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Abstract This study focuses on examining the controllability of nonlinear
fractional differential systems in finite-dimensional spaces, considering mul-
tiple delays in both state and control. For linear systems, the necessary and
sufficient conditions for relative controllability are established through the def-
inition and application of the Gramian matrix. For nonlinear systems, con-
trollability conditions are derived using Schauder’s fixed point theorem.
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1. Introduction

Fractional calculus constitutes a significant advancement over classical calculus,
offering a wide range of essential functionalities that traditional calculus fails to
adequately address. For example, numerous pressing societal concerns and em-
pirical scientific challenges can be represented in a more coherent manner, partic-
ularly when accounting for the inherent uncertainties present in various dynam-
ical systems. As a result, fractional calculus has become increasingly relevant
across a multitude of disciplines, including mathematical physics, engineering, bio-
physics [15, 22, 28, 31, 53, 66, 67], nanotechnology applications [14], signal process-
ing [54], circuit theory [57], and geophysical modeling such as earthquake analy-
sis [27], among others.

Control theory is fundamentally grounded in the concept of controllability, which
remains a cornerstone in the field of control systems. Several studies have addressed
various aspects of controllability in semilinear and fractional dynamical systems. For
instance, the study in [62] investigates the complete controllability of a semilinear
stochastic system with multiple delays in control within a stochastic framework;
however, it does not address fractional dynamics or delays in the state variables.
Dauer and Gahl [17] established controllability results for nonlinear systems that
incorporate delays. Balachandran and Dauer [7] conducted an in-depth analysis
of controllability issues for both linear and nonlinear systems characterized by de-
lays. Balachandran et al. [8,12] investigated the relative controllability of nonlinear
fractional dynamic systems exhibiting both multiple delays and distributed delays
in their control inputs. Klamka [10, 32] demonstrated controllability in linear and
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nonlinear systems influenced by time-varying delays. Recently, Mur et al. [49] in-
vestigated the relative controllability of fractional-order linear systems with delay
components. The work [3] discusses the relative controllability of Caputo-type frac-
tional systems involving a single state delay and multiple control delays; however,
it does not address systems with Riemann-Liouville fractional derivatives, multiple
state delays, or multivariate matrix-based formulations. The work in [61] inves-
tigates interior approximate controllability for second-order semilinear systems by
reducing them to first-order systems and applying the Leray-Schauder alternative
theorem. The study in [37] focuses on approximate controllability of fractional
systems with a single state delay in Banach spaces using generalized Gronwall’s
inequality and compactness arguments, yet it does not handle multiple delays in
control or noncommutative system structures.

It is a well-established fact within the realm of mathematical analysis that a
differential delayed equation is fundamentally characterized by the incorporation
of three essential components: the state of the system in the past, the state of
the system at the present moment, and the corresponding rate of change of the
system with respect to time. Prominent scholars Volterra and Minorskii have em-
ployed theoretical frameworks closely aligned with the structure of delay differ-
ential equations in various scholarly contributions, including, but not limited to,
investigations into viscoelastic phenomena, predator-prey dynamics [68, 69], and
applications in automatic steering and ship stabilization systems [47]. Within the
context of these mathematical formulations, the concept of delays is intricately wo-
ven into the fabric of the states themselves, thereby adding complexity to both
the analysis and interpretation of such equations. A substantial body of academic
literature exists that delves into the intricacies of these specific types of differ-
ential delayed equations, as evidenced by the comprehensive studies referenced
in [2,4,18–21,23–26,30,36,38–46,50–52,60,70]. Nevertheless, it is noteworthy that
a significant gap persists in the literature regarding the role of single and multiple
delays in the context of control theory as it pertains to delay differential equations.
Moreover, it is imperative to acknowledge that such equations have been extensively
examined with respect to their controllability properties, as demonstrated by the
contributions listed in [1, 5, 6, 10,11,13,16,17,33,34,48,59].

To avoid terminological ambiguity, we begin by explicitly defining the core no-
tions employed in this study. Controllability refers to the ability to steer the state
of a system from any initial state to any desired final state within a finite time inter-
val using admissible control functions. Relative controllability is a weaker concept
that concerns whether the system’s state can reach a specific subspace or trajectory
manifold, rather than the entire state space. Function controllability, in turn, per-
tains to the ability to control solution functions—defined over infinite-dimensional
spaces such as C([a, b],Rn)—rather than finite-dimensional state vectors.

In the context of these complex equations, it becomes crucial to draw a clear dis-
tinction between the concepts of function controllability and relative controllability
within the framework of Euclidean space. This differentiation is particularly salient
because, despite the fact that the solutions derived from these equations manifest as
trajectories within the confines of Euclidean space, the inherent and more appropri-
ate “state space” that governs their behavior is, in reality, a function space, which
necessitates a more nuanced understanding. For the specific aims and objectives of
this scholarly inquiry, we intentionally restrict our analysis to the concept of relative
controllability alone. In addition, it is essential to recognize that, unlike in classical
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ordinary differential equation theory, a further distinction must be made between
the notions of complete controllability and null controllability when addressing the
topic of relative controllability in this specialized setting.

Unlike the existing literature that primarily focuses on systems with single or
commensurate delays (e.g., [7, 17, 32]), or fractional systems with limited control
structure [8, 12,49], our work addresses the relative controllability of fractional dy-
namic systems that contain both multiple state delays and multiple control delays.
Moreover, the presence of noncommutative coefficient matrices in terms of multivari-
ate matrix-based formulations and nonlinear perturbation terms differentiates our
approach from earlier contributions. While some works investigate fractional sys-
tems using operator-theoretic methods or semigroup theory (e.g., [10]), our method
combines the use of a Gramian matrix and time-lead transformations, along with
fixed-point arguments tailored to the multiple state delays and multiple control de-
lays’ structure. This integrated methodology allows us to address classes of systems
where inverse delay mappings and nonlinearities appear simultaneously and interact
within a fractional-order framework—an interaction that is only partially explored
in the existing literature.

In line with our analysis, although a limited number of studies have addressed
fractional dynamical systems with multiple delays in control, as previously cited,
to the best of our knowledge, no existing work has considered the case of a de-
lay in the state variable combined with noncommutative coefficients. This notable
gap in the literature, along with the theoretical necessity for such an investigation
and the motivation derived from the aforementioned works, prompts us to examine
the following class of nonlinear fractional dynamical systems. These systems in-
corporate both multiple state delays and multiple control delays, and they feature
noncommutative coefficient structures. For ς ∈ (0, T ], we consider the system:

RLDα
0+υ (ς) = Mυ (ς) +

d1∑
i=0

Tiυ (ς − hi) +

d2∑
i=0

Aiu (ri (ς)) + ℸ(ς, υ(ς), u(ς)),

RLDα−i
0+ υ(ς)

∣∣
ς=0

= pi, i = 1, 2, . . . , l,

υ (ς) = ϕ (ς) , ς ∈ [−h, 0], h > 0,

(1.1)
where RLDα

0+ denotes the classical Riemann-Liouville fractional derivative of order
l − 1 < α ≤ l with l ∈ N, and h = max{h0, h1, . . . , hd1

} with d1 ∈ N. The
function υ takes values in Rn, u in Rm, M,Ti ∈ Rn×n, and Ai ∈ Rn×m for each
i = 0, 1, 2, . . . , d2 ∈ N. The function ϕ : [−h, 0] → Rn is a prescribed initial function,
and T is a positive real constant.

For the forthcoming theoretical findings presented in the subsequent sections,
the following premises are adopted:

Let us consider the functions ri : [0, T ] → R, i = 0, 1, 2, . . . ,M , which exhibit
strict monotonicity in the increasing direction and possess the property of being
twice continuously differentiable.

ri(ς) ≤ ς, ς ∈ [0, T ], i = 0, 1, 2, . . . , d2.

Furthermore, it is presumed that r0(ς) = ς, and without loss of generality, the
ensuing inequalities are fulfilled for ς = T :

rd2(T ) ≤ rd2−1(T ) ≤ . . . ≤ rm+1(T ) ≤ 0 = rm(T )
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< rm−1(T ) = . . . = r1(T ) = r0(T ) = T. (1.2)

Define the time-lead functions ηi : [ri(0), ri(T )] → [0, T ], i = 0, 1, 2, . . . , d2 as
follows:

ηi (ri(ς)) = ς, ς ∈ [0, T ], i = 0, 1, 2, . . . , d2.

With u denoting a mapping from the interval [−h, T ] to the vector space Rm,
the function uς , for ς ∈ [0, T ], is delineated as follows:

uς(s) = u(ς + s), s ∈ [−h, 0].

Remark 1.1. It should be noted that the theoretical results derived in this study
are valid under the stated assumptions, and do not extend to cases where such
conditions (e.g., continuity or boundedness) are violated.

Remark 1.2. It is essential to note that the function ri, where i = 0, 1, 2, . . . , d2,
possesses an inverse, and correspondingly, the function ηi, for i = 0, 1, 2, . . . , d2,
can be adequately defined. This is due to the fact that ri is strictly increasing,
which implies injectivity; it is evident that this function is bijective over the closed
interval [ri(0), ri(T )], for i = 0, 1, 2, . . . , d2. Furthermore, given that the function
ri, for i = 0, 1, 2, . . . , d2, is both differentiable and bijective, it follows that ηi, for
i = 0, 1, 2, . . . , d2, is also differentiable.

The contributions delineated in this manuscript are summarized as follows.

(i) We present a representation of the solution associated with the problem (1.1)
involving general fractional orders, expressed in terms of a multivariate func-
tion.

(ii) We introduce the Gramian matrix and delineate the necessary and sufficient
conditions for the relative controllability of the linear system (1.1).

(iii) We reformulate the relative controllability of the nonlinear system as a fixed
point problem, thereby enabling the application of the Schauder fixed point
theorem to substantiate our principal results.

2. Brief preliminaries

In this segment, we reiterate several essential items that must be accessible within
the scholarly literature.

Let R denote the collection of all real numbers, let Rn represent the n-dimensional
real space, defined as the set of all ordered n-tuples comprised of real numbers, and
let Rn×m signify the set of n × m real matrices, the components of which are ex-
clusively real numbers. C ([0, T ],Rn) constitutes the Banach space of continuous
functions equipped with the following supremum (maximum) norm:

∥υ∥ = sup {|υ(ς)| : ς ∈ [0, T ]} ,

where | · | denotes an arbitrary norm defined on the vector space Rn.

Definition 2.1. [28,66] The fractional derivative in the sense of Riemann-Liouville,
RLDα

0+υ(ς), of order l − 1 < α < l is defined by

RLDα
0+υ(ς) =

1

Γ (l − α)

dl

dς l

∫ ς

0

(ς − s)
l−α−1

υ (s) ds, ς > 0,
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where the symbol Γ (·) signifies the well-known Gamma function.

Lemma 2.1. According to Theorem 4.2 delineated in [44], an analytical solution
to the system (1.1) is provided by

v(ς) =

l∑
i=0

Xα,α−i−1(ς)pi +

d1∑
i=0

∫ 0

−hi

Xα,α(ς − s− hi)Tiϕ(s)ds

+

d2∑
i=0

∫ ς

0

Xα,α(ς − s)Aiu (ri(s)) ds, (2.1)

where a multi-delayed two-parameter Mittag-Leffler type matrix function Xα,β(ς),
with parameters α > 0 and β > 0, is articulated as follows:

Xα,β(ς) (2.2)

=


Θ, ς ∈ [−h, 0),

∞∑
m=0

∑
i1+···+id≤m
i1,...,id≥0

Pm+1(i1h1, . . . , id1hd1)

(
ς −

∑d1

k=1 ikhk

)mµ+γ−1

+

Γ(mµ+ γ)
, ς ∈ [0,∞).

(2.3)

Here, the multivariate matrix equation Pk+1(i1h1, . . . , id1hd1) is defined as

Pk+1(i1h1, . . . , id1
hd1

) :=MPk(i1h1, . . . , id1
hd1

)

+

d∑
j=1

TjPk(i1h1, . . . , ij − 1, . . . , id1
hd1

),

together with the following initial conditions:

P0(i1h1, . . . , id1hd1) = Θ, Pk(−h1, . . . , id1hd1) = · · · = Pk(i1h1, . . . ,−hd1) = Θ,

and

P1(0, . . . , 0) = I,

where Θ is the null matrix and I is the identity matrix.

Definition 2.2. [58] A (control) function u(t) ∈ Rm is considered admissible if it
exhibits boundedness and measurability over every finite temporal interval.

Lemma 2.2. [29] If the function ℸ exhibits local boundedness in the domain Rn×
Rm and adheres to the following condition

lim
|(υ,u)|→∞

|ℸ (ς, υ, u)|
|(υ, u)|

= 0,

uniformly for ς ∈ [0, T ], then, for every combination of constants c and e, there
exists a constant ε > 0 such that if ∥(υ, u)∥ ≤ r, then

c |ℸ (ε, υ, u)|+ e ≤ ε for all ε ∈ [0, T ].
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Now, we shall elucidate Schauder’s fixed point theorem, which demonstrates the
existence of a fixed point, albeit without asserting its uniqueness.

Theorem 2.1. [31] Let X denote a Banach space; let U represent a convex, closed,
and bounded subset of X, and let T : U → U be a mapping such that T (U) is
relatively compact within X. It follows that the operator T possesses at least one
fixed point contained within U .

The Arzelà-Ascoli theorem is now presented as follows.

Theorem 2.2. [31] Let G be a subset of C ([0, T ],Rn) endowed with the maximum
norm. Then G is said to be relatively compact in C ([0, T ],Rn) if and only if G
satisfies the criteria of equicontinuity and uniform boundedness.

3. Controllability of linear systems

Definition 3.1. The system (1.1) is designated as relatively controllable if, for any
arbitrary initial vector function ϕ(ς), where ς ∈ [−h, 0], and for any arbitrary initial
control function u0(ς), also defined on the interval ς ∈ [−h, 0], in conjunction with
a specified final state υT ∈ Rn at time T , there exists an admissible control function
u(ς) defined for ς ∈ [0, T ] such that the corresponding solution υ(ς), for ς ∈ [−h, T ],
to the system (1.1) fulfills the conditions υ(T ) = υT and υ(ς) = ϕ(ς) for ς ∈ [−h, 0].

Currently, our objective is to elucidate u(ς), where ς ∈ [0, T ], within the context
of the solution articulated in (2.1) to facilitate the definition of the Gramian matrix.
By implementing the substitution x = ri(s), along with the time-lead functions
ηi(x), in the solution delineated in (2.1) as presented in Lemma 2.1, it follows
that the integral limits transitioning from s = 0 to s = ς in the third term of
the solution (2.1) transform into the integral limits from x = ri(0) to x = ri(ς).
Additionally, the differential of the variable s corresponds to the differential of the
lead function ηi(x), specifically ds = dηi(x) = η

′

i(x)dx, as a result of the relation
ηi(x) = ηi(ri(s)) = s under the substitution x = ri(s). Consequently, the solution
(2.1) can be reformulated as follows, where the control function u is contingent
solely upon the variable x:

υ(ς) =

l∑
i=0

Xα,α−i−1(ς)pi +

d1∑
i=0

∫ 0

−hi

Xα,α(ς − s− hi)Tiϕ(s)ds

+

d2∑
j=0

∫ rj(ς)

rj(0)

Xα,α(ς − ηj(x))Ajη
′
j(x)u(x)dx,

which may be partitioned as delineated in the following manner:

υ(ς) =

l∑
i=0

Xα,α−i−1(ς)pi +

d1∑
i=0

∫ 0

−hi

Xα,α(ς − s− hi)Tiϕ(s)ds

+

m∑
j=0

∫ rj(ς)

rj(0)

Xα,α(ς − ηj(s))Ajη
′
j(s)u(s)ds

+

d2∑
j=m+1

∫ rj(ς)

rj(0)

Xα,α(ς − ηj(s))Ajη
′
j(s)u(s)ds.
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The inequalities delineated in (1.2) enable the transformation of the equation situ-
ated marginally above into the one positioned marginally below:

υ(T ) =

l∑
i=0

Xα,α−i−1(T )pi +

d1∑
i=0

∫ 0

−hi

Xα,α(T − s− hi)Tiϕ(s)ds

+

m∑
j=0

∫ 0

rj(0)

Xα,α(T − ηj(s))Ajη
′
j(s)u0(s)ds

+

d2∑
j=m+1

∫ rj(T )

rj(0)

Xα,α(T − ηj(s))Ajη
′
j(s)u0(s)ds

+

m∑
j=0

∫ T

0

Xα,α(T − ηj(s))Ajη
′
j(s)u(s)ds.

The right-hand side of the aforementioned equation can be partitioned into two
distinct subsets. It is important to note that the first four terms are entirely in-
dependent of the admissible control function u. Consequently, we can isolate these
components and denote them as follows:

S(ς) =

l∑
i=0

Xα,α−i−1(ς)pi +

d1∑
i=0

∫ 0

−hi

Xα,α(ς − s− hi)Tiϕ(s)ds

+

m∑
j=0

∫ 0

rj(0)

Xα,α(ς − ηj(s))Ajη
′
j(s)u0(s)ds

+

d2∑
j=m+1

∫ rj(ς)

rj(0)

Xα,α(ς − ηj(s))Ajη
′
j(s)u0(s)ds,

and

Φ(ς, s) :=

m∑
j=0

Xα,α(ς − ηj(s))Ajη
′
j(s). (3.1)

Accordingly, the Gramian matrix is formally defined as follows:

W (0, T ) =

∫ T

0

Φ(T, s)Φ∗(T, s)ds,

where the notation .∗ denotes the transposition operation applied to a matrix.

Remark 3.1. It is evident that W (0, T ) is rigorously defined for 0.5 < α < 1 due
to the convergence of the series associated with the two-parameter Mittag-Leffler
function, which is encompassed by the multi-delayed two-parameter Mittag-Leffler
type matrix function Xα,α(ς) under this condition.

Theorem 3.1. The linear control system (1.1) possesses a relative degree of con-
trollability if and only if the Gramian matrix is nonsingular.

Proof. Due to the nonsingular nature ofW (0, T ) := W , the existence of its inverse
W−1 is assured. Consequently, considering υT as the target final state at time T , the
system described in (1.1) can be rendered controllable through the control function
delineated below:

u(t) = Φ∗(T, t)W−1 [υT − S(T )] .
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It is readily apparent that

υ(T ) = S(T ) +

∫ T

0

Φ(T, s)u(s)ds

= S(T ) +

∫ T

0

Φ(T, s)Φ∗(T, s)W−1 [υT − S(T )] ds

= S(T ) +WW−1 [υT − S(T )]

= υT .

Assume now that the matrix W is singular while the system (1.1) is controllable.
Given that W is singular, it follows that there exists a nontrivial vector ρ ∈ Rn

such that
Wρ = 0,

from which it follows that

ρ∗Wρ = 0 =

∫ T

0

ρ∗Φ(T, s)Φ∗(T, s)ρds,

which implies
ρ∗Φ(T, s) = 0, for all s ∈ [0, T ].

Given that the system (1.1) possesses the property of controllability, and considering
two terminal states 0 and ρ at time T , there exist two control inputs u1 and u2 such
that the associated solution υ(t) satisfies:

υ(T ) = S(T ) +

∫ T

0

Φ(T, s)u1(s)ds = 0,

υ(T ) = S(T ) +

∫ T

0

Φ(T, s)u2(s)ds = ρ,

which leads to

ρ =

∫ T

0

Φ(T, s) (u2(s)− u1(s)) ds.

Then we obtain

∥ρ∥2 = ρ∗ρ =

∫ T

0

ρ∗Φ(T, s) (u2(s)− u1(s)) ds = 0.

This implies that ρ = 0, which contradicts the assumption that ρ is nonzero.

4. Controllability of nonlinear systems

This part aims to examine the comparative controllability of the following nonlinear
fractional dynamical systems characterized by multiple delays in the state variables
and multiple delays in the control variables for ς ∈ (0, T ]:

RLDα
0+υ(ς) = Mυ(ς) +

d1∑
i=0

Tiυ(ς − hi) +

d2∑
i=0

Aiu(ri(ς)) + ℸ(ς, υ(ς), u(ς)),

RLDα−i
0+ υ(ς)

∣∣
ς=0

= pi, i = 1, 2, . . . , l,

υ(ς) = ϕ(ς), ς ∈ [−h, 0], h > 0,

(4.1)
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where ℸ : [0, T ] × Rn × Rm → Rn is continuous, and the remaining terms are as
defined in (1.1).

Lemma 4.1. Let Xα,α(ς) be as defined in (2.3). Then the following holds:∫ ς

0

∥Xα,α(ς − s)∥ ds = ∥Xα,α+1(ς)∥ .

Proof. It is easy to see that

∫ ς

0

∥∥∥∥∥∥∥∥
∞∑

m=0

∑
i1+...+id≤m
i1,...,id≥0

Pm+1(i1h1, . . . , id1hd1)

(
ς − s−

∑d1

j=1 ijhj

)mα+α−1

+

Γ(mα+ α)

∥∥∥∥∥∥∥∥ds

=

∥∥∥∥∥∥∥∥
∞∑

m=0

∑
i1+...+id≤m
i1,...,id≥0

Pm+1(i1h1, . . . , id1
hd1

)

∥∥∥∥∥∥∥∥
∫ ς

0

(
ς − s−

∑d1

j=1 ijhj

)mα+α−1

+

Γ(mα+ α)
ds

=

∥∥∥∥∥∥∥∥
∞∑

m=0

∑
i1+...+id≤m
i1,...,id≥0

Pm+1(i1h1, . . . , id1
hd1

)

(
ς −

∑d1

j=1 ijhj

)mα+α

+

Γ(mα+ α+ 1)

∥∥∥∥∥∥∥∥
= ∥Xα,α+1(ς)∥ .

It is established that E = C([0, T ],Rn) × C([0, T ],Rm) constitutes a Banach
space equipped with the uniform norm:

∥(υ, u)∥ = ∥υ∥+ ∥u∥ ,

where
∥υ∥ = sup {|υ(ς)| : ς ∈ [0, T ]} .

Upon the application of the time-lead functions in conjunction with the inequalities
delineated in (1.2), a comprehensive solution to the system represented by (4.1)
may be articulated as follows:

υ(T ) =

l∑
i=0

Xα,α−i−1(T )pi +

d1∑
i=0

∫ 0

−hi

Xα,α(T − s− hi)Tiϕ(s)ds

+

m∑
j=0

∫ 0

rj(0)

Xα,α(T − ηj(s))Ajη
′
j(s)u0(s)ds

+

d2∑
j=m+1

∫ rj(T )

rj(0)

Xα,α(T − ηj(s))Ajη
′
j(s)u0(s)ds

+

m∑
j=0

∫ T

0

Xα,α(T − ηj(s))Ajη
′
j(s)u(s)ds

+

∫ T

0

Xα,α(T − s)ℸ(s, υ(s), u(s))ds.
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Let us consider that the pair of functions v and u constitutes a solution to the
following system of nonlinear integral equations:

u(ς) = Φ∗(T, ς)W−1

[
ῡ −

∫ T

0

Xα,α(T − s)ℸ(s, υ(s), u(s))ds

]
, (4.2)

v(ς) = S(ς) +

∫ ς

0

Φ(ς, s)u(s)ds+

∫ ς

0

Xα,α(ς − s)ℸ(s, v(s), u(s))ds, (4.3)

where ῡ := υT − S(T ). If u is a control function defined on the interval [0, T ], and
υ is the corresponding solution to the system (4.1) under the control u, then it can
be readily verified that

υ(T ) = S(T ) +

∫ T

0

Φ(T, s)u(s)ds+

∫ T

0

Xα,α(T − s)ℸ(s, υ(s), u(s))ds

= S(T ) +WW−1

[
υT − S(T )−

∫ T

0

Xα,α(T − s)ℸ(s, υ(s), u(s))ds

]

+

∫ T

0

Xα,α(T − s)ℸ(s, υ(s), u(s))ds

= υT .

In view of this observation, our objective is to determine the conditions under which
a solution pair (υ, u) to the integral equations (4.2) and (4.3) exists. The following
theorem is established to this end.

Theorem 4.1. Assume that 1 > α > 0.5, and the continuous function ℸ satisfies
the following condition:

lim
|(υ,u)|→∞

|ℸ(ς, υ, u)|
|(υ, u)|

= 0,

uniformly in ς ∈ [0, T ]. If the linear system (1.1) exhibits relative controllability,
then the nonlinear system (4.1) also demonstrates relative controllability.

Proof. Step 1: We define a mapping Ψ : E → E such that Ψ(υ, u) = (y, z),
where

z(ς) = Φ∗(T, ς)W−1

[
υT − S(T )−

∫ T

0

Xα,α(T − s)ℸ(s, υ(s), u(s))ds

]
,

y(ς) = S(ς) +

∫ ς

0

Φ(ς, s)u(s)ds+

∫ ς

0

Xα,α(ς − s)ℸ(s, υ(s), u(s))ds.

For notational clarity, we define:

k = max {T ∥Φ(T, 0)∥ , 1} ,
c1 = 4k ∥Φ(T, 0)∥

∥∥W−1
∥∥ ∥Xα,α+1(T )∥ ,

e1 = 4k ∥Φ∗(T, 0)∥
∥∥W−1

∥∥ ∥ῡ∥ ,
c2 = 4max {T ∥Φ(T, 0)∥ , ∥Xα,α+1(T )∥} ,
e2 = 4 ∥S(T )∥ , c = max{c1, c2}, e = max{e1, e2}.
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For further information on Xα,β(ς), see [44]. By applying Lemma 2.2, there exists
a constant ε > 0 such that if ∥(υ, u)∥ ≤ ε, then

c |ℸ(ε, υ, u)|+ e ≤ ε, for all ε ∈ [0, T ].

We will now show that Ψ(Dε) ⊆ Dε, where Dε := {(υ, u) ∈ E : ∥(υ, u)∥ ≤ ε}. Sup-
pose (υ, u) ∈ Dε. Then we obtain:

∥z(ς)∥ ≤ ∥Φ∗(T, 0)∥
∥∥W−1

∥∥ (∥υT ∥+ ∥S(T )∥)
+ ∥Φ∗(T, 0)∥

∥∥W−1
∥∥ ∥Xα,α+1(T )∥ sup

ς∈[0,T ]

|ℸ(ς, υ(ς), u(ς))|

≤ e1
4k

+
c1
4k

sup
ς∈[0,T ]

|ℸ(ς, υ(ς), u(ς))|

≤ 1

4k

(
e+ c sup

ς∈[0,T ]

|ℸ(ς, υ(ς), u(ς))|

)
≤ ε

4
.

Similarly, for y(ς) we estimate:

∥y(ς)∥ ≤ ∥S(ς)∥+ T ∥Φ(T, 0)∥ ∥u∥+ ∥Xα,α+1(T )∥ sup
ς∈[0,T ]

|ℸ(ς, υ(ς), u(ς))|

≤ e2
4

+ k ∥u∥+ c2
4

sup
ς∈[0,T ]

|ℸ(ς, υ(ς), u(ς))|

≤ 1

4
(e+ c sup

ς∈[0,T ]

|ℸ(ς, υ(ς), u(ς))|) + ε

4

≤ ε

4
+

ε

4
=

ε

2
.

As a result, ∥(z, y)∥ = ∥z∥+ ∥y∥ ≤ ε
4 + ε

2 = 3ε
4 , indicating that Ψ(Dε) ⊆ Dε.

Step 2: Now, let us consider ς1, ς2 ∈ [0, T ] with ς1 < ς2. For every (y, z) ∈ Dε,
where ε > 0, it is imperative to demonstrate that Ψ(Dε) exhibits equicontinuity.
Indeed,

∥z(ς1)− z(ς2)∥
≤∥Φ∗(T, ς1)− Φ∗(T, ς2)∥

×
∥∥W−1

∥∥[∥ῡ∥+ ∥S(T )∥+
∫ T

0

∥Xα,α(T − s)∥ ∥ℸ(s, v(s), u(s))∥ ds

]
, (4.4)

and

∥y(ς1)− y(ς2)∥

≤
l∑

i=0

∥Xα,α−i−1(ς1)− Xα,α−i−1(ς2)∥ ∥pi∥

+

d1∑
i=0

∫ 0

−hi

∥Xα,α(ς1 − s− hi)− Xα,α(ς2 − s− hi)∥ ∥Tiϕ(s)∥ ds

+

m∑
j=0

∫ 0

rj(0)

∥Xα,α(ς1 − ηj(s))− Xα,α(ς2 − ηj(s))∥ ∥Aj∥
∥∥η′j(s)∥∥ ∥u0(s)∥ ds
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+

d2∑
j=m+1

∫ rj(ς2)

rj(ς1)

∥Xα,α(ς2 − ηj(s))∥ ∥Aj∥
∥∥η′j(s)∥∥ ∥u0(s)∥ ds

+

d2∑
j=m+1

∫ rj(ς1)

rj(0)

∥Xα,α(ς1 − ηj(s))− Xα,α(ς2 − ηj(s))∥ ∥Aj∥
∥∥η′j(s)∥∥ ∥u0(s)∥ ds

+

∫ ς2

ς1

∥Φ(ς2, s)∥ ∥u(s)∥ ds

+

∫ ς1

0

∥Φ(ς1, s)− Φ(ς2, s)∥ ∥u(s)∥ds

+

∫ ς2

ς1

∥Xα,α(ς2 − s)∥ ds sup
ς∈[0,T ]

|ℸ(ς, υ(ς), u(ς))|

+

∫ ς1

0

∥Xα,α(ς1 − s)− Xα,α(ς2 − s)∥ ds sup
ς∈[0,T ]

|ℸ(ς, υ(ς), u(ς))| . (4.5)

Since the pair (υ, u) is assumed to lie within the bounded setDε, the right-hand sides
of (4.4) and (4.5) are independent of any particular (υ, u) ∈ Dε and converge to zero
as ς1 → ς2. This observation confirms that the operator Ψ is both equicontinuous
and uniformly bounded on Dε (as shown in Step 1), and is therefore relatively
compact by the Arzelà-Ascoli theorem. Given thatDε is nonempty, closed, bounded,
and convex, Schauder’s fixed point theorem guarantees that the operator Ψ admits a
fixed point within Dε. The resulting fixed point (υ, u) of the operator Ψ corresponds
to a solution pair for the integral equations (4.2) and (4.3). Hence, the nonlinear
system (4.1) is relatively controllable, as the initial state ϕ(ε) and the initial control
function u0(ε) are prescribed for each ε ∈ [−h, 0], while the terminal state υT at
time T remains arbitrary.

5. Conclusion

In this manuscript, we investigated the relative controllability of fractional dynam-
ical systems characterized by multiple delays in both control and state variables.
The Gramian matrix is formulated to ascertain the necessary and sufficient condi-
tions for the relative controllability of linear systems. Furthermore, under certain
natural conditions imposed on the nonlinear function ℸ, we employed the Schauder
fixed point theorem to establish sufficient conditions for the relative controllability
of nonlinear systems.

While the proposed framework is mathematically rigorous under the stated as-
sumptions, it is important to acknowledge that the results may not remain valid if
such conditions are violated. In particular, the assumptions of continuity, bounded-
ness, and strict monotonicity of the delay functions play a crucial role in ensuring
the existence of inverse mappings and the applicability of the fixed point methods.
For instance, if the delay functions are discontinuous or non-monotonic, or if the
nonlinear term ℸ is unbounded or fails to satisfy the asymptotic conditions, the
analytical structure of the solution may collapse. These scenarios lie beyond the
scope of the current study.

As an open problem , we propose that future research may focus on the relative
controllability of fractional systems under relaxed regularity conditions, such as
discontinuous or piecewise smooth delays, and more general nonlinear perturbations.
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Addressing such settings would extend the applicability of the controllability theory
and pose interesting theoretical challenges.

As a promising direction for future research, the theoretical framework and
methods presented in this study may serve as a foundation for analyzing more com-
plex classes of systems. In particular, it would be of interest to extend the current
results to fractional integrodifferential control systems [9, 55, 56], where memory
effects are explicitly modeled. Another natural extension involves semilinear frac-
tional systems [63–65], especially those incorporating nonlinearities in both state
and control components. Moreover, systems with distributed delays and admis-
sible control functions [35] present an important yet challenging generalization.
Exploring the relative controllability of such systems—under appropriate assump-
tions—remains an open and valuable problem for the community.
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[20] J. Dibĺık, D. Y. Khusainov, J. Baštinec and A. S. Sirenko, Exponential stability
of linear discrete systems with constant coefficients and single delay, Applied
Mathematics Letters, 2016, 51, 68–73.
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rales. Serie A. Matemáticas, 2022, 116, 58.

[27] J. H. He, Nonlinear oscillation with fractional derivative and its applications,
in International Conference on Vibrating Engineering’98, Dalian, China, 1998.
Pp. 288–291.

[28] N. Heymans and I. Podlubny, Physical interpretation of initial conditions for
fractional differential equations with riemann-liouville fractional derivatives,
Rheologica Acta, 2006, 45, 765–771.

[29] P. D. Jerald, Nonlinear perturbations of quasi-linear control systems, Journal
of Mathematical Analysis and Applications, 1976, 54, 717–725.

[30] D. Y. Khusainov and G. V. Shuklin, Linear autonomous time-delay system with
permutation matrices solving, Studia Universitatis Žilina, 2003, 17, 101–108.
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