

∫ 1

0

t2u(t)dt+ 2− cos(1)− sin(1),

(5.1)

In this problem

f(t, u, y, z) = −2

3
cos(t)− 1

2
cos(sin(t))− 1

6
e−| sin(t)| +

1

2
cos(u)− 1

3
y +

1

6
e−|z|,

c1 = c2 = 0, c3 = 2− cos(1)− sin(1),

g(t) = t2.

It is easy to see that the function u(t) = sin(t) is an exact solution of the problem.
We shall verify that all the conditions of Theorem 2.1 are satisfied. Indeed, for the
problem

P2(t) =(2− cos(1)− sin(1))t = 0.6182t,

∥P2∥ =∥P ′
2∥ = 0.6182, ∥P ′′

2 ∥ = 0,

a0 =
1

3
, a1 =

1

4
, a2 = 0.1546.

Hence, for r = 2, Hypothesis (H0) in Theorem 2.1 is satisfied.
The domain DM is defined by

DM =
{
(t, u, y, z) | 0 ≤ t ≤ 1, |u| ≤ (M0 +

1

r
)M + 0.6182,

|y| ≤ (M1 +
1

r
)M + 0.6182, |z| ≤ M2M

}
.

In DM we have the estimate

|f(t, u, y, z)| ≤ 2.2061 +
1

3
(M1 +

1

r
)M.

Taking M = 3.1 we have |f(t, u, y, z)| < M. So, Hypothesis (H1) in Theorem 2.1
is satisfied. Next, it is possible to verify that the function f(t, u, y, z) satisfies the
Lipshitz conditions with the coefficients L0 = 1/2, L1 = 1/3 and L2 = 1/6. We
have also q2 < 1. Thus, Hypotheses (H2) and (H3) are satisfied. As a result, all
the hypotheses of Theorem 2.1 are satisfied. Therefore, the problem has a unique
solution. This solution, of course, is the function u(t) = sin(t).

The results of convergence of the discrete iterative method are given in Table 1,
where n+ 1 is the number of grid points, K is the number of iterations performed,
Error = ∥UK −u∥ and Order is the order of convergence calculated by the formula

Order = log2
∥Un/2

K − u∥
∥Un

K − u∥
.
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Table 1. The convergence in Example 1.

n K Error h4 Order

8 29 1.8590e-06 2.4414e-04

16 29 9.4341e-08 1.5259e-05 4.3005

32 29 5.1883e-09 9.5367e-07 4.1846

64 29 3.0177e-10 5.9605e-08 4.1038

128 29 1.8152e-11 3.7253e-09 4.0552

256 29 1.1131e-12 2.3283e-10 4.0275

512 29 6.9611e-14 1.4552e-11 3.9991

1024 29 5.1070e-15 9.0949e-13 3.7688

The superscripts n/2 and n of UK mean that UK is computed on the grid with the
corresponding number of grid points. From Table 1 it is obvious that the iterative
method has the accuracy O(h4) and the convergence order is 4.

Example 5.2. Consider the fully third-order nonlinear boundary value problem

u′′′(t) = −4

3
e2t + et + u2 + u− u′ +

1

3
[u′′]2, t ∈ [0, 1]

u(0) = 1, u′′(0) = 1, u(1) =

∫ 1

0

g(s)u(s)ds+ 2,

where g(s) = s2. The problem has the exact solution u = et. The results of
convergence of the discrete iterative method are given in Table 2.

Table 2. The convergence in Example 2

n K Error h4 Order

n iter error h4 order

8 28 9.3394e-06 2.4414e-04

16 28 6.5803e-07 1.5259e-05 3.8271

32 28 4.3618e-08 9.5367e-07 3.9152

64 28 2.8067e-09 5.9605e-08 3.9580

128 28 1.7798e-10 3.7253e-09 3.9791

256 28 1.1204e-11 2.3283e-10 3.9896

512 28 7.0211e-13 1.4552e-11 3.9962

1024 28 4.3521e-14 9.0949e-13 4.0119
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Example 5.3. (Example 2 in [15]) Consider the third-order linear boundary value
problem

u′′′(t) = u(t)− 3et, t ∈ [0, 1],

u(0) = 1, u′′(0) = −1, u(1) =

∫ 1

0

g(s)u(s)ds

with the exact solution u(t) = (1− t)et.

Notice that for this exact solution u(1) = 0, and for the function g(s) = es
2
−1
2

we have
∫ 1

0
g(s)u(s)ds = 0.0985. Therefore, the integral boundary condition must

be u(1) =
∫ 1

0
g(s)u(s)ds− 0.0985. With this corrected integral boundary condition

we carry out the computations by the proposed iterative method. The results of the
numerical experiments are reported in Table 3. In order to compare the convergence

Table 3. The convergence in Example 3

n K Error h4 Order

8 19 7.5413e-06 2.4414e-04

16 19 5.6339e-07 1.5259e-05 3.7426

32 19 3.8978e-08 9.5367e-07 3.8534

64 19 2.5691e-09 5.9605e-08 3.9233

128 19 1.6447e-10 3.7253e-09 3.9654

256 19 9.8833e-12 2.3283e-10 4.0566

512 19 2.0707e-13 1.4552e-11 5.5768

1024 19 7.5800e-13 9.0949e-13 -1.8721

of the proposed method with that of the Pandey’s method in [15] we make Table 4.

Table 4. Comparison of convergence of the proposed method with Pandey’s method for Example 3

n Error (Prop) Order (Prop) Error(Pandey) Order(Pandey)

64 2.5691e-09 3.9233

128 1.6446e-10 3.9654 1.2575090e-04

256 9.8830e-12 4.0567 3.2846816-05 1.93674

512 2.0756e-13 5.5734 7.6917931e-06 2.09436

1024 7.5859e-13 -1.8698 1.8957071e-06 2.02058

Example 5.4. (Example 3 in [15]) Consider the third-order nonlinear boundary
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value problem

u′′′(t) = e−tu2(t) + f(t), t ∈ [0, 1],

u(0) = 0, u′′(0) = −2, u(1) =

∫ 1

0

g(s)u(s)ds,
(5.2)

where f(t) is calculated so that the exact solution of the problem is u(t) = (1 −
t) sin(t). In [15] g(s) = es−1

cos(s−2) . But we think that there is a typo in the expression

of the function g(s) because it has a singularity at t = 2 − π/2 ≈ 0.4292. Due to
this reason, we correct the typo and adopt

g(s) =
es − 1

cos(s+ 2)
.

For this corrected g(s) we have∫ 1

0

g(s)u(s)ds = −0.128705665220749,

therefore, the integral boundary condition in the problem must be

u(1) =

∫ 1

0

g(s)u(s)ds+ 0.128705665220749. (5.3)

The results of computation for the problem (5.2) with the corrected integral bound-
ary condition are presented in Table 5 and the comparison of convergence of the
proposed method with Pandey’s method is reported in Table 6.

Table 5. The convergence in Example 4

n K Error h4 Order

8 54 1.1728e-05 2.4414e-04

16 54 7.6427e-07 1.5259e-05 3.9397

32 54 4.8787e-08 9.5367e-07 3.9695

64 54 3.0831e-09 5.9605e-08 3.9840

128 54 1.9377e-10 3.7253e-09 3.9920

256 54 1.2147e-11 2.3283e-10 3.9957

512 54 7.6317e-13 1.4552e-11 3.9924

1024 54 5.0793e-14 9.0949e-13 3.9093

6. Conclusion

In this paper, we have considered an integral boundary value problem for a fully
third-order nonlinear differential equation. By the reduction of the problem to a
fixed point problem of an operator which is implicitly defined via the solutions of
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Table 6. Comparison of convergence of the proposed method with Pandey’s method for Example 4

n Error (Prop) Order (Prop) Error(Pandey) Order(Pandey)

64 3.0831e-09 3.9840

128 1.9377e-10 3.9920 1.5833229e-03

256 1.2147e-11 3.9957 3.8277125e-05 2.04840

512 7.6317e-13 3.9924 9.3068229e-06 2.04012

1024 5.0793e-14 3.9093 2.3112516e-06 2.00961

an associated boundary value problem we have established the existence of a unique
solution of the problem. More importantly, we have constructed a discrete iterative
method for finding the solution and proved that the method has the convergence
order 4. To this end we have used the trapezoidal rule with corrections. With the
use of the rule with more precise corrections we can construct methods of sixth or
higher order of accuracy. In the future, we shall do this for third-order differential
equations involving other integral boundary conditions and for integral boundary
value problems for higher order differential equations.
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