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An Analytical Technique on Numerical Solutions
for EFKs of Fourth Order and Higher
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Abstract This study introduces an advanced analytical technique for solv-
ing the fourth-order Extended Fisher-Kolmogorov (EFK) equation, focusing
on the application of Adomian decomposition methods (ADM) and modified
Adomian decomposition methods (MADM) . The research outlines a system-
atic approach to deriving numerical solutions, facilitating the characterization
and understanding of complex dynamics associated with the EFK equation.
Additionally, the technique is generalized to higher-order extensions, enhanc-
ing its applicability in modeling various physical phenomena. The results illus-
trate the effectiveness of the proposed methods in achieving accurate solutions
while addressing challenges inherent in higher-order differential equations.
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1. Introduction

The Extended Fisher-Kolmogorov (EFK) equation represents a significant evolu-
tion of the original Fisher-Kolmogorov equation, which models the dynamics of
biological populations and diffusion processes. The EFK equation is characterized
by its nonlinear nature and has been crucial for understanding complex phenom-
ena such as pattern formation in biological systems, bistability in reaction-diffusion
models, and other ecological interactions [14]. Mathematically, it describes how
population densities evolve over time, incorporating higher-order spatial derivatives
that facilitate the modeling of more intricate spatial dynamics [20, 21]. Despite
its importance, solving the EFK equation poses substantial challenges due to its
nonlinear characteristics and the complex initial conditions often involved in prac-
tical applications. Traditional analytical methods may not suffice, necessitating the
exploration of alternative approaches for obtaining approximate solutions because
they frequently struggle with the nonlinear characteristics of the EFK equation.
These methods often assume linearity or rely on perturbative approaches that fall
short when confronted with strong nonlinearities.

This is where the Adomian Decomposition Method (ADM), a powerful semi-
analytical technique for solving a broad class of nonlinear ordinary and partial
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differential equations, developed by George Adomian during the late 20th century
[1, 3] becomes relevant.

In essence, ADM expresses the solution as a sum of functions, where each func-
tion corresponds to a term in the series. The nonlinearities in the equations are
handled using Adomian polynomials, which facilitate the systematic computation
of terms in the series expansion. This approach not only provides a straightforward
means of addressing nonlinear equations but also enhances the flexibility in appli-
cation to various fields, including physics, engineering, and applied mathematics.

Overall, the Adomian Decomposition Method stands out as an effective and
accessible solution technique for tackling complex differential equations, making it
a valuable tool in both theoretical and applied mathematics [4, 6, 12].

In another context, many modifications have been made to this method with
the aim of improving it called Modified Adomian Decomposition Method (MADM).
This technique provides a systematic framework for decomposing nonlinear prob-
lems into simpler components, enabling more manageable calculations and conver-
gence to the true solution and it provides a structured way to address the non-
linear aspects of the EFK equation by decomposing the solution into an infinite
series. [7, 16].

MADM’s ability to manage various forms of nonlinear dynamics makes it suit-
able for a wide range of applications beyond the EFK equation, including scenarios
that feature complex boundary conditions or initial value problems. This adaptabil-
ity allows researchers to apply the same technique across different problems without
significant reforms to the method and has been successfully applied to a range of dif-
ferential equations, showcasing its adaptability and robustness in tackling nonlinear
dynamics look in [5, 9, 13, 17]. The progression of differential equations from lower
to higher orders, particularly the transition from fourth to sixth order, is rooted
in the mathematical need to solve increasingly complex problems across various
fields such as physics, engineering, and applied mathematics. High-order differen-
tial equations incorporate more derivatives and, consequently, provide richer models
to capture the behavior of dynamic systems, wave propagation, thermal conduction,
and other phenomena influenced by multiple variables. In the context of differential
equations,“order” refers to the highest derivative present in the equation.

The extension from fourth to sixth order often involves sophisticated methods
such as power series, Taylor expansions, and eigenfunction expansions. These tech-
niques not only expand the class of functions that can be analyzed but also enhance
the theoretical framework required for solving boundary value problems and initial
value problems [15] . The need for higher-order derivatives arises in scenarios where
the behavior of a system cannot be adequately described by simpler models. For
instance, systems characterized by stiffness or complex interactions may necessitate
these advanced formulations for accurate predictions and solutions. The explo-
ration of higher-order differential equations reflects a broader trend in mathematics
toward developing tools capable of addressing the multifaceted challenges posed by
real-world applications [22].

In this paper, we aim to present a thorough investigation of the solution tech-
niques for the EFK equation using the modified Adomian decomposition method.
We first outline the theoretical foundations of the EFK equation, highlighting
its relevance in contemporary research. Then, we detail the implementation of
MADM, illustrating its effectiveness in deriving approximate solutions. Finally, we
demonstrate the practical applicability of our findings through numerical examples,
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thereby providing a comprehensive analysis of the method’s performance and its
implications for future research in nonlinear dynamics.

2. Extended Fisher-Kolmogorov equation

The Extended Fisher-Kolmogorov (EFK) equation of fourth order is an extension
of the classical Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation, which is
a fundamental model in theoretical biology and mathematical physics for studying
biological invasions, reaction-diffusion processes, and phase transitions [23]. Under-
standing the formation and origin of the EFK equation requires a deep dive into
the background of these models. The original FKPP equation is expressed as:

∂u

∂t
= D

∂2u

∂x2
+ ru(1− u).

Here u(x, t) represents the population density, D is the diffusion coefficient, and
r is the intrinsic growth rate. The equation combines a linear diffusion term with
nonlinear logistic growth. The significant leap from the basic FKPP equation to the
extended versions—including the Ordinary Extended Fisher-Kolmogorov (OEFK)
equation—occurs mainly due to the inclusion of higher-order spatial derivatives,
which introduces greater complexity. The extended Fisher-Kolmogorov equation
can generally be expressed as:

∂u

∂t
= −α

∂4u

∂x4
+

∂2u

∂x2
+ u− u3, α > 0,

This equation was first put forward as an extension of the traditional Fisher-
Kolmogorov (FK) equation in 1987 by Coullet, Elphick, and Repaux [10] and in 1988
by Dee and van Saarloos [11]. The occurrence of phase transitions, or solutions
that spatially link two uniform states, is an issue of significant interest for these
model equations. The following autonomous equation results from examining time-
independent solutions:

u′′′′ − ζu′′ + δu+ u3 = 0, x > 0, (2.1)

whit u(0) = 0, u′(0) = A, u′′(0) = 0, u′′′(0) = B, where the constants A and B
must be related by B = 1

2 A µ (A
2 − 1

2 ), A ̸= 0, B > 0, B > 0, A ∈ R/ {0} .

3. Polynomial of Adomian

The polynomial’s Adomian method is an effective tool used for solving nonlinear
problems, particularly in the context of differential equations. This method extends
the classical Adomian decomposition technique by enabling the decomposition of
non-linear operators into a series of multinomial terms.

The decomposition method decomposes the solution u(x) and the nonlinearity
N(u) into series

u(x) =

∞∑
n=0

un, (3.1)
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and

N(u) =

∞∑
n=0

An,

where An are the Adomian polynomials. The recursion relation in [2, 6] can be
formulated as follows:

A0 = N(u0),

A1 = N(u0)u1,

A2 = N ′(u0)u2 +
1

2!
N ′′(u0)u

2
1,

...

Hence

An =
1

n!

dn

dλn

[
N(

∞∑
i=0

λiui)

]
λ=0

, n ≥ 0.

4. The solution’s existence and uniqueness

In this part, Theorem 4.1 introduces the necessary condition that ensures the exis-
tence of a unique solution, Theorem 4.2 proves the convergence of the series solution
(3.1) and Theorem 4.3 estimates the maximum absolute error of the truncated series
(3.1).

Theorem 4.1. There is a unique solution of problem (2.1) whenever 0 < α < 1,
where

α =

[
1

r2
+

∞∑
n=1

(−1)n(
2nr(

−1
n+1 ) + xn

2(n+1)r(
n+2
n+1 )

)
(
(−1)ne(−1)n

√
rx − e(−1)n+1√rx

)]
.

Proof. Let E = (C[J ], ∥.∥) be the Banach space of all continuous functions on J
with the norm

∥u(x)∥ = max
x∈J

|u(x)|.

Define a mapping F : E → E where Fu(x) = ϕ(x) − L−1N(u). If u and u∗ ∈
E, we arrive at

∥Fu− Fu∗∥ =max
x∈J

|L−1 [N(u)−N(u∗)] |

≤max
x∈J

L−1|N(u)−N(u∗)|

≤ϱmax
x∈J

|u− u∗|
∫ x

0

∫ x

0

...k − fold...

∫ x

0

∫ x

0

dxdx...dxdx

≤ϱαmax
x∈J

|u− u∗|

≤ϱα∥u− u∗∥
≤ℓ∥u− u∗∥.

The Banach fixed-point theorem for contractions states that there is only one
solution to issue (2.1) since the mapping F is a contraction under the constraint
0 < α < 1.
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Theorem 4.2. When 0 < α < 1 and |u1| < ∞, the ADM series solution (3.1) of
problem (2.1) converges.

Proof. Let n ≥ m and let Sn and Sm be arbitrary partial sums. In Banach space
E, we will demonstrate that Sn is a Cauchy sequence.

∥Sn − Sm∥ =max
x∈J

|Sn − Sm|

=max
x∈J

|
n∑

i=m+1

ui(x)|

=max
x∈J

|
n∑

i=m+1

L−1Ai|

=max
x∈J

|L−1
n∑

i=m+1

Ai|

=max
x∈J

|L−1[N(Sn)−N(Sm)]|

≤max
x∈J

ϱL−1|N(Sn)−N(Sm)|

≤ϱα∥Sn − Sm∥
≤ℓ∥Sn − Sm∥.

If n = m+ 1, then,

∥Sm+1 − Sm∥ ≤ ℓ∥Sm − Sm−1∥ ≤ ℓ2∥Sm−1 − Sm−2∥ ≤ ... ≤ ℓm∥S1 − S0∥.

The triangular inequality leads us to

∥Sn − Sm∥ ≤∥Sm+1 − Sm∥+ ∥Sm+2 − Sm+1∥+ ...+ ∥Sn − Sn−1∥
≤(ℓm + ℓm+1 + ...+ ℓn−1)∥S1 − S0∥
≤ℓm(1 + ℓ+ ...+ ℓn−m−1)∥S1 − S0∥

≤ℓm(
1− ℓn−m

1− ℓ
)∥u1(x)∥.

Whenever 0 < ℓ < 1, (1− αn−m) < 1, then we get

∥Sn − Sm∥ ≤ αm

1− α
max
x∈J

|u1(x)|.

But |u1| < ∞ as m → 0, so ∥Sn−Sm∥ → 0; therefore, {Sn} is a Cauchy sequence in
Banach space E. Hence the series

∑∞
n=0 un(x) converges and the proof is complete.

Theorem 4.3. It is calculated that the series solution (3.1) to problem (2.1) has a
maximum absolute truncation error of:

max
x∈J

∣∣∣∣∣u(x)−
m∑
i=0

ui(x)

∣∣∣∣∣ ≤ αm

1− α
max
x∈J

|u1(x)|.

Proof.

∥Sn − Sm∥ ≤ αm

1− α
max
x∈J

|u1(x)|.
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As n → ∞, Sn → u(x), so we have

∥u(x)− Sm∥ ≤ αm

1− α
max
x∈J

|u1(x)|,

and it is predicted that the highest absolute truncation error in the interval J is

max
x∈J

∣∣∣∣∣u(x)−
m∑
i=0

ui(x)

∣∣∣∣∣ ≤ max
x∈J

αm

1− α
|u1(x)|.

The proof is complete.

5. Explanation of method and numerical applica-
tions

The Adomian decomposition method (ADM) provides an efficient way to tackle
nonlinear differential equations by decomposing solutions into a series of compo-
nents that can be solved iteratively [1,2]. This method is particularly useful for the
Fisher-Kolmogorov equation as it allows for the handling of nonlinearity, enabling
the derivation of approximate analytical solutions without requiring extensive com-
putational resources.

In the context of the extended Fisher-Kolmogorov equation, the modified Ado-
mian decomposition method (MADM) enhances the traditional approach by in-
corporating modifications that improve convergence and accuracy. This method
provides a pathway to more refined solutions by adjusting the basic decomposi-
tion to accommodate higher-order terms and nonlinear interactions present in the
extended equation.

Applying these methods to the Fisher-Kolmogorov equation facilitates a deeper
understanding of its dynamics, yielding insights into the behavior of solutions under
various initial conditions.

5.1. First method via standard ADM

Under the transformation ζ = 2r and δ = r2 the equation (2.1) as [18, 19] is
transformed to

u(4)(x)− 2ru(2)(x) + r2u(x) + u3 = 0, (5.1)

u(0) = 0, u′(0) = A, u′′(0) = 0, u′′′(0) = B.

Equation (5.1)’s operator form can be expressed as follows:

Lu =
d4u

dx4
,

with

L−1(.) =

∫ x

0

∫ x

0

∫ x

0

∫ x

0

(.)dxdxdxdx.

However, this problem does not have an exact solution, so to illustrate the efficiency
and accuracy of ADM algorithm, the following residual error is defined

E = |u′′′′(x)− ζu′′(x) + δu(x) + u3(x)|.
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By applying L−1 on both sides of Equation (5.1) and using the initial conditions
we obtain

u(x) = ϕ(x) + 2rL−1u(2) − r2L−1u− L−1u3. (5.2)

The first step in applying ADM to this equation is to express the solution u(x) as
a series:

u(x) =

∞∑
n=0

un(x),

and the nonlinear term

N(u) =

∞∑
n=0

An, (5.3)

where un(x) are the components of the series. The initial condition u0(x) sets the
first term of the series and the nonlinear termN(u) is typically addressed using Ado-
mian polynomials, which are constructed recursively. For the Fisher-Kolmogorov
equation, this leads to the polynomials An that represent the contributions from
the non-linear term N(u) = u3 at each order.

Substituting equation (3.1) and equation (5.3) into equation (5.2) yields

∞∑
n=0

u(x) = ϕ(x) + 2γL−1
∞∑

n=0

u(2)
n − γ2L−1

∞∑
n=0

un − L−1An.

The zeroth components u0 can be identified by ϕ(x) and the remaining components
may be found repeatedly by utilizing the relation

u0(x) = ϕ(x),

un+1(x) = 2rL−1u(2)
n − r2L−1un − L−1An, n ≥ 0. (5.4)

Since An = u3 is the non-linear part, we can get

A0 =u3
0,

A1 =3u2
0u1,

A2 =3u2
0u2 + 3u′

0u
2
1.

Equation (4.5) is used to compute the solution components as

u0 =αx+
βx3

6
,

u1 =− 0.000165344x9α2β − 0.0000105219x11αβ2 − 2.6979193645860314

× 10−7x13β3 + 0.0166667x5
(
−0.5r2α+ rβ

)
+ 0.0047619x7

(
−0.25α3 − 0.0416667r2β

)
,

u2 =7.798231063991459× 10−18x7(−5.08866× 1013r2(rα− 2.β) + 3.46142

× 107x12α2β3 + 1.02364× 106x14αβ4 + 13566.x16β5

+ 86526.x10β2
(
7683.α3 + 436.r2β

)
+ 3.53379× 1011x2

(
r4α−12.rα3−4.r3β

)
+ 3.21254× 109rx4

(
132.rα3 + r3β − 372.α2β

)
+ 5.88377

× 106x8β
(
1122.α4 + 601.r2αβ − 980.rβ2

)
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+ 2.47118× 108x6α
(
108.α4 + 275.r2αβ − 574.rβ2

)
).

A series form of the approximate solution u(x) is produced

u(x) =

∞∑
n=0

un(x) = u0 + u1 + u2 + ...,

5.2. Second method via MADM

In this case we offer a new modified differentail operator in the form

Lu = e
√
rx d2

dx2
e−2

√
rx d2

dx2
e
√
rxu,

where

Lu = u(4)(x)− 2ru(2)(x) + r2u(x),

and

L−1(.) = e−
√
rx

∫ x

0

∫ x

0

e2
√
rx

∫ x

0

∫ x

0

e−
√
rx(.)dxdxdxdx. (5.5)

Applying equation (5.5) to equation (5.1) and using the initial conditions in equation
(5.1) we obtain

u(x) = ϕ(x)− L−1u3.

The zeroth component u0 can be identified by ϕ0 and the remaining components
may be found repeatedly by utilizing the relation

u0(x) = ϕ0,

un+1 = −L−1An, n ≥ 0. (5.6)

Since An = u3 is the non-linear part, we can get it as explained previoussly. Equa-
tion (5.6) used to compute the solution components as

u0 =Ae−
√
rxx−

Ae−
√
rx
(
1− e2

√
rx + 2

√
rx
)

2
√
r

−
e−

√
rx(−B +Ar)

(
1√
r
+ x+ e2

√
rx
(
− 1√

r
+ x
))

4r
,

u1 =− A3x7

840
+

(
−A2B

6048
− A3r

30240

)
x9

+

(
−A2B

√
r

6048
− 19A3r3/2

30240
−

√
r

(
−A2B

6048
− 19A3r

30240

))
x10

+

(
− AB2

95040
− 17A2Br

184800
+

71A3r2

831600
+

1

2
r

(
−A2B

6048
− 19A3r

30240

)

−
√
r

(
−A2B

√
r

6048
− A3r3/2

4320

))
x11
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+

(
−AB2

√
r

95040
− 23A2Br3/2

623700
− 523A3r5/2

9979200
− 1

6
r3/2

(
−A2B

6048
− 19A3r

30240

)

+
1

2
r

(
−A2B

√
r

6048
− A3r3/2

4320

)
−

√
r

(
− AB2

95040
− 17A2Br

184800
− 211A3r2

3326400

))
x12

+

(
− B3

3706560
− 59AB2r

9266400
− 19A2Br2

1684800
+

193A3r3

28828800
+

1

24
r2
(
−A2B

6048
− 19A3r

30240

)
− 1

6
r3/2

(
−A2B

√
r

6048
− A3r3/2

4320

)
+

1

2
r

(
− AB2

95040
− 17A2Br

184800
− 211A3r2

3326400

)
−
√
r

(
−AB2

√
r

95040
− 23A2Br3/2

623700
− 127A3r5/2

9979200

))
x13 + . . .

u2 =
A5x13

4804800
+

(935A4B + 91A5r)x15

18162144000
+
(12805A3B2 + 8722A4Br − 2843A5r2)x17

2470051584000
+ . . .

A series form of the approximate solution u(x) is produced

u(x) =

∞∑
n=0

un(x) = u0 + u1 + u2 + . . . ,

Ax+
Bx3

6
+

1

120
(2Br −Ar2)x5 +

(
− A3

840
+

3Br2 − 2Ar3

5040

)
x7

+
(
−A2B

6048
− A3r

30240
+

4Br3 − 3Ar4

362880

)
x9

+
(
−A2B

√
r

6048
− 19A3r3/2

30240
−
√
r
(
−A2B

6048
− 19A3r

30240

))
x10

+
(
− AB2

95080
− 17A2Br

184800
+

71A3r2

831600
+

r

2

(
−A2B

6048
− 19A3r

30240

)
−
√
r
(
−A2B

√
r

6048
− A3r3/2

4320

)
+

5Br4 − 4Ar5

39916800

)
x11

+
(
−AB2

√
r

95040
− 23A2Br3/2

623700
− 523A3r5/2

9979200
− r3/2

6

(
−A2B

6048
− 19A3r

30240

)
+

r

2

(
−A2B

√
r

6048
− A3r3/2

4320

)
−

√
r
(
− AB2

95040
− 17A2Br

184800
− 211A3r2

3326400

))
x12

+
( A5

4804800
− B3

3706560
− 59AB2r

9266400
− 19A2Br2

1684800
+

193A3r3

28828800

+
r2

24

(
−A2B

6048
− 19A3r

30240

)
− r3/2

6

(
−A2B

√
r

6048
− A3r3/2

4320

)
+

r

2

(
− AB2

95040
− 17A2Br

184800
− 211A3r2

3326400

)
−
√
r
(
−AB2

√
r

95040
− 23A2Br3/2

623700
− 127A3r5/2

9979200

)
+

6Br5 − 5Ar6

6227020800

)
x13

+
(
− B3

√
r

3706560
− 53AB2r3/2

18532800
− 23A2Br5/2

8648640
− 89A3r7/2

64864800
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− r5/2

120

(
−A2B

6048
− 19A3r

30240

)
+

r2

24

(
−A2B

√
r

6048
− A3r3/2

4320

)
− r3/2

6

(
− AB2

95040
− 17A2Br

184800
− 211A3r2

3326400

)
+

r

2

(
−AB2

√
r

95040
− 23A2Br3/2

623700
− 127A3r5/2

9979200

)
−
√
r
(
− B3

3706560
− 59AB2r

9266400
− 19A2Br2

1684800
− 17A3r3

10810800

))
x14

+
(
− B3r

14968800
− AB2r2

1559250
− 37A2Br3

74844000
+

379A3r4

1524096000
+

935A4B + 91A5r

18162144000

+
r3

720

(
−A2B

6048
− 19A3r

30240

)
− r5/2

120

(
−A2B

√
r

6048
− A3r3/2

4320

)
+

r2

24

(
− AB2

95040
− 17A2Br

184800
− 211A3r2

3326400

)
− r3/2

6

(
−AB2

√
r

95040
− 23A2Br3/2

623700
− 127A3r5/2

9979200

)
+

r

2

(
− B3

3706560
− 59AB2r

9266400
− 19A2Br2

1684800
− 17A3r3

10810800

)
−
√
r
(
− B3

√
r

3706560
− 53AB2r3/2

18532800
− 23A2Br5/2

8648640
+

41A3r7/2

908107200

)
+

7Br6 − 6Ar7

1307674368000

)
x15 + . . .

r=1, A=0.5, B=-0.25

x ADM E MADM E

0.1 0.0499582 3.33293× 10−7 0.0499582 2.61243× 10−15

0.3 0.148855 0.0000809034 0.148855 4.62785× 10−10

0.5 0.244527 0.00103765 0.244527 1.2756× 10−7

0.7 0.334267 0.00555231 0.334267 5.16564× 10−6

0.9 0.414471 0.0193483 0.414467 0.0000819809

1.0 0.449515 0.0325952 0.449504 0.000261243

6. Sixth order differential equation

When generalizing the fourth-order differential equations to sixth-order using the
ADM, the process requires recognizing the inherent complexities that arise from
the increased order of the differential equations. Each higher-order term introduces
additional variables and initial conditions that must be accounted for. In the gen-
eralized approach, the ADM can be extended to handle the sixth-order equations
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r=0.5, A=0.8, B=0.875

x ADM Error (ADM) MADM Error (MADM)

0.1 0.0800146 9.43521× 10−9 0.0801459 2.99483× 10−14

0.3 0.240391 2.40865× 10−6 0.243951 5.28566× 10−9

0.5 0.401789 3.38699× 10−5 0.418401 1.44551× 10−6

0.7 0.564791 2.04161× 10−4 0.610919 5.78091× 10−5

0.9 0.729767 8.09904× 10−4 0.829344 9.00973× 10−4

1.0 0.812992 1.45401× 10−3 0.95083 2.83797× 10−3

Table 1. Numerical results for the EFK equation using ADM and MADM residual errors.

by identifying the linear and nonlinear components distinctly, thereby applying the
decomposition method to these components separately.

Assume the sixth-order differential equation as follows:

u(6) − ζu(4) + δu(2) − κu+ u3 = 0, x > 0, (6.1)

u(0) = 0, u′(0) = A, u′′(0) = 0, u′′′(0) = B, u′′′′(0) = 0, u′′′′′(0) = C.

The constants A and B must be related by B = 1
2 A µ (A

2 − 1
2 ), A ̸= 0, B > 0,

C > 0, A ∈ R/ {0} .
This equation was studied by the G. Bonanno et al. [8] under the boundary

conditions

u(a) = u(b) = u′′(a) = u′′(b) = uiv(a) = uiv(b) = 0.

Under transform ζ = 3r, δ = 3r2, κ = r3 equation (6.1) becomes

u(6)(x)− 3ru(4)(x) + 3r2u(2)(x)− r3u(x) + u3 = 0. (6.2)

We offer a new modified differential operator in the form

Lu = e
√
rx d3

dx3
e−2

√
rx d3

dx3
e
√
rxu,

where

Lu = u(6)(x)− 3ru(4)(x) + 3r2u(2)(x)− r3u(x), (6.3)

and

L−1(.) = e−
√
rx

∫ x

0

∫ x

0

∫ x

0

e2
√
rx

∫ x

0

∫ x

0

∫ x

0

e−
√
rx(.)dxdxdxdxdxdx. (6.4)

Applying equation (6.4) to equation (6.3) and using the initial conditions in equation
(6.1) we obtain

u(x) = ϕ(x)− L−1u3.
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The zeroth components u0 can be identified by ϕ(x) and the remaining components
may be found repeatedly by utilizing the relation

u0(x) = ϕ(x),

un+1 = −L−1An, n ≥ 0. (6.5)

Since An = u3 is the non-linear part, we can get it as explained previoussly. equation
(6.3) is used to compute the solution components as

u0 =Ae−
√
rxx+Ae−

√
rx
√
rx2 −

e−
√
rx
(
B + 3Ar3/2

)(
1− e2

√
rx + 2

√
rx+ 2rx2

)
8r3/2

−
e−

√
rx
(
−2B

√
r + 2Ar3/2

)(
3 + 4

√
rx+ 2rx2 + e2

√
rx
(
−3 + 2

√
rx
))

16r2

+
e−

√
rx
(
C − 2Br +Ar2

)(
−3− 3

√
rx− rx2 + e2

√
rx
(
3− 3

√
rx+ rx2

))
16r5/2

,

u1 =− A3x9

60480
+

(
−163800A2B + 442260A3r − 491400A3r3/2

)
x11

108972864000

+

(
−1638A2B

√
r − 5814A3r3/2 − 3685A3r2 −

√
r
(
−1638A2B − 4586A3r − 4914A3r3/2

))
x12

108972864000

+
1

108972864000

[(
225225A3r2 + 1

2r
(
−163800A2B − 458640A3r − 491400A3r3/2

)
−

√
r
(
−163800A2B

√
r + 19110A3r3/2 − 368550A3r2

)
− 105A

(
70B2 + 30AB(13 + 14

√
r)r

+A
(
21C +Ar2(73 + 252

√
r + 630r)

)))
x13
]

+
1

108972864000

[(
−60060A3r5/2 − 1

6r
3/2
(
−163800A2B − 458640A3r − 491400A3r3/2

)
+ 1

2r
(
−163800A2B

√
r + 19110A3r3/2 − 368550A3r2

)
+ 105A

√
r
(
70B2 + 30AB(13 + 14

√
r)r

+A
(
21C +Ar2(73 + 252

√
r + 630r)

))
− 15A

√
r
(
490B2 + 70AB(−1 + 30

√
r)r

+A
(
147C +Ar2(107− 408

√
r + 1890r)

)))
x14
]
+ . . . ,

u2 =5.56669× 10−12A5x17 − 2.78334× 10−12A5rx19 + 1.85556× 10−12A5r3/2x20 + . . .

Therefore, in series form, the approximate solution u(x) up to order three is provided
by

u(x) = u0 + u1 + u2 + ...

7. Extending the differential equation of fourth or-
der to higher orders

The extending of fourth-order differential equations to higher-order forms is a sig-
nificant focus in applied mathematics, particularly for solving complex engineering
and physical problems. This process involves extending the principles and method-
ologies used for fourth-order equations to accommodate equations of any order,
thereby enhancing analytical and numerical solution techniques. General formula
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A = 0.5, B = −0.25, C = 0.2, r = 1 A = 0.8, B = 0.875, C = 0.4, r = 0.5

x MADM E MADM E

0.1 0.0499584 −4.1336× 10−15 0.0801459 −9.52381× 10−15

0.2 0.0996672 −2.1164× 10−12 0.161168 −4.87619× 10−12

0.3 0.148879 −8.13616× 10−11 0.243946 −1.87457× 10−10

0.4 0.197351 −1.0836× 10−9 0.329367 −2.49661× 10−9

0.5 0.244847 −8.07343× 10−9 0.418332 −1.86012× 10−8

0.6 0.29114 −4.16571× 10−8 0.511756 −9.59781× 10−8

0.7 0.336019 −1.66806× 10−7 0.61057 −3.8432× 10−7

0.8 0.379291 −5.54802× 10−7 0.715731 −1.27826× 10−6

0.9 0.420789 −1.60144× 10−6 0.828215 −3.68972× 10−6

1.0 0.460378 −4.1336× 10−6 0.949027 −9.52381× 10−6

Table 2. The EFK equation’s numerical results utilizing the residual error and the MADM technique
are shown in the table. Our findings show that the residual error is high, which demonstrates how
accurate of our conclusions.

for generalization is given in the form:

k∑
n=0

(−1)n
(
k

n

)
rnu(2k−2n) +N(u) = 0, k > 1, r ∈ N,

with conditions

u(0) = u′′(0) = u(4) = ... = u(k−1) = 0, k is odd number, (7.1)

u′(0) = u′′′(0) = u(5) = ... = u(k−1) = δ, k is even number, δ = A,B,C, ...

and the new differential operator in the form

L(u) = e
√
rx dk

dxk
e−2

√
rx dk

dxk
e
√
rx(u), (7.2)

and

L−1(.)=e−
√
rx

∫ x

0

∫ x

0

...

∫ x

0

∫ x

0︸ ︷︷ ︸
k−times

e2
√
rx

∫ x

0

∫ x

0

...

∫ x

0

∫ x

0︸ ︷︷ ︸
k−times

e−
√
rx(.) dxdx...dxdxdxdx...dxdx.︸ ︷︷ ︸

2k−times

(7.3)

Hence equation (7.1) takes the formula

Lu+Nu = 0, (7.4)

and the general solution u(x) is obtained by applying the inverse operator L−1 on
equation (6.3), therefore

u(x) = ϕ(x) + L−1N(u),
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where
u0(x) = ϕ(x),

un+1 = L−1An, An = N(u).

It was also clarified previously.

8. Conclusion

This study demonstrates the effectiveness of the Adomian Decomposition Method
(ADM) and its modified version for obtaining numerical solutions of the fourth-order
Extended Fisher-Kolmogorov (EFK) equation. The application of these methods
proves beneficial for efficiently solving higher-order generalizations of the EFK equa-
tion. The results indicate that the modified ADM enhances convergence rates and
accuracy, providing a robust framework for analyzing complex nonlinear dynamic
systems. Overall, the findings highlight the potential of these analytical techniques
for both theoretical advancement and practical application in diverse scientific and
engineering disciplines, paving the way for further exploration of high-order nonlin-
ear systems.
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