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A Multiscale Coupled Reaction-Diffusion Model of
Amyloid-Beta and Tau Pathology in Alzheimer’s
Disease

Aytekin Enver!', Fatma Ayaz? and Deniz Eylem Yalcinkaya?

Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disor-
der characterized by the accumulation of amyloid-beta (A3) plaques and tau
neurofibrillary tangles (NFTs), as well as by chronic neuroinflammation and
blood-brain barrier (BBB) dysfunction. Although these pathological features
are well known, their complex interactions remain poorly understood. This
study proposes a comprehensive multiscale coupled reaction-diffusion model
composed of 13 partial differential equations to simulate the spatio-temporal
dynamics of AS and tau pathology, neuroinflammatory responses, BBB in-
tegrity, and neuronal degeneration. The model captures biochemical reaction
kinetics, diffusion-driven propagation, and regulatory feedback among key cel-
lular components, including microglia, astrocytes, and cytokines. Further-
more, the effects of therapeutic interventions, such as anti-amyloid drugs and
dietary modifications, are incorporated to assess their influence on disease
progression. Numerical simulations using finite difference methods provide in-
sights into how these factors contribute to or mitigate AD pathogenesis. The
results support the potential of mathematical modeling as a tool to understand
disease mechanisms and evaluate treatment strategies.

Keywords Alzheimer’s disease, amyloid-beta, tau pathology, reaction-diffu-
sion models, neurodegeneration, mathematical modeling
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1. Introduction

Alzheimer’s disease (AD) is the most prevalent progressive neurodegenerative dis-
order characterized by cognitive impairment, neuronal degeneration, and synaptic
failure. Alzheimer’s disease (AD) pathogenic hallmarks consist primarily of extra-
cellular deposition of amyloid-beta (Af) plaques and intracellular accumulation of
tau neurofibrillary tangles (NFTs), resulting in diffuse neuronal damage and synap-
tic loss [1-4]. Despite decades of research, AD remains an incurable disease even
today, which emphasizes the importance of mathematical modeling as an instrumen-
tal asset towards understanding disease progression and evaluating pharmacologic
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intervention capable of delaying disease progression [5—8].

2. History and development of mathematical mod-
eling in Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder first described
by Alois Alzheimer in 1906 [9-12]. Characteristic features of AD pathology include
amyloid-beta (AS) plaques, tau neurofibrillary tangles (NFTs), neuronal death,
and synaptic dysfunction. Although clinical and biological research has improved
in elucidating the disease, mathematical modeling has been critical in offering a
quantitative and predictive foundation for the study of the disease’s evolution and
potential treatment approaches [13].

2.1. Early theoretical approaches (1970s—-1990s)

Mathematical models in neuroscience were dominated by neuronal networks and
electrophysiology in the early years (Hodgkin & Huxley, 1952) [14]. However, at
least as early as the 1980s and 1990s, researchers began developing compartmental
models of neurodegeneration processes.

Linear Compartmental Models: Previous models of AD employed com-
partmental kinetics to depict amyloid-beta production, clearance, and aggrega-
tion [15]. Despite their simplicity, these models were critical for measuring the
protein turnover rates occurring in the brain [16,17].

Population-Based Models: Such epidemiological models were built to under-
stand the incidence and progression of AD across diverse populations. Using these
models helped estimate risk factors of disease and effectiveness of public health
interventions [18].

2.2. Expansion into biochemical and cellular models (2000s—
2020s)

With advances in molecular biology and imaging, mathematical models became
more mechanistic, incorporating biochemical pathways of protein aggregation and
neuronal damage.

Reaction-Kinetics Models (2000s): These models described A and tau
aggregation using reaction-diffusion equations, modeling how monomers transition
into oligomers and fibrils [19-21].

Neuronal Network-Based Models: Computational neuroscience methods
used graph theory to characterize the loss of connectivity in neuronal networks,
modeling how synaptic damage spreads in time [22].

Inflammation and Immune Response Models: Researchers incorporated
the role of microglia and cytokines, demonstrating how neuroinflammation con-
tributes to AD pathology [23].

2.3. Modern reaction-diffusion and multi-scale models

Recent research has mostly focused on spatially explicit reaction-diffusion models,
which also aim to simulate the spread of pathology (both amyloid-beta and tau)
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through various brain regions [4, 6,24, 25].

Turing Pattern Formation in AD: Researchers explored diffusion-driven in-
stabilities (Turing patterns) in amyloid-beta and tau propagation, revealing spatial
heterogeneities in plaque formation [26].

Coupled Reaction-Diffusion Models for Multi-Pathway Interactions
(2020s): Current models integrate biochemical, immunological, and vascular in-
teractions, including:

e Amyloid-beta and tau kinetics.
e Neuroinflammation (cytokine-mediated interactions).
e Blood-brain barrier integrity.

e Effects of drugs and dietary interventions.

2.4. Advancements and insights on Alzheimer’s disease after
2020

In the last few years, the mathematical modeling of Alzheimer’s disease (AD) has
progressed rapidly, using sophisticated methods to elucidate pathophysiology and
disease trajectory. Challenged in their underlying simplicity, these contemporary
models aspire to incorporate many biological, genetic and clinical data to create a
more comprehensive picture of AD.

1. Biomarker Dynamics and Disease Progression Models: Recently
researchers have developed a series of mathematical models that encapsulate the
temporal progression of AD-related biological markers and cognitive decline. For
example, a multidimensional ordinary differential equation (ODE)-based model was
presented to describe different trajectories in biomarker space as a function of time
since diagnosis and to make personalized predictions about disease progression [27].
Another study focused on a mathematical representation of the AD biomarker cas-
cade, specifically citing statistical difficulties in the identification of neurobiological
disease surrogates [28-31].

2. Multiscale and Multidimensional Modeling Approaches: Advances
have been made in the development of multiscale models that encompass all lev-
els of biology from molecular interactions to system-wide effects. A computational
model of the progression of AD via a 19 ODE system was presented to represent
the interactions in AD pathology across nano, micro, and macro levels [30]. Fur-
thermore, researchers elaborated the interaction of amyloid-beta and calcium levels
based on a data-driven stochastic model, helping quantify their effects on AD pro-
gression [32,33].

3. Modeling the Impact of Therapeutics: Models have also been used to
simulate therapeutic agents on AD biomarkers. These studies illustrated the utility
of mathematical frameworks in predicting the response of the disease to different
inhibitors during the course of the illness, informing the assessment of potentially
promising therapeutic interventions. The authors emphasized the collaborative and
transformative nature of the mathematical modeling methodology in AD-related
research, which remains a key strategy to navigate the complex pathogenesis of AD
and to formulate possible treatment strategies [34, 35].
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3. Mathematical modeling for Alzheimer disease

Mathematical modeling offers insights into complex biological systems, including
the processes that give rise to neurodegenerative diseases like Alzheimer’s. Biolog-
ical processes can be represented with mathematical equations, making it possible
to identify patterns and predict how these systems will behave under various con-
ditions. This is particularly the case for reaction-diffusion equations which are fun-
damental for modeling the spatiotemporal dynamics of biological molecules, cells,
and tissues. These equations describe spatial- and temporal-regulated dynamics of
substances (e.g., proteins, cytokines) as they diffuse in space and interact with each
other in time [24, 36, 37].

In the context of Alzheimer’s disease, researchers have characterized the dynam-
ics of amyloid-beta (Af) and tau proteins, microglia, astrocytes, cytokines, integrity
of the blood-brain barrier, and neuronal density, described by a system of 13 equa-
tions. Further sections explain what each variable means in each equation and its
significance [38,39].

3.1. Amyloid-beta monomers (A,,)

aAm mo
S = Da, VA + Pa, @)+ (knadm + k50 ART, )
- kc,mAthBB(B(xa t)) - (I)m(C)Am - ’ydrug,AmAm - ’ydiet,AmAma
(3.1)

where A,, is the concentration of amyloid-beta monomers, D4, is the diffusion
coefficient of amyloid-beta monomers, P4, (x) is the production rate of amyloid-
beta monomers, k, 4 is the rate constant for nucleation into oligomers, kgn}oj‘ is
the rate constant for secondary nucleation in presence of tau oligomers, k. ., is the
clearance rate of amyloid-beta monomers, hppp(B(x,t)) represents the effect of
blood-brain barrier integrity on clearance, ®,,(C) represents the effect of cytokines
on degradation, Yarug,a,, is the effect of drugs on amyloid-beta monomers, and
Vdiet,A,, is the effect of diet on amyloid-beta monomers.

3.2. Amyloid-beta oligomers (A,)

04,
ot

= DAOv2A0 -+ (k'n,AAm + ki%ﬁAmTo) + kfrag,AAf
- (k'f,AAo + kg?jstAon) - kc,o(Ao; M;m’oa MAnti7 Asl7 ASQ)

- (I)O(C)AO - ’ydrug7AOAo - 'Ydiet,Avoy (32)

where A, is the concentration of amyloid-beta oligomers, D4, is the diffusion co-
efficient of amyloid-beta oligomers, k,, 4 is the rate constant for nucleation of A4,,,
kgn%oz is the rate constant for secondary nucleation in presence of tau oligomers,
kfrag,4 is the rate constant for fragmentation of amyloid-beta fibrils into oligomers,
ky a is the rate constant for fibrillization of A, ki‘)%l‘ is the rate constant for sec-
ondary nucleation with tau fibrils, k¢ o(As; Mpro, MAnti,Asl, Aso) is the clearance

rate of A, depending on microglia and astrocytes, ®,(C) is the effect of cytokines
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on A, degradation, vqrug,4, is the effect of drugs on A,, and Ygser,a, is the effect of
diet on A,.

3.3. Amyloid-beta fibrils (Ay)

0A o
aitf = DAfV2Af + (k‘ﬁAAo + k£,£24Afo) — kf,-a%AAf
- kc,f(Aﬁ Mp'r’o: M anti, A317 AsQ) - (I)f(C)Af - W/drug,AfAf - ’Ydiet,AfAfy
(3.3)

where Ay is the concentration of amyloid-beta fibrils, D4, is the diffusion coeffi-

cient of amyloid-beta fibrils, k¢ 4 is the rate constant for fibrillization of A,, kgopA is

the rate constant for secondary nucleation in the presence of tau fibrils, k44, 4 is the
rate constant for fragmentation of A into oligomers, k¢ (A ¢; Mpro, M anti, Ast, As2)
is the clearance rate of A; depending on microglia and astrocytes, ®(C) is the ef-
fect of cytokines on Ay degradation, 7arug,a, is the effect of drugs on Ay, and
Ydiet,A, is the effect of diet on Ay.

3.4. Tau monomers (7T,,)

Tm
o _ Dy, VT, + P, () (Fna T + K0 T A,

ot
- kg?;%TthBB (B($, t)) - q’% (C)Tm - "Ydrug,Tme - ’Ydiet,Tme, (34)

where T, is the concentration of tau monomers, Dy _is the diffusion coefficient

m

of tau monomers, Pr, (x) is the production rate of tau monomers, k, 7 is the rate

constant for nucleation of T, into oligomers, kg“}f% is the rate constant for secondary

nucleation of T, in presence of amyloid-beta oligomers, kﬁf,{ is the clearance rate
of tau monomers affected by BBB, hppp(B(x,t)) represents blood-brain barrier
integrity, ®7 (C) is the effect of cytokines on T, degradation, Ygrug 1, is the effect
of drugs on T, and Ygiet,1,, is the effect of diet on T5,.

3.5. Tau oligomers (7,)

oT,
ot

— Dy V2T, + (kn,TTm ¥ kgf’}{;ZTon) — kfragrTy
- (kfvTTO + kiiﬁ)TToAf) - kgi? (To; Mprw MAntia Asla ASQ)
- ¢Z(C)T0 — Ydrug,To Lo — Vaiet, 7, To, (3.5)

where T, is the concentration of tau oligomers, Dr, is the diffusion coefficient of
tau oligomers, k, r is the nucleation rate of 75, kgrﬁ“z} is the secondary nucleation
rate of T}, in presence of A,, ktrqq,r is the fragmentation rate of tau fibrils into
oligomers, kyp is the fibrillization rate of 75, kéoﬁ)T is the secondary nucleation
rate of 7T, in presence of Ay, kg;)(To; Mpro, Mants, As1, As2) is the clearance rate of

T, dependent on microglia and astrocytes, ®1(C) is the effect of cytokines on T,

degradation, ygrug,1, is the effect of drugs on Ty, and 7gie, 7, is the effect of diet on
T,.
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3.6. Tau fibrils (77%)

oT o
?)tf = Dr, VT + (kf,TTo + k‘i,i;)TToAf) — KfragrTy
T
- k£7f) (Tf7 Mprov MAntiu Ash As2) - (I)?(C)Tf - ’ydrug,Tfo — Vdiet, Ty va

(3.6)

where T is the concentration of tau fibrils, Dz, is the diffusion coefficient of tau

fibrils, ks is the fibrillization rate of 75, kioﬁ)T is the secondary nucleation rate
of T, in the presence of Ay, kfrqq,7 is the fragmentation rate of Ty into oligomers,
kgc) (Tt; Mpro, M anti, As1, As2) is the clearance rate of T dependent on microglia

and astrocytes, @?(C) is the effect of cytokines on Ty degradation, Yarug,7, is the
effect of drugs on T, and Vdiet,Ty 18 the effect of diet on T7.

3.7. Pro-inflammatory microglia (Mpyo)

OMpro
ot

= D]VIszpro + al(Ao + To)Manti - aQMpro - BMproMpro
- ’Ydrug,MpmMpro - f}/diet,Mpm Mpro’ (37)

where M, is the concentration of pro-inflammatory microglia, D is the diffusion
coefficient of microglia, «; is the activation rate of pro-inflammatory microglia by
A, and T,, a is the deactivation rate of pro-inflammatory microglia, By, is the

natural decay rate of Myro, Varug,m,,, i the effect of drugs on My, and Yaier, i
is the effect of diet on Mp;,.

pro

3.8. Anti-inflammatory microglia (Mapti)

8Manti
ot

= DMVQManti + O422\4p1r0 - al(Ao + To)Manti - ﬁMamiManti
+ rydrug,MantiManti + 'Ydiet,MmmManth (38)

where M, is the concentration of anti-inflammatory microglia, D, is the diffusion
coefficient of microglia, as is the conversion rate from pro-inflammatory to anti-
inflammatory state, «y is the reactivation rate by amyloid-beta and tau oligomers,
BM,..; is the natural decay rate of Manti, Vdrug, Ma.; 15 the effect of drugs on M,
and Yiet, M,,,,; 15 the effect of diet on Mp;.

anti

3.9. Harmful astrocytes (A,)

aAsl
ot

= -DAs VQASI + Y1 (Ao + TO)A32 - ’721481 - ﬂAslAsl
- ’Ydrug,ASlAsl - ’ydiet,AslAsla (39)

where A, is the concentration of harmful astrocytes, D 4, is the diffusion coefficient
of astrocytes, v, is the activation rate of Ag; by A, and T,, - is the deactivation
rate of As1, Ba,, is the natural decay rate of A1, Yarug,a,, is the effect of drugs on
As1, and 7Ygier,a,, is the effect of diet on Ag;.



1946 A. Enver, F. Ayaz & D. E. Yalginkaya

3.10. Protective astrocytes (Ay)

81432
ot

= Da,V?Ag + v A1 — 71(Ap + Tp) Az — Ba, Asa

+ Ydrug, Ao Ago + Ydiet, Ay AsQa (310)

where Ago is the concentration of protective astrocytes, D4, is the diffusion coef-
ficient of astrocytes, o is the conversion rate from Ag; to A, 1 is the rate of
reactivation into harmful astrocytes by A, and T,, B4,, is the natural decay rate
of Asa, Ydrug,A., is the effect of drugs on Ao, and 7Ygier, 4., is the effect of diet on
Ago.

3.11. Cytokines (C)

% = DcV?C + gy, Mpro + 14,y — kcC = Yarug.cC — Naiet,c C, (3.11)
where C'is the concentration of cytokines, D¢ is the diffusion coefficient of cytokines,
nM,,, is the production rate of cytokines by pro-inflammatory microglia, n4,, is the
production rate of cytokines by harmful astrocytes, k¢ is the degradation rate of
cytokines, ygrug,c is the effect of drugs on cytokines, and ng;ct,c is the effect of diet
on cytokines.

3.12. Blood-brain barrier integrity (B)

B
%—t = DpV?B — kaeg.5(Ao + Ty + C)B + 7rec(1 — B)

+ ’Vdrug,BB + ndiet,BBv (312)

where B is the integrity of the blood-brain barrier, Dg is the diffusion coefficient of
blood-brain barrier components, kqeg, B is the degradation rate of B due to A,, T,
and C, 7y is the recovery rate of the blood-brain barrier, and 7g4yv4,5 is the effect
of drugs on B, ngiet,p is the effect of diet on B.

3.13. Neuronal density (V)

ON
- = DNVQN - [LN(AO + TO)N + )\growth(NInax - N)

ot
- ¢N (C)N + 'Ydrug,NN + ndiet,NN7 (313)

where N is the neuronal density, D is the diffusion coefficient of neurons, py is the
neuronal death rate due to A, and T, Agrowtn is the neuronal growth rate, Nyax is
the maximum neuronal density, ¢n(C) is the effect of cytokines on neuronal death,
and Ygrug,n is the effect of drugs on N, ngiee, v is the effect of diet on V.
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3.14. Parameters for amyloid-beta, tau, microglia, cytokines,
blood-brain barrier, and neuronal dynamics in Alzhei-
mer’s disease

Table 1. Parameters for Amyloid-Beta Monomer Dynamics

Parameter | Description Example Value Units Source
Da,, Diffusion coefficient of amyloid-beta monomers 0.1 mm?/day [37]
Py, (z) Production rate of amyloid-beta monomers at posi- 0.05 M /day [40]
tion x
kn, A Natural degradation rate of amyloid-beta monomers 0.05 1/day [37]
kﬁyg-)« Interaction rate between amyloid-beta monomers 0.01 1/(day-uM) [37]
and tau oligomers
kem Clearance rate of amyloid-beta monomers via the 0.02 1/(day-uM) [41]
blood-brain barrier
hgge(B(z,t)) | Blood-brain barrier integrity function (spatial and 0.1 1/day Specific studies required
temporal dependence)
@,,(C) Microglial ~ phagocytosis rate of amyloid-beta 0.03 1/day [37]
monomers influenced by cytokine levels
Ydrug, Am Aducanumab-induced degradation rate of amyloid- 0.04-0.06 1/day [41]
beta monomers
Table 2. Parameters for Amyloid-Beta Oligomer Dynamics
Parameter | Description Example Value Units Source
Tdiet, A, Mediterranean diet-induced modulation rate of 0.03-0.05 1/day [40]
amyloid-beta monomers
Dy, Diffusion coefficient of amyloid-beta oligomers 0.05 mm?/day [37]
ki";’/{ Interaction rate between amyloid-beta monomers 0.01 1/(day-uM) [37]
and tau oligomers
Ffrag, A Fragmentation rate of amyloid-beta fibrils 0.01 1/day [37]
kg a Fibrillization rate of amyloid-beta oligomers 0.02 1/day [37]
kinqj:)A Interaction rate between amyloid-beta oligomers and 0.02 1/(day-uM) | Specific studies required
tau fibrils
keo Clearance rate of amyloid-beta oligomers by mi- 0.015 1/(day-puM) [37]
croglia and other immune cells
D,(C) Cytokine-dependent microglial clearance rate of 0.02-0.03 1/day [41]
amyloid-beta oligomers
Table 3. Parameters for Amyloid-Beta Fibrils and Tau Monomers
Parameter | Description Example Value Units Source
Ydrug, A, Solanezumab-induced clearance rate of amyloid-beta 0.03-0.05 1/day [42]
oligomers
Tdiet, A, Anti-inflammatory diet-induced modulation rate of 0.02-0.04 1/day [43]
amyloid-beta oligomers
Dy, Diffusion coefficient of amyloid-beta fibrils 0.01-0.05 mm?/day [37]
ke g Clearance rate of amyloid-beta fibrils by microglia 0.015-0.02 1/(day-uM) | Specific studies required
and astrocytes
Ds(C) Cytokine-dependent microglial clearance rate of 0.02 1/day [41]
amyloid-beta fibrils
Ydrug, A s Aducanumab-induced clearance rate of amyloid-beta 0.02-0.04 1/day [44]
fibrils
Ndiet, A Ketogenic diet-induced clearance rate of amyloid- 0.015-0.03 1/day [45]
beta fibrils
Dr, Diffusion coefficient of tau monomers 0.05-0.1 mm?/day [46]
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Table 4. Parameters for Tau Monomers and Tau Oligomers
Parameter | Description Example Value Units Source
Pr, (x) Production rate of tau monomers at position z 0.02 uM/day [47]
kn,r Natural degradation rate of tau monomers 0.05 1/day [46]
kg"/ﬁ Interaction rate between tau monomers and amyloid- 0.015 1/(day-uM) [48]
beta oligomers
kEl,,)L Clearance rate of tau monomers via the blood-brain 0.02 1/(day-uM) [54]
barrier
ol )(C) Cytokine-dependent microglial phagocytosis rate of 0.03 1/day [48]
tau monomers
Ydrug, T LMTM-induced clearance rate of tau monomers 0.02-0.04 1/day [50]
Ndiet, T, Polyphenol-rich diet-induced modulation rate of tau 0.02-0.03 1/day [49]
monomers
Dr, Diffusion coefficient of tau oligomers 0.02-0.05 mm?/day [46]
Table 5. Parameters for Tau Oligomers and Tau Fibrils
Parameter | Description Example Value Units Source
Etrag, T Fragmentation rate of tau fibrils 0.02 1/day [46]
kgr Fibrillization rate of tau oligomers 0.03 1/day [46]
kg"/{)T Interaction rate between tau oligomers and amyloid- 0.02 1/(day-uM) -
beta fibrils
kEI) Clearance rate of tau oligomers by microglia and as- 0.015-0.02 1/(day-uM) -
trocytes
@E)T)(C) Cytokine-dependent clearance rate of tau oligomers 0.02-0.03 1/day [48]
Ydrug,T, LMTM-induced clearance rate of tau oligomers 0.02-0.04 1/day [50]
diet, T, Mediterranean diet-induced modulation rate of tau 0.015-0.03 1/day [40]
oligomers
Dr, Diffusion coefficient of tau fibrils 0.01-0.02 mm?/day [46]
Table 6. Parameters for Tau Fibrils and Pro-inflammatory Microglia
Parameter | Description Example Value Units Source
ki_Tf) Clearance rate of tau fibrils by microglia and astro- 0.01-0.02 1/(day-uM)
cytes
@}T) () Cytokine-dependent clearance rate of tau fibrils 0.015-0.02 1/day [48]
Ydrug, T LMTM-induced clearance rate of tau fibrils 0.02-0.04 1/day [50]
Tdiet, Ty Anti-inflammatory diet-induced modulation rate of 0.02-0.03 1/day [49]
tau fibrils
Dy Diffusion coefficient of pro-inflammatory microglia 0.01-0.05 mm?/day [48]
3 Activation rate of pro-inflammatory microglia by 0.02-0.03 1/(day-puM) [51]
amyloid-beta and tau oligomers
(o2 Conversion rate of pro-inflammatory microglia to 0.01-0.02 1/day [51]
anti-inflammatory microglia
BMpeo Natural degradation rate of pro-inflammatory mi- 0.02 1/day -
croglia
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Table 7. Parameters for Pro- and Anti-inflammatory Microglia and Cytokine Dynamics
Parameter | Description Example Value Units Source
Ydrug, Mpro Minocycline-induced reduction of pro-inflammatory 0.03-0.05 1/day [55]

microglia
Tdict, Mpro Anti-inflammatory diet-induced modulation rate of 0.02-0.04 1/day [49]
pro-inflammatory microglia
BMons Natural degradation rate of anti-inflammatory mi- 0.02 1/day -
croglia
Ydrug,Man; | Ploglitazone-induced ~ enhancement — of  anti- 0.02-0.04 1/day [50]
inflammatory microglia
Tdiet, Mant; Polyphenol-rich diet-induced enhancement of anti- 0.02-0.03 1/day [49]
inflammatory microglia
Dy, Diffusion coefficient of amyloid-beta-associated cy- 0.01-0.05 mm?/day 48]
tokines
" Production rate of pro-inflammatory cytokines in- 0.02-0.03 1/(day-uM) [52]
duced by amyloid-beta and tau oligomers
Y2 Conversion rate of pro-inflammatory cytokines to 0.01-0.02 1/day [52]
anti-inflammatory cytokines
Table 8. Cytokine Clearance and Production Parameters
Parameter | Description Example Value Units Source
Bag, Natural degradation rate of amyloid-beta-associated 0.015-0.02 1/day -
pro-inflammatory cytokines
Vdrug, Ay NSAID-induced enhancement of amyloid-beta- 0.02-0.04 1/day [52]
associated cytokine clearance
Tdiet, Ay Anti-inflammatory diet-induced modulation rate of 0.02-0.03 1/day [43]
amyloid-beta-associated cytokines
BAa., Natural degradation rate of tau-associated pro- 0.015-0.02 1/day -
inflammatory cytokines
Ydrug, Asz NSAID-induced enhancement of tau-associated cy- 0.02-0.04 1/day [52]
tokine clearance
Tdict, Az Anti-inflammatory diet-induced modulation rate of 0.02-0.03 1/day [43]
tau-associated cytokines
D¢ Diffusion coefficient of cytokines 0.01-0.05 mm?/day [48]
MMpro Cytokine production rate influenced by pro- 0.02-0.03 1/day [52]
inflammatory microglia
NAa, Cytokine production rate induced by amyloid-beta- 0.015-0.02 1/day [52]
associated cytokines
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Table 9. Cytokines, Blood-Brain Barrier, and Neuronal Density Parameters

Parameter | Description Example Value Units Source
ke Natural degradation rate of cytokines 0.02 1/day -
Ydrug,C Etanercept-induced clearance rate of cytokines 0.02-0.04 1/day [55]
Ndiet,C Polyphenol-rich diet-induced modulation rate of cy- 0.02-0.03 1/day [49]

tokines
Dp Diffusion coefficient for blood-brain barrier integrity 0.01-0.03 mm?/day [48]
kdeg, B Rate of BBB degradation induced by amyloid-beta, 0.02-0.04 1/(day-pM) [56]
tau oligomers, and cytokines
Trec Recovery rate of BBB integrity 0.01-0.02 1/day [56]
Ydrug, B Cerebrolysin-induced enhancement of BBB recovery 0.02-0.05 1/day [57]
Tdiet, B Antioxidant-rich diet-induced enhancement of BBB 0.02-0.03 1/day [58]
recovery
Dy Diffusion coefficient for neuronal density 0.01-0.05 mm?/day [48]
N Neuronal loss rate caused by amyloid-beta and tau 0.02-0.03 1/(day-pM) [52]
oligomers
Agrowth Neuronal growth rate 0.01-0.02 1/day -
Nmax Maximum neuronal density in a healthy brain 1.0 Dimensionless -
on(C) Cytokine-induced neuronal loss rate 0.02-0.04 1/day [52]
Ydrug, N Donepezil-induced enhancement of neuronal density 0.02-0.04 1/day [59]
recovery
Ndiet, N Neuroprotective diet-induced enhancement of neu- 0.02-0.03 1/day [45]

ronal density recovery

4. Numerical solution for system

A finite difference method (FDM), one of the most frequently employed numerical
approaches to solve partial differential equations (PDEs) in both spatial and tempo-
ral domains [60-62], is used to approximate the continuous operations in the coupled
reaction-diffusion system introduced here. The system comprises thirteen equations
capturing the dynamics of amyloid-beta (AS) monomers, oligomers, and fibrils;
tau monomers, oligomers, and fibrils; pro-inflammatory and anti-inflammatory mi-
croglia; cytokines; blood-brain barrier (BBB) integrity; and neuronal density.

Below, we describe the numerical approach used in this work:

The spatial domain is discretized into a two-dimensional grid with N, x N,
points, where N, = 100 and N, = 100. The spatial step sizes are given by

where L, and L, are the lengths of the domain in the x and y directions, respectively
The temporal domain is discretized with a time step At, which is chosen to
satisfy the stability condition for the diffusion equation:

min(Ax?, Ay?)

At <
- 4Dmax

where Dp,ax is the maximum diffusion coefficient among all variables in the model.
This criterion ensures numerical stability during the simulation process.
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4.1. Finite difference scheme and time integration

The diffusion terms in the reaction-diffusion equations are approximated using a
second-order central difference scheme. For a generic variable u(z,y,t), the Lapla-
cian V?u is discretized as:

w Wity = 2Wig F U1 Uign T 2y Ui

2
Viu Az? Ay?

where u; ; represents the value of u at grid point (4, j).

The reaction terms are treated explicitly, meaning that the values of the variables
at the current time step are used to compute the changes in concentration due to
reactions [64,65].

Time evolution of the system is performed using the explicit Euler method. For
each variable u, the update rule is given by:

uf;rl =u}; + At (DV?u}'; + Reaction Terms)
where u;; denotes the value of u at time step n and grid point (i, j), and u?jl is
the corresponding value at the next time step.

This numerical framework is used to simulate the complex spatio-temporal dy-
namics under Alzheimer’s disease pathology. Employing the finite difference method
(FDM) with explicit time-stepping is computationally efficient and allows the exami-
nation of therapeutic effects on amyloid-beta, tau, neuroinflammation, and neuronal
health [65-67].

The results of the numerical simulation will be presented in a graphical form.
These graphs enable the spatial and temporal behaviors of the model variables to
be accurately assessed when the system is solved in MATLAB.

Am Spatial Distribution

Concentration
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Figure 1. The spatial concentration of amyloid-beta monomers (A, ).

This figure shows the differential spatial deposition of A monomers in the cen-
tral nervous system. The A monomers are the building blocks that aggregate into
oligomers and fibrils, and finally develop into amyloid plaques, the pathological hall-
mark of Alzheimer’s disease (AD). This unique distribution therefore reveals areas
of high A monomer load, potential sites of early disease pathology. The appar-
ent transport of AS monomers in a diffusion-driven manner not only underscores
the need for clearance mechanisms like enzymatic degradation but also stresses the
necessity of blood-brain barrier (BBB) integrity. It is a mathematical model indi-
cating that monomer concentrations increase without enough clearance, leading to
accelerating the onset of AD pathology. The spatial distribution of amyloid-beta
monomers (A4,,) is shown in Figure 1.
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Figure 2. The amyloid-beta oligomer (A,) concentration distribution.

This figure shows the spatial clustering of amyloid-beta oligomers because they
are extremely neurotoxic. In contrast to monomers, AS aggregates inhibit synap-
tic function and produce oxidative stress, which is thought to damage neurons.
The transition of the process from monomer to oligomer phase is shown in the
reaction-diffusion model governed by the kinetics of nucleation and secondary ag-
gregation. Also, the spatial extrapolation of the pattern suggests that oligomer
hotspots spatially relate to regions of synaptic vulnerability, which may correlate
with age-dependent cognitive decline in AD individuals. The model also suggests
that oligomer accumulation can be targeted to slow disease progression. The spread
of amyloid-beta oligomers (A,) in the brain is presented in Figure 2.

Af Spatial Distribution

Figure 3. The spatial concentration of amyloid-beta fibrils (Af) in the brain.

This figure reflects the steady-state population of amyloid-beta fibrils, which
form dense, insoluble plaques in the extracellular compartment. Fibrillization ki-
netics dictate this transition from oligomers to fibrils, and deposition of amyloid
plaques. This high concentration pattern indicates that fibril formation is local-
ized and preferential to the sites of previously abundant oligomers. Diffusion is
limited to the local area, resulting in focused deposition of the fibrils. This model
indicates that targeting oligomers with pharmacological intervention could exert a
major influence on fibrillogenic, and thus delay AD progression. The accumulation
of amyloid-beta fibrils (Af) in the brain and their role in pathology are illustrated
in Figure 3.

Tm Spatial Distribution
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Figure 4. The tau monomer (7T},) concentration, which serves as the precursor for oligomer and fibril
formation.
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This figure illustrates the spatial distribution of tau monomers in the brain.
The model indicates that tau monomer levels are stable under normal physiological
conditions but increase with amyloid-beta accumulations, in line with the amyloid
cascade hypothesis. The mathematical formulation incorporates tau production and
clearance rates as well as its interactions with A species. Any disruption of tau-
clearing mechanisms, such as lysosomal degradation, alters the fluid concentration of
tau monomers, which is critical for pathological aggregation. The initial distribution
of tau monomers (7T,,) is depicted in Figure 4.

To Spatial Distribution

Concentration
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Figure 5. The concentration of tau oligomers (T,), which are known to be highly toxic and lead to
microtubule destabilization and neuronal loss.

This figure illustrates how tau oligomers accumulate, leading to microtubule
instability and neurotoxicity. One approach, the reaction-diffusion model, describes
how tau oligomerization interacts with amyloid-beta in a way that borrows from the
mathematics of fluid transport. The spatial localization of tau oligomers suggests
a relationship with amyloid-beta deposition, supporting the hypothesis that Ag3
pathology enhances tau aggregation. Areas of accumulation of tau oligomers are
likely neurodegeneration-prone loci, characterized by synaptic failure and neuronal
loss. The contribution of tau oligomers (T,) to neurotoxicity is detailed in Figure 5.

i Spatial Distribution
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Figure 6. The spatial concentration of tau fibrils (7'), which contribute to neurofibrillary tangles and
neuronal dysfunction in Alzheimer’s pathology.

This figure illustrates the spatial extent of tau fibrillary formation, which is
a critical step in the development of neurofibrillary tangles (NFTs), a hallmark
of Alzheimer’s disease. A reaction-diffusion framework is used to model the con-
version of tau oligomers into fibrils through fibrillization kinetics, influenced by
phosphorylation and chaperone-mediated regulatory mechanisms. The observed
spatial distribution of tau fibrils reveals a localized accumulation pattern, high-
lighting potential sites of advanced pathology. This suggests that spatially targeted
therapeutic strategies aimed at inhibiting tau fibrillization may hold promise for
reducing tau-related neurodegeneration and decelerating disease progression. The
formation of tau fibrils (T) and their transition into neurofibrillary tangles are
illustrated in Figure 6.
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Figure 7. Pro-inflammatory microglia (Mp:,), which are activated in response to amyloid-beta and tau
accumulation, contributing to chronic neuroinflammation.

This figure illustrates the activation of pro-inflammatory microglia in response to
amyloid-beta and tau pathology. The reaction-diffusion equations model microglial
activation dynamics, where inflammatory stimuli from AS and tau oligomers trigger
microglial proliferation. The distribution pattern indicates that microglia concen-
trate in regions of amyloid and tau aggregation, releasing cytokines that further
amplify neuroinflammation. The model highlights the dual role of microglia: while
they attempt to clear toxic aggregates, excessive activation exacerbates neuronal
damage. The activation and distribution of pro-inflammatory microglia (M) are
shown in Figure 7.
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Figure 8. The concentration of anti-inflammatory microglia (Manti), which plays a protective role by
suppressing excessive inflammation and aiding in neuronal repair.

This figure shows where anti-inflammatory microglia are located in the brain
and how they protect neurons from damage. The model accounts for the fact that
pro-inflammatory and anti-inflammatory microglia are not independent states but
describe a balance, which is essential for effective neuroimmune responses. Anti-
inflammatory microglia play a crucial role in counteracting inflammatory injury
and supporting neuronal repair. The spatial heterogeneity observed in this figure
indicates that any therapeutic approaches that amplify anti-inflammatory microglial
activity may yield neuroprotection towards Alzheimer’s disease. The role of anti-
inflammatory microglia (Mayti) in suppressing inflammation is depicted in Figure 8.

As Spatial Distribution

Concentration

Figure 9. Harmful astrocytes (A1) that promote neuroinflammation and contribute to neuronal dam-
age.
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This figure illustrates the regional distribution of neurotoxic astrocytes in re-
sponse to the aggregation of amyloid-beta and tau. Astrocytes secrete pro-inflamma-
tory cytokines to aid the process of neuroinflammation. The model includes astro-
cytic activation kinetics and demonstrates that astrocytes worsen neurodegeneration
when chronically activated. Above the 95th percentile (marked with solid lines),
the percentiles of change in all three neurodegenerative clusters appear interest-
ingly low, which seems to indicate that astrocytes spread amyloid and tau burdens
in a non-random way, supporting the hypothesis that reactive astrocytes play a
key role in synaptic dysfunction. The contribution of harmful astrocytes (As1) to
inflammation is illustrated in Figure 9.

As2 Spatial Distribution
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Figure 10. The presence of protective astrocytes (As2) that help counteract the harmful effects of
neuroinflammation.

This figure displays the spatial distribution of protective astrocytes, which are
essential for counteracting neuroinflammation and preserving homeostasis. Protec-
tive astrocytes contribute to promoting neuronal integrity and minimizing oxidative
stress. The mathematical model incorporates astrocyte heterogeneity and demon-
strates that protective astrocytes tend to be spatially restricted during late-stage
Alzheimer’s disease, particularly under chronic inflammatory conditions. According
to the model predictions, therapeutic strategies that aim to increase the population
or activity of these astrocytes could have a beneficial impact on altering the disease
course. The role of protective astrocytes (As2) in mitigating neuroinflammation is
shown in Figure 10.

 Spatial Distribution
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Figure 11. The concentration of cytokines (C), which mediate inflammatory responses in Alzheimer’s
disease.

This figure demonstrates the spatial distribution of cytokines in Alzheimer’s dis-
ease, highlighting their role in mediating neuroinflammatory responses. Cytokine
concentrations are shown to increase in regions burdened with high amyloid-beta
and tau levels. The mathematical model incorporates the production of cytokines
by activated microglia and astrocytes, capturing the feedback mechanisms that
sustain chronic inflammation. Elevated cytokine levels are strongly associated with
neuronal damage, reinforcing the importance of anti-inflammatory strategies in mit-
igating disease progression. The spatial and temporal distribution of cytokines (C)



1956 A. Enver, F. Ayaz & D. E. Yalginkaya

in Alzheimer’s disease is presented in Figure 11.

B Spatial Distribution

Figure 12. The spatial integrity of the blood-brain barrier (BBB), which plays a crucial role in clearing
amyloid-beta and preventing neurotoxicity.

This figure visualizes the integrity of the blood-brain barrier, which plays a crit-
ical role in regulating the transport of toxic proteins and inflammatory mediators.
The reaction-diffusion model predicts BBB breakdown in regions of high amyloid
and tau aggregation, facilitating neurotoxic infiltration. The progressive degra-
dation of the BBB further exacerbates neuroinflammation and neurodegeneration,
highlighting the need for therapeutic approaches aimed at preserving BBB integrity.
The integrity of the blood-brain barrier (BBB) and its changes in Alzheimer’s dis-
ease are shown in Figure 12.

N Spatial Distribution

’
.
.
:
;
i
.
-
. — 00
S .
e Wl 0
i

¥ (mm) 0 -

Figure 13. The distribution of neuronal density (IN), which is crucial for cognitive function. A decrease
in neuronal density is a hallmark of Alzheimer’s disease progression.

Neuronal density is a key marker of cognitive function. This figure illustrates
neuronal loss in Alzheimer’s disease, with regions of low neuronal density corre-
sponding to sites of high amyloid and tau accumulation. The mathematical model
incorporates neuronal death kinetics driven by neuroinflammation and toxic protein
aggregation. The results suggest that early intervention strategies aimed at reduc-
ing amyloid and tau burden could help preserve neuronal function. The changes in
neuronal density (N) over the progression of Alzheimer’s disease are presented in
Figure 13.

0
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Figure 14. Comparison of the total amyloid-beta monomer (A,,) concentration over time with and
without drug intervention, showing the effect of pharmacological treatment in reducing aggregation.
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This figure compares the temporal evolution of AS monomer concentrations
under different treatment conditions. The mathematical model predicts that phar-
macological interventions targeting AS clearance can significantly slow aggregation
kinetics, thereby delaying disease progression. The decline in monomer concentra-
tion with treatment supports the therapeutic potential of amyloid-targeting drugs.
The effect of drug treatment on amyloid-beta monomer (A4,,) concentration is illus-
trated in Figure 14.

d Dist Effect
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Figure 15. Comparison of the evolution of tau monomer (7,) concentration over time with and without
dietary intervention, illustrating the potential effect of nutrition on tau stabilization.

This figure demonstrates the impact of dietary intervention on tau monomer sta-
bility. The model suggests that dietary modifications, such as polyphenol-rich diets,
can alter tau aggregation dynamics, reducing the transition rate from monomers to
oligomers. These findings emphasize the role of lifestyle interventions in Alzheimer’s
disease management. The impact of dietary intervention on tau monomer (7,,) sta-
bilization is shown in Figure 15.

Cytokine Concentration (C)
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Figure 16. The evolution of cytokine levels over time, highlighting the increasing neuroinflammatory
response.

This figure highlights the progression of neuroinflammatory responses over time.
The increasing cytokine levels indicate sustained inflammation, which exacerbates
neuronal loss. The mathematical model suggests that targeting cytokine signaling
pathways could be an effective strategy in reducing inflammation-driven neurode-
generation, as shown in Figure 16.

Similar numerical approaches based on partial differential equations (PDEs)
have been widely applied in other fields of mathematical biology and applied math-
ematics. For instance, space-time fractional telegraph equations with variable co-
efficients have been studied using finite difference techniques to capture complex
diffusion behaviors. Additionally, reaction-diffusion models have been used to ex-
amine bifurcation structures and equilibrium behavior in the spread of vector-borne
diseases, such as the use of Wolbachia to control Zika virus transmission. These
studies highlight the flexibility and generalizability of PDE-based modeling ap-
proaches in capturing nonlinear spatiotemporal dynamics across diverse biological
contexts, supporting the methodology used in the present Alzheimer’s model.
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5. Conclusion

5.1. Mathematical perspective

The analysis of the coupled reaction-diffusion system comprising 13 equations pro-
vides detailed insight into the spatial-temporal dynamics of Alzheimer’s pathology.
Key observations include:

e Amyloid-Beta Dynamics:

— The equations and corresponding graphs demonstrate localized amyloid-
beta monomer (A,,) concentration with a gradual diffusion of oligomers
(A,) and fibrils (Ay).

— Drug interventions significantly accelerate the decay of amyloid-beta
monomers, suggesting effective inhibition of aggregation and potential
plaque formation.

e Tau Protein Dynamics:

— Tau monomers (T,,), oligomers (T,), and fibrils (T) exhibit distinct
spatial and temporal behaviors. The localized peaks of monomers and
fibrils, alongside the broader spread of oligomers, align with progressive
pathological tau aggregation.

— Dietary effects mitigate tau accumulation rates, as evidenced by the
slower reduction in (7}, ) concentration under diet-modulating conditions.

e Cytokine and Microglia Response:
— Cytokines (C) exhibit a steady increase over time, signifying the com-
pounding inflammatory response.

— Pro-inflammatory microglia (Mpy,) concentrate in regions of amyloid-
beta and tau activity, while anti-inflammatory microglia (Mapti) attempt
to counteract inflammation but remain spatially and temporally limited.

¢ Blood-Brain Barrier (BBB) and Neuronal Density:
— The uniformity of BBB integrity (B) reflects early-stage pathology or
the protective effects of therapeutic interventions.

— Neuronal density (V) remains stable in the current simulations, indicat-
ing minimal neurodegeneration over the modeled timeframe.

The mathematical model successfully captures the complex interactions between
amyloid-beta, tau proteins, inflammatory mediators, and neuronal health. The
inclusion of drug and dietary parameters demonstrates the versatility of this model
in exploring treatment strategies.

5.2. Medical perspective

This mathematical framework provides a valuable tool for understanding Alzheimer’s
disease from a clinical perspective. The key medical findings include:

1. Amyloid-Beta Pathology:

e Amyloid-beta monomers, oligomers, and fibrils are central to plaque for-
mation. The drug effect successfully reduces amyloid-beta monomer con-
centration, potentially preventing the aggregation cascade.
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e This highlights the importance of early pharmacological interventions
targeting amyloid-beta.

2. Tau Pathology:

e Tau monomers aggregate into oligomers and fibrils, leading to neurofib-
rillary tangles. The spatial distribution of tau suggests early focal pathol-
ogy with progressive spread, consistent with clinical observations in Alzh-
eimer’s.

e Dietary interventions show promise in delaying tau pathology, supporting
the role of lifestyle modifications in disease management.

3. Neuroinflammation:

e The rise in cytokine levels and pro-inflammatory microglia reflects the
inflammatory cascade triggered by amyloid-beta and tau. This inflamma-
tion contributes to neuronal damage and accelerates disease progression.

e Anti-inflammatory responses remain limited, emphasizing the need for
interventions targeting neuroinflammation.

4. Protective Factors:

e The stable BBB integrity and neuronal density in this model suggest ei-
ther an early-stage disease or successful mitigation by treatments. Main-
taining BBB function is critical to slowing disease progression.

5.3. General implications

This study bridges the gap between mathematical modeling and clinical under-
standing of Alzheimer’s disease. Mathematical insights reinforce the importance
of:

e Targeting amyloid-beta and tau simultaneously to disrupt both hallmark
pathologies of Alzheimer’s.

e Incorporating lifestyle factors such as diet, which play a complementary role
in managing tau pathology.

e Addressing inflammation as a critical driver of neurodegeneration.

From a medical perspective, the findings advocate for a multi-modal therapeu-
tic strategy combining pharmacological treatments with lifestyle modifications and
anti-inflammatory approaches. The dynamic spatial-temporal modeling provides a
robust platform for testing hypotheses and optimizing treatment strategies, paving
the way for personalized interventions in Alzheimer’s disease.

5.4. Final remarks

The proposed multiscale reaction-diffusion model not only captures the key patho-
logical mechanisms of Alzheimer’s disease but also provides a flexible framework
for simulating the effects of various therapeutic strategies. By integrating spatial
diffusion, biochemical kinetics, and immune response elements, the model supports
future investigations into optimizing treatment timing, targeting specific molecular
pathways, or studying synergistic interventions. Moreover, the successful applica-
tion of numerical schemes such as finite difference methods, in line with existing
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PDE-based models in fields like epidemiology and neural signal transmission, high-
lights the robustness and transferability of our approach to other complex biological
systems.
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