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Fractional Order Dynamical Behavior of Dengue
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Abstract In this study, we propose a modified fractional order derivative in
the scope of Caputo to investigate the dynamics of Dengue fever transmission.
The existence, uniqueness and boundedness of the fractional model were es-
tablished using a fixed-point approach. The stability analysis of the model was
done with respect to the reproduction number which was found to be stable
locally and globally at infection free and endemic state respectively. The frac-
tional order (DHF) model was estimated using the fractional Adams-Bashforth
predictor-corrector technique. Additionally, the numerical validation was done
to ascertain the impact of various parameters on the dynamics as a whole, as
well as the effect of vaccines on the model. The graphical solutions show that
the fractional order (α) and vaccinations affect the dynamics of the model
when they are varied within the model. The findings indicate that satura-
tion of infectious individuals in the system helps to flatten out the infection
transmission.
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1. Introduction

The dengue virus is the primary cause of dengue fever, sometimes referred to as a
vector-borne illness. It has flavivirus serotypes, ranging from (DENV 1-4). This
disease poses a threat to the majority of countries worldwide. The Eastern Mediter-
ranean, Americas, Africa, and particularly the Western Pacific and South-East
Asian regions are the areas most severely impacted by dengue fever worldwide.
With thousands of fatalities and over 390 million cases, dengue fever is regarded
as the worst vector-borne disease after malaria [5] [17] [39]. Approximately 100
nations are at risk of contracting dengue fever globally, according to a 2012 es-
timate. The disease is carried by a variety of mosquito species, including Aedes
and particularly Aegypti [25]. In contrast to other dengue fevers, which often pro-
duce only modest morbidity and death, classical dengue fever, also known as break
bone fever, heals its victims in one to two weeks after the fever first arises [13].
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Dengue hemorrhagic fever (DHF) or the shock syndrome (SS) can strike some in-
dividuals [15]. The World Health Organization (WHO) reports a larger number of
(DHF) each year worldwide [37]. The primary method of transmission of the dengue
virus to humans is via the bites of female mosquitoes carrying the virus [9]. There
is currently no known efficient remedy for the dengue virus, with the exception
of fluid substitution therapy, which can be started early. Traditional therapeutic
methods are also possible. [10]. In addition to the lack of therapy for dengue virus
infections, there is currently no effective vaccine available to vaccinate vulnerable
persons. Despite the lack of an efficient dengue virus vaccine on the market, the
WHO recommended some advancement in the field of dengue vaccine development.
Regarding the dengue fever vaccine, a study that was released in 2015 said that
the first vaccine was created in Mexico. [38]. There are several mathematical mod-
els in the research [24], [22] [16], [36], that address the dengue dynamics. The
aforementioned references present several viewpoints on the dengue infection dy-
namics, including dynamic analysis, vaccine, and optimum control analysis. [33]
contains a few recent scientific publications that provided actual data on dengue
infection. In [1], a mathematical framework of an infection with dengue was cre-
ated, addressing the disease using actual data from Pakistan and providing some
practical methods for eradicating mosquito-borne disease. Analysis of the dynamics
of dengue with identical strains and their reinfection has been found in [2]. A basic
discussion of dengue modeling in both deterministic and stochastic approaches is
done in [8]. In [35] a hybrid system for dengue prediction is examined. In [21],
the authors examined the dynamics of dengue disease and its mutual infection with
the Zika virus, demonstrating the protective effects of immunization against dengue
hemorrhagic fever (DHF).

Many academics have used fractional differential equations to demonstrate a
variety of infectious and non-infectious diseases in the modern era [31], [30], [4], [40].
Omame et al. investigated the analytical solution of a fractional order mathematical
framework for a tumor displaying mutations in cells. [37]. The study [28] investigates
bifurcation and optimal control in co-infection scenarios of ZIKA and SARS-CoV-
2. Andrew et al. [29] used a fractional approach to investigate the dynamics of
complex systems. The paper in [28] provides basic rules for modeling complicated
systems, which facilitates the creation of axiomatic methods in the field. Atede
et al. [3] focused on Nigerian actual data as a base of study and investigated a
fractional-order vaccination model for COVID-19 that took ecological propagation
into consideration. Studies of TB in relation to internal reactivated and foreign
re-infection have been conducted using Frégal-order models [7].

1.1. Objective

This work attempts to examine the dynamics and management of dengue hemor-
rhagic fever (DHF) transmission in the population using a fractional-order model
and also attempts to show how the fractional order variable and memory indices
influence the dynamics of the disease.

1.2. Preliminaries and definitions

We include some notations, definitions, and established results that are required for
the sequel. This study uses Liouville-Caputo’s fractional derivative.
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Definition 1.1. Let J be a real function in the range Cχ, where χ ∈ R, t > 0.
There exists n > χ, which is Real, then J(t) = tnk(t). [6], [14].

Definition 1.2. [32], [14] The fractional integrating operator of order α ≥ 0 of
the Riemann Liouville for a function J ∈ L1(a, b) is defined as

IαJ(t) =
1

Γ(α)

t∫
t0

(t− τ)(α−1)J(τ)dτ, t > 0, α > 0,

where Γ is the Gamma function and I0J(t) = f(t).

2. Formulation of model

Fractional order model are used in mathematics to represent the elaborate behaviors
of disease structures, providing a more practical representation than integer models.
This technique expands the capacity of integer-order models and has proven to be
an indispensable tool for infectious disease modeling. Important components such
as past disease status, memory of prior patterns of disease when the fractional
order is less than 1 and variation in genetic profiles are all included in these models.
Furthermore, as opposed to ordinary differential equations, which are bounded by
smaller regions, fractional order derivatives have a global character. The efficiency of
fractional calculus advances as the uniformity of range of the system gets better [18].

Moving forward, In order to illustrate the dynamics of dengue hemorrhagic fever
(DHF) transmission between mosquito and human populations, we build a frac-
tional mathematical model for the disease. The model makes some assumptions;
three mosquito compartments and four human compartments make up our seven
compartmental model, which is equipped with biological parameters. Three classes
comprise the whole mosquito population which are (Sm ) susceptible, Exposed (Em

) and Infected (Im). The human population as a whole is split into four classes: Sus-
ceptible (Sh) ,Exposed (Eh), Infected (Ih) and Recovered (Rh). This is represented
with a schematic flow below.
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Figure 1. The Schematic flow of the proposed model.

The set of fractional differential equations is derived from figure 1:

c
0D

α
t Sh(t) = Xh − (K1 + µh)Sh + σRh + γIm,

c
0D

α
t Eh(t) = K1Sh − (ρ+ µh)Eh,

c
0D

α
t Ih(t) = ρEh − (µh + δ + π)Ih,

c
0D

α
t Rh(t) = πIh − (µh + σ)Rh,

c
0D

α
t Sm(t) = Xm − (K2 + µm)Sm,

c
0D

α
t Em(t) = K2Sm − (µm + ε)Em,

c
0D

α
t Im(t) = εEm − (µm + γ)Im.



(2.1)

Here, c
0D

α
t (.) with 0 < α ≤ 1, denotes the Caputo Fractional derivative of order α

where K1 = ehI
1+ahI

and K2 = emI
1+amI ; em and eh are the effective contact rate for

mosquito and human respectively ah, am are the saturation factors for human and
mosquito populations.



Fractional Order Dengue Hemorrhagic Fever 1909

Table 1. Description of parameters

Parameters Bioliogical Meaning

Xh Human recruitment rate

K1 Incidence rate for human

K2 Incidence rate for mosquitoes

σ Relapse rate

ρ Progression rate to infectious class

π Rate of progression to recovered

Xm Mosquito recruitment rate

ε Progression rate to infected mosquito

δ Rate of disease induced death

µm Natural death rate for mosquitoes

µh Natural death rate for human

γ Transmission rate from Im to Sh

3. Qualitative analysis

3.1. Uniqueness and existence of solution of the fractional or-
der model

Initial conditions and integrals are embedded in the fractional model 2.1 to establish
the uniqueness and existence

Sh(t) = Sh(0) +
1

Γ(α)

t∫
t0

(t− τ)(α−1)[Xh − (K1 + µh)Sh + σRh + γIm]dτ,

Eh(t) = Eh(0) +
1

Γ(α)

t∫
t0

(t− τ)(α−1)[K1Sh − (ρ+ µh)Eh]dτ,

Ih(t) = Ih(0) +
1

Γ(α)

t∫
t0

(t− τ)(α−1)[ρEh − (µh + δ + π)Ih]dτ, ,

Rh(t) = Rh(0) +
1

Γ(α)

t∫
t0

(t− τ)(α−1)[πIh − (µh + σ)Rh]dτ,

Sm(t) = Sm(0) + 1
Γ(α)

t∫
t0

(t− τ)(α−1)[Xm − (K2 + µm)Sm]dτ,

Em(t) = Em(0) + 1
Γ(α)

t∫
t0

(t− τ)(α−1)[K2Sm − (µm + ε)Em]dτ,

Im(t) = Im(0) + 1
Γ(α)

t∫
t0

(t− τ)(α−1)[εEm − (µm + γ)Im]dτ.



(3.1)
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The fractional model 2.1 can be alternatively given as

c
0D

α
t Sh(t) = tα−1F1(Sm, Em, Im, Sh, Eh, Ih, Rh, t),

c
0D

α
t Eh(t) = tα−1F2(Sm, Em, Im, Sh, Eh, Ih, Rh, t),

c
0D

α
t Ih(t) = tα−1F3(Sm, Em, Im, Sh, Eh, Ih, Rh, t),

c
0D

α
t Rh(t) = tα−1F4(Sm, Em, Im, Sh, Eh, Ih, Rh, t),

c
0D

α
t Sm(t) = tα−1F5(Sm, Em, Im, Sh, Eh, Ih, Rh, t),

c
0D

α
t Em(t) = tα−1F6(Sm, Em, Im, Sh, Eh, Ih, Rh, t),

c
0D

α
t Im(t) = tα−1F7(Sm, Em, Im, Sh, Eh, Ih, Rh, t),



(3.2)

where

F1 = Xh − (K1 + µh)Sh + σRh + γIm,

F2 = K1Sh − (ρ+ µh)Eh,

F3 = ρEh − (µh + δ + π)Ih,

F4 = πIh − (µh + σ)Rh,

F5 = Xm − (K2 + µm)Sm,

F6 = K2Sm − (µm + ε)Em,

F7 = εEm − (µm + γ)Im.

(3.3)

This can be generalized as; c
0D

α
t F (t) = tα−1G(t, F (t)), with F (0) = F0.

Using the last expression we obtain:

F (t) = F0 +
1

Γ(α)

t∫
t0

(t− τ)(α−1)G(τ, F (τ))dτ,

where F (t) = [Sm(t), Em(t), Im(t), Sh(t), Eh(t), Ih(t), Rh(t)]. Lets us consider a Ba-
nach space of the form C = B × B × B × B and L ∈ [0, T ] with a norm op-
erator ∥F∥ = max |Sm(t) + Em(t) + Im(t) + Sh(t) + Eh(t) + Ih(t) +Rh(t)| We ob-
serve whether the terms of non-linear fulfill the following conditions:
(B1) : Let F1 ∈ C. There exist L > 0 and R > 0 such that

|G(t, F1(t))| < L |F1(t)|+R.

(B2) : Let F1, F2 ∈ C. There exists Q > 0 which is a constant such that

∥G(t, F1(t)−G(t, F2(t)∥ < Q |F1(t)− F2(t)| . (3.4)

Considering equation 3.4 we have been able to establish the uniqueness and existence
of the fractional order model 2.1.
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3.2. Positivity and boundedness of the fractional model

To establish the non-negativity of the solution, we assume that the parameters of
the fractional model remain positive.

c
0D

α
t Sh(t)

∣∣
sh(0)=0 = Xh ≥ 0,

c
0D

α
t Eh(t)

∣∣
Eh(0)=0 = K1Sh ≥ 0,

c
0D

α
t Ih(t)

∣∣
Ih(0)=0 = ρEh ≥ 0,

c
0D

α
t Rh(t)

∣∣
Rh(0)=0 = πIh ≥ 0,

c
0D

α
t Sm(t)

∣∣
sm(0)=0 = Xm ≥ 0,

c
0D

α
t Em(t)

∣∣
Em(0)=0 = K2Sm ≥ 0,

c
0D

α
t Im(t)

∣∣
Im(0)=0 = εEm ≥ 0.



(3.5)

From equation 3.5 the solution sets of the model remain non-negative (positive).

Theorem 3.1. For t > 0 the fractional model 2.1 remains bounded.

Proof. Let Nh(t) = [Sh(t) + Eh(t) + Ih(t) +Rh(t)] which can be expressed as

c
0D

α
t Nh(t) = Xh − µh((Sh(t) + Eh(t) + Ih(t) +Rh(t)).

Simplifying further we obtain

c
0D

α
t Nh(t) = Xh − µhNh(t). (3.6)

Using the approach of integrating factor on equation 3.6 we obtain

Nh(t) ≤
Xh

µh
+Ae−µht, (3.7)

where A denotes the constant of integration. As t → ∞, equation 3.7 becomes

Nh(t) ≤
Xh

µh
.

Therefore the viable region of the fractional model 2.1 for human class is

Πh = [(Sh(t), Eh(t), Ih(t), Rh(t)) ∈ R4
+ : Nh(t) ≤

Xh

µh
].

In the same manner we compute for the vector (mosquito) population

Πm = [(Sm(t), Em(t), Im(t) ∈ R3
+ : 0 ≤ Nm(t) ≤ Xm

µm
].

Additionally, let [(Sm(t)+Em(t)+Im(t)+Sh(t)+Eh(t)+Ih(t)+Rh(t)] be positive
and remain within limit (bounded). Then there exist positive constants L1, L2, L3,
L4, L5, L6, L7 such that

∥Sh(t)∥ ≤ L1, ∥Eh(t)∥ ≤ L2, ∥Ih(t)∥ ≤ L3 ∥Rh(t)∥ ≤ L4,

∥Sm(t)∥ ≤ L5, ∥Em(t)∥ ≤ L6, ∥Im(t)∥ ≤ L7.
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Hence the solution sets of fractional model 2.1 is bounded.
The fractional model 2.1 can be translated into a fixed point example (problem).

Let J : C → C be given as

J(F (t)) = F0 +
1

Γ(α)

t∫
0

(t− τ)(α−1)G(τ, F (τ))dτ, (3.8)

provided that the assumptions given above are valid with the mappingG : [0, B]xC →
R Then there exists a solution that satisfies the fractional model 2.1.
Proof. Let K be bounded in C and let a1 > 0. Then there exists |G(τ, F (τ))| ≤

a1, for all F ∈ K. We obtain ∥J(F )∥ ≤ F0 +
a1

Γ(α) max
t∫
0

(t− τ)(α−1)dτ , ∥J(F )∥ ≤

F0 +
a1

Γ(α) max
1∫
t0

(1− τ)(α−1)dτ and ∥J(F )∥ ≤ F0 +
a1

Γ(α) t
(α−1)Φ(α). From the last

expression J is bounded uniformly. Let’s assume that b1 < b2 ≤ B. With this we

obtain |G(F (b2))−G(F (b1))| ≤ 1
Γ(α) (K |F (t)|+L)Φ(α)b

(α−1)
2 − b

(α−1)
1 ). If b2 → b1

then |G(F (b2))−G(F (b1))| → 0. Therefore, by the theorem of Arzela-Ascoli J is
continuous. Subsequently the fractional order model 2.1 has at least one solution
by the approach of Schauder’s theorem [14].

3.3. Points of equilibrium

Equilibrium point are the steady state solution of fractional model 2.1. Two types
of equilibrium points will be discussed; the absence of infection points and endemic
equilibrium. We solve this by equating the state variables to zero

c
0D

α
t Sm(t) = c

0D
α
t Em(t) = c

0D
α
t Im(t) = c

0D
α
t Sh(t)

= c
0D

α
t Eh(t) =

c
0D

α
t Ih(t) =

c
0D

α
t Rh(t) = 0,

which can be alternatively given as:

Xh − (K1 + µh)Sh + σRh + γIm = 0,

K1Sh − (ρ+ µh)Eh = 0,

ρEh − (µh + δ + π)Ih = 0,

πIh − (µh + σ)Rh = 0,

Xm − (K2 + µm)Sm = 0,

K2Sm − (µm + ε)Em = 0,

εEm − (µm + γ)Im = 0.

(3.9)

At the disease free equilibrium point we obtain

P 0 = (S0
m, E0

m, I0m, S0
h, E

0
h, I

0
h, R

0
h) = (

Xm

µm
, 0, 0,

Xh

µh
, 0, 0, 0). (3.10)

At the endemic equilibrium point we obtain

P ∗ = (S∗
m, E∗

m, I∗m, S∗
h, E

∗
h, I

∗
h, R

∗
h)

= ( Xm

(K2+µm) ,
K2S

∗
m

(µm+ε) ,
εE∗

m

(µm+γ) ,
σR∗

h−Xh

(K1+µh)
,

K1S
∗
h

(ρ+µh)
,

ρE∗
h

(µh+δ+π) ,
πI∗

h

(µh+σ) ).
(3.11)
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3.4. Fundamental reproduction number

The fundamental reproduction number of the fractional model 2.1 is computed using
the next generation matrix technique [11], [23]. The human and mosquito compart-
ments will be done differently. R0h = ∆(MhV

−1
h ), R0m = ∆(MmV −1

m ) where Mh

and Mv are the matrices of new infection for human and mosquito compartments
respectively, while Vh and Vm are the matrices of secondary infections in the human
mosquito compartments respectively and ∆ denotes the maximum absolute value
of the matrix.

Mh =

0 ehS

0 0

 ,

Vh =

−(ρ+ µh) 0

ρ −(δ + µh + π)

 .

The spectral radius ∆ of MhV
−1
h yields

R0h =
ehXhρ

µh(ρ+ µh)(δ + µh + π)
, (3.12)

Mm =

0 emS

0 0

 ,

Vm =

−(ε+ µm) 0

ε −µm

 .

The spectral radius ∆ of MmV −1
m

R0m =
emXmε

µ2
m(ε+ µm)

. (3.13)

3.5. Stability analysis

The stability Analysis will be established at infection-free and at endemic equilibra.

Theorem 3.2. If R0h < 1 and R0m < 1, then the fractional order model 2.1 is
asymptotically stable locally at infection free equilibrium.

Proof. Let

H1 = Xh − (K1 + µh)Sh + σRh + γIm,

H2 = K1Sh − (ρ+ µh)Eh,

H3 = ρEh − (µh + δ + π)Ih,

H4 = πIh − (µh + σ)Rh,

H5 = Xm − (K2 + µm)Sm,

H6 = K2Sm − (µm + ε)Em,

H7 = εEm − (µm + γ)Im.

(3.14)
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Using the Jacobian function we have:

J0(Sh, Eh, Ih, Rh, Sm, Em, Im),

J0 =



−µh 0 ehS σ 0 0 γ

K1 −(ρ+ µh) ehS 0 0 0 0

0 ρ −(µh + δ + π) 0 0 0 0

0 0 π −(µh + σ) 0 0 0

0 0 0 0 −µm 0 emS

0 0 0 0 0 −(µm + ε) emS

0 0 0 0 0 0 −(µm + γ)


.

(3.15)
Steadily solving equation 3.15 we obtain the following;

λ1 = −µh, λ2 = − (π + σ) , λ3 = − (µm) , λ4 = − (ρ+ µh) ,

λ5 = −((µh + δ + π) + ρXheh
µh(µh+ρ) ), λ6 = − (µh + δ + π)

and λ7 = −((µm) + εXmem
µm(µm+ε) ).

From λ5 and λ7 we can easily establish that R0h < 1 and R0m < 1. λ5 =
−((µh + δ + π) + ρXheh

µh(µh+ρ) ) can be re-written as

λ5 = − (µh + δ + π) (1− ρXheh
(µh + δ + π)(µh + ρ)µh

) ≤ − (µh + δ + π) (1−R0h).

(3.16)
Subsequently from equation 3.16 we can deduce that R0h < 1. With the same
approach, using λ7 = −((µm) + εXmem

µm(µm+ε) ) we have

λ7 = − (µm) (1− εXmem
µ2
m(µm + ε)

) ≤ − (µm) (1−R0m). (3.17)

Similarly from equation 3.17, R0m < 1, which completes the proof.
Next we establish the stability of the endemic equilibrium point (EE) globally.

Theorem 3.3. If R0h > 1 and R0m > 1, then the fractional order 2.1 is globally
asymptotically stable at (EE).

Proof. According to Lasalle”s principle [19], we develop the Lyapunov function
which is given below

L(Sm, Em, Im, Sh, Eh, Ih, Rh)

=[Sh − S∗
h(ln

Sh

S∗
h

)] + [Eh − E∗
h(ln

Eh

E∗
h

)] + [Ih − I∗h(ln
Ih
I∗h

)] + [Rh −R∗
h(ln

Rh

R∗
h

)]

+ [Sm − S∗
m(ln

Sm

S∗
m

)] + [Em − E∗
m(ln

Em

E∗
m

)] + +[Im − I∗m(ln
Im
I∗m

)].

(3.18)
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Differentiating equation 3.18 along the solution part of model 2.1 we obtain

dL

dt
=(1− S∗

h

Sh
)c0D

α
t Sh(t) + (1− E∗

h

Eh
)c0D

α
t Eh(t) + (1− I∗h

Ih
)c0D

α
t Ih(t)

+ (1− R∗
h

Rh
)c0D

α
t Rh(t) + (1− S∗

m

Sm
)c0D

α
t Sm(t)

+ (1− E∗
m

Em
)c0D

α
t Em(t) + (1− I∗m

Im
)c0D

α
t Im(t).

(3.19)

Replacing c
0D

α
t Sh(t),

c
0D

α
t Eh(t),

c
0D

α
t Ih(t),

c
0D

α
t Rh(t),

c
0D

α
t Sm(t), c0D

α
t Em(t), c0D

α
t Im(t)}

in equation 3.19 we obtain

dL

dt
=(1− S∗

h

Sh
)[Xh − (K1 + µh)Sh + σRh + γIm]

+ (1− E∗
h

Eh
)[K1Sh − (ρ+ µh)Eh] + (1− I∗h

Ih
)[ρEh − (µh + δ + π)Ih]

+ (1− R∗
h

Rh
)[πIh − (µh + σ)Rh] + (1− S∗

m

Sm
)[Xm − (K2 + µm)Sm]

+ (1− E∗
m

Em
)[K2Sm − (µm + ε)Em] + (1− I∗m

Im
)[εEm − (µm + γ)Im].

(3.20)

For Sm = S∗
m, Em = E∗

m, Im = I∗m, Sh = S∗
h, Ih = I∗h, Rh = R∗

h, we obtain dL
dt = 0.

Hence the fractional order model 2.1 equipped with positive starting points, Sh =
Eh = Ih = Rh = Sm = Em = Im ≥ 0 are found in

Π = {Sm, Em, Im, Sh, Eh, Ih, Rh ∈ R7
+; 0 ≤ Nm ≤ Xm

µm
; 0 ≤ Nh ≤ Xh

µh
}.

As the system approaches the endemic equilibrium point P∗, it suffices that P∗ is
GAS. This completes the proof.

3.6. Numerical solution for model 2.1 in the sense of Caputo
operator

We apply the Caputo fractional operator to study the dynamics of the fractional-
order model 2.1. The proposed nonlinear fractional-order system’s numerical sim-
ulation is provided by the Adams-type estimator-corrector approach [10]. We con-
sider the following Cauchy-type with respect to the order α Caputo operator.

c
0D

α
t χ(t) = Θ(t, χ(t)),

χ(κ)(0) = χκ
0 ,

0 < α ≤ 1, 0 < t ≤ β, where κ = 0, 1, 2...n− 1.
The above system can be transformed into Voltera equation of the form

χ(t) =

n−1∑
κ=0

χ
(κ)
0

tκ

κ!
+

1

Γ(α)

t∫
t0

(t− τ)α−1χ(τ, χ(τ))dτ. (3.21)
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This estimated corrector method is proposed with respect to algorithm of Adams
bashforth-Moulten for us to achieve numerical values, taking the step size to be
b = β

N , ti = ih where i = 0.1.2...N ∈ Z+, and Xi ≈ X(ti), which can be discretized
using the corrector formular [23].

Sh(n+1) =
n−1∑
i=0

S
(i)
0h

tin+1

i! + bα

Γ(α+2)

n∑
i=0

(Mi,n+1)[Xh − (K1 + µh)Shi + σRhi + γImi]

+ bα

Γ(α+2)

n∑
i=0

(Mn+1,n+1)[Xh−(K1+µh)S
PF
h(n+1)+σRPF

h(n+1)+γIPF
h(n+1)],

Eh(n+1) =
n−1∑
i=0

E
(i)
0h

tin+1

i! + bα

Γ(α+2)

n∑
i=0

(Mi,n+1)[K1Shi − (ρ+ µh)Ehi]

+ bα

Γ(α+2)

n∑
i=0

(Mn+1,n+1)[K1S
PF
h(n+1) − (ρ+ µh)E

PF
h(n+1)],

Ih(n+1) =
n−1∑
i=0

I
(i)
0h

tin+1

i! + bα

Γ(α+2)

n∑
i=0

(Mi,n+1)[ρEhi − (µh + δ + π)Ihi]

+ bα

Γ(α+2)

n∑
i=0

(Mn+1,n+1)[ρE
PF
h(n+1) − (µh + δ + π)IPF

h(n+1)],

Rh(n+1) =
n−1∑
i=0

R
(i)
0h

tin+1

i! + bα

Γ(α+2)

n∑
i=0

(Mi,n+1)[πIhi − (µh + σ)Rhi]

+ bα

Γ(α+2)

n∑
i=0

(Mn+1,n+1)[πI
PF
h(n+1) − (µh + σ)RPF

h(n+1)],

Sm(n+1) =
n−1∑
i=0

S
(i)
0m

tin+1

i! + bα

Γ(α+2)

n∑
i=0

(Mi,n+1)[Xm − (K2 + µm)Smi]

+ bα

Γ(α+2)

n∑
i=0

(Mn+1,n+1)[Xm − (K2 + µm)SPF
m(n+1)],

Em(n+1) =
n−1∑
i=0

E
(i)
0m

tin+1

i! + bα

Γ(α+2)

n∑
i=0

(Mi,n+1)[K2Smi − (µm + ε)Emi]

+ bα

Γ(α+2)

n∑
i=0

(Mn+1,n+1)[K2S
PF
m(n+1) − (µm + ε)EPF

m(n+1)],

Im(n+1) =
n−1∑
i=0

I
(i)
0m

tin+1

i! + bα

Γ(α+2)

n∑
i=0

(Mi,n+1)[εEmi − (µm + γ)Imi]

+ bα

Γ(α+2)

n∑
i=0

(Mn+1,n+1)[εE
PF
m(n+1) − (µm + γ)IPF

m(n+1)].


(3.22)

Mi,n+1 =


nα+1 − (n− α)(n+ 1)α,

(n− i+ 2)α+1 + (n− i)α+1,

1.

(3.23)

The next stage is to create the concurrence predictor formula , the predictor formula
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which can be given as XPF
n+1.

SPF
h(n+1) =

n−1∑
i=0

S
(i)
0h

tin+1

i! + bα

Γ(α+1)

n∑
i=0

(Li,n+1)[Xh − (K1 + µh)Shi + σRhi + γImi],

EPF
h(n+1) =

n−1∑
i=0

E
(i)
0h

tin+1

i! + bα

Γ(α+1)

n∑
i=0

(Li,n+1)[K1Shi − (ρ+ µh)Ehi],

IPF
h(n+1) =

n−1∑
i=0

I
(i)
0h

tin+1

i! + bα

Γ(α+1)

n∑
i=0

(Li,n+1)[ρEhi − (µh + δ + π)Ihi],

RPF
h(n+1) =

n−1∑
i=0

R
(i)
0h

tin+1

i! + bα

Γ(α+1)

n∑
i=0

(Li,n+1)[πIhi − (µh + σ)Rhi],

SPF
m(n+1) =

n−1∑
i=0

S
(i)
0m

tin+1

i! + bα

Γ(α+1)

n∑
i=0

(Li,n+1)[Xm − (K2 + µm)Smi],

EPF
m(n+1) =

n−1∑
i=0

E
(i)
0m

tin+1

i! + bα

Γ(α+1)

n∑
i=0

(Li,n+1)[K2Smi − (µm + ε)Emi],

IPF
m(n+1) =

n−1∑
i=0

I
(i)
0m

tin+1

i! + bα

Γ(α+1)

n∑
i=0

(Li,n+1)[εEmi − (µm + γ)Imi],


(3.24)

where Li,n+1 = (n+ 1− i)α − (n− i)α.

3.7. Congenital trace and memory tracking

To capture the dynamics of dengue hemorrhagic fever (DHF) model 2.1, we utilize
the defined Caputo operator in fractional order model 2.1 with 0 < α ≤ 1. Let X(t)
represent the fractional order derivative [40]. Then

Dα
t χ(t) = Ψ(χ(t), t). (3.25)

Using the approach of L1 scheme, the numerical estimate of the functional derivative
of X(t) is given by:

Dα
t χ(t) ≈

(dt)−α

Γ(2− α)

[
J−1∑
κ=0

[χ(tκ+1)− χ(tκ)][(J − κ)1−α − (J − 1− κ)1−α

]
. (3.26)

L1 scheme is one of the most accurate approaches used for partitioning fractional
derivative due to its memory term and rate of convergence. Using equations 3.25
and 3.26 we obtain

χ(tJ) ≈ Dα
t Γ(2− α)F (χ(t), t) + χ(tJ − 1)

−
[
J−2∑
κ=0

[χ(tκ+1)− χ(tκ)][(J − κ)1−α − (J − 1− κ)1−α

]
.

(3.27)

The fractional derivative solution can be termed the variance between the memory
tracking and Markov term, where the Markov term is fitted by a gamma function.
For α < 1 , all past analyses of disease are taken into account for memory tracking,
which is solely based on time t.

3.8. Numerical simulation

In this section numerical simulation are carried out using MATLAB software to
check the effect of the fractional order α and vaccination therapy on the fractional
order model 2.1, the Adams Bashforth Predictor-corrector technique has been in-
serted into the numerical scheme.
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4. Discussion of results

The stability and mathematical well-posedness (accuracy) of the fractional order
model 2.1 at P 0 and P∗ are illustrated in 2(a) and 2(b) for fraction order α = 0.9
with

Xh = 0.05,K1 = 0.091193, σ = 0.086, ρ = 0.10, π = 0.005, Xm = 0.12,

ε = 0.0003465, µm = 0.057, δ = 0.001865, µh = 0.001127,K1 = 0.091196,

all taken as fitted values.
With the fitted values given, different values of fractional order are incorporated

in each class to check the dynamics of the fractional model 2.1. Figures:2(c), 2(d),
2(e), 2(f) which is the human population density increase as the fractional order α
increases over a period of 100 days.

Similarly Figures:2(g), 2(h), 2(i) and 2(j) also show an increment as the frac-
tional order α increases, depicting the effect of the fractional order on the population
density of mosquitoes.

In Figure:2(k), the effect of disease contact rate (eh) is incorporated into the
infectious human individuals for α = 0.9 to check the behavioral solution, which
also increases as the effective contact rate rises. Its attendant effect can be seen in
Figure:2(l) which shows the disease induced death rate (δh).If a proper control plan
is not put in place it might tend to endemic point.

In Figure:2(m), the saturation factor (ah) for the fractional order α = 0.9 is
incorporated into the infectious human to check the dynamics, which depicts a
decrease in this set of individuals translating to flattening out the disease (saturation
in this context is treatment).

In Figure:2(n), over the course of 100 days the effective contact rate (em) is varied
in the infectious mosquito population for the fractional order α = 0.9 , and the
increase is evident as the contact rate rises. Similarly, in Figure 2(j) the saturation
factor (ah) is inserted in the infectious mosquito where the fractional order is α =
0.9 , demonstrating a sharp decrease in this class of mosquito. Saturation here
represents measures such as insecticide use and fumigation.

The effect of the increasing rate of constant vaccination is depicted in Figure
2(o) and 2(p), where the exposed and infected compartments shows steady state
solutions as the vaccination rate increases for fractional order α = 0.9.

5. Conclusion

Using a modified fractional operator within the scope of Caputo, equipped with
fractional order α, we investigated a dengue hemorrhagic fever (DHF). Initially
employing fixed-point theorem of Schauder and Banach types, we established the
uniqueness and existence of the fractional model solutions. We also established the
positivity and boundedness of the fractional order model within feasible regions.
Furthermore, the equilibrium points for both disease-free and endemic status were
verified, and the next-generation matrix technique was used to establish reproduc-
tion number (R0), which was found to be less than 1, via the stability analysis
using the Jacobian approach. The global stability analysis of the endemic state was
verified using the Lyapunov technique for R0 > 1. Through the numerical scheme,
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using the Adams-Bashforth predictor corrector approach we ascertained the stabil-
ity of the model. The results explain the effect of different parameters on the model.
Significantly, it is found that the present model’s integration of memory impacts
through Caputo FOD affects how quickly solution paths approach the steady state
solution. These results add to the body of data supporting the idea that fractional
operators give more insightful and dependable, understanding of the DHF fractional
model.

(a) At Infection-free. (b) At Endemic point.

(c) Solution trajectories of different values of α on
human susceptible.

(d) Solution trajectories of different values of α
on Exposed Human.
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(e) Solution trajectories of different values of α
on infected Human.

(f) Solution trajectories of different values of αon
recovered Human.

(g) Trajectory solutions of susceptible mosquito
with increase in the values of fractionalorder α.

(h) Solution trajectories of Exposed mosquito with
different values of α, depicting increment, .

(i) Solution trajectories of infected mosquito
with different values of α.

(j) Dynamics of the infected human with different
values force of infection (eh) rate for the fractional
order α = 0.9.
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(k) Dynamics of the infected human with differ-
ent values of disease induced death rate.

(l) Dynamics of infected human with saturation
factor where α = 0.9

(m) Dynamics of infected mosquito with differ-
ent values for force of infection.

(n) dynamics of infected mosquito with saturation
factor for the fractional order α = 0.9.

(o) The dynamical effect of constant vaccination on the
exposed human individuals for α = 0.9.

(p) dynamical effect of constant vaccination on
the infected human for the fractional order α =
0.9.

Figure 2. Mathematical well-posedness at infection free and endemic point
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