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Three-Dimensional Polynomial Differential
Systems with an Isolated Compact Invariant

Algebraic Surface∗

Dongmei Xiao1, Shengnan Yin2 and Chenwan Zhou1,†

Abstract The aim of this paper is to characterize the simplest three-dimensi-
onal polynomial differential system having an equilibrium and a 2-dimensional
orientable smooth compact manifold with genus g ≤ 1 in R3, where the 2-
dimensional orientable smooth compact manifold is sphere E2 or torus T2. We
first look for the smallest degree of polynomial differential systems with both an
equilibrium and an isolated compact invariant algebraic surface E2 or T2. It is
shown that the smallest degree of the system depends on the relative position
between the equilibrium and the compact invariant algebraic surface in R3.
Furthermore, the sufficient and necessary algebraic conditions are given for the
smallest order three-dimensional polynomial differential system having both
an equilibrium and an isolated compact invariant algebraic surface. Lastly,
we discuss the influence of the coexistence of an isolated compact invariant
algebraic surface and an equilibrium on dynamics of the three-dimensional
polynomial differential system.
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variant, compact algebraic surface
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1. Introduction

Three-dimensional polynomial differential systems are widely used as some approx-
imations of mathematical models from physics, biology, chemistry and egineering,
for instance, Lorenz system [14, 15], Kolmogorov system [1, 2, 9] and Chua sys-
tem [3–5], whose dynamics plays an important role in understanding complex non-
linear phenomena such as chaos, strange attractors and turbulence. The occurrence
of complex phenomena is related to some invariant sets of the three-dimensional
polynomial differential system. The invariant set is usually composed of equilib-
rium points, compact nontrivial orbits and some noncompact orbits whose limit sets
are either the equilibrium points or the compact orbits of the system. A natural
question is raised: can an invariant set of three-dimensional polynomial differential
systems become an isolated 2-dimensional compact invariant manifold embedded
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in R3? The definition of an invariant manifold can be found in [7]. To discuss
the question, we consider the following three-dimensional polynomial differential
systems

dxi

dt
= fi(x1, x2, x3), i = 1, 2, 3, (1.1)

where fi(x1, x2, x3) is a polynomial in the variables x1, x2 and x3 with degree
mi, denoted by fi ∈ R[x1, x2, x3], i = 1, 2, 3. Here R[x1, x2, x3] is the ring of the
polynomials in the variables x1, x2 and x3 with coefficients in R. We say that

n = max
i=1,2,3

{degfi(x1, x2, x3)} = max {m1,m2,m3}

is the order (or degree) of system (1.1). The existence of invariant algebraic surfaces
for system (1.1) or a kind of system (1.1) (e.g. Kolmogorov system) and its dynamics
have been studied by many mathematicians, see [8, 10–13, 16, 17] and references
therein.

In the paper, we are interested in the case that system (1.1) has at least one
equilibrium in R3. Without loss of generality, it can be assumed that the equilibrium
is at the origin O(0, 0, 0). Then the n-order system (1.1) with an equilibrium at
O(0, 0, 0) can be rewritten as

dxi

dt
= fi(x1, x2, x3) =

n∑
k=1

f
(k)
i (x1, x2, x3), i = 1, 2, 3, (1.2)

where f
(k)
i (x1, x2, x3) is a homogeneous polynomial in the variables x1, x2 and x3

with degree k, 1 ≤ k ≤ n and i = 1, 2, 3. Hence, the vector field (f1(x1, x2, x3),
f2(x1, x2, x3), f3(x1, x2, x3)) associated with system (1.2) has no constant terms.

Let M be a smooth closed orientable surface of genus g in R3. Then the simplest
2-dimensional orientable smooth compact manifolds with genus g ≤ 1 in R3 are
ellipsoid and tori. Note that the 2-dimensional ellipsoid surface can be transformed
into a unit sphere in R3 by an affine transformation. Inspired by Llibre et al. [13],
we consider if the n-order system (1.2) has an invariant sphere with the following
form

E2 = {(x1, x2, x3) ∈ R3 : (x1 − a)2 + (x2 − b)2 + (x3 − c)2 = 1, a, b, c ∈ R},

and an invariant torus in the form

T2 = {(x1, x2, x3) ∈ R3 : (x2
1 + x2

2 − r2)2 + x2
3 = 1, r > 0}.

Our aim is to look for the smallest degree of system (1.2) such that system (1.2) has
an isolated invariant sphere E2 (or torus T2), and give the sufficient and necessary
algebraic conditions for system (1.2) with the smallest degree having an isolated
invariant sphere E2 (or torus T2). We say E2 (T2) is invariant for system (1.2) if
the orbit of system (1.2) passing through any a point in E2 (T2, resp.) is completely
contained in E2 (T2, resp.). Note that E2 and T2 are quadratic and quartic algebraic
surfaces, respectively. One of the important tools used to study the invariance of
algebraic surfaces for polynomial differential systems is Darboux theory founded
by Darboux in [6]. Assume that H(x1, x2, x3) is a real polynomial with degree m,
m ≥ 1. Then the algebraic surface H(x1, x2, x3) = 0 is invariant for the n-order
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polynomial differential system (1.2) if there exists a real polynomial K(x1, x2, x3)
satisfying the following equality

3∑
i=1

∂H(x1, x2, x3)

∂xi
fi(x1, x2, x3) = H(x1, x2, x3)K(x1, x2, x3). (1.3)

The polynomial K(x1, x2, x3) is called the cofactor of the invariant algebraic surface
H(x1, x2, x3) = 0. Obviously, the degree of K(x1, x2, x3) is less than n− 1 by (1.3).
If K(x1, x2, x3) ≡ 0, then H(x1, x2, x3) is a first integral of system (1.2). Hence,
H(x1, x2, x3) = c, for any c ∈ R, is an invariant algebraic surface of system (1.2).
This implies that H(x1, x2, x3) = 0 is not isolated in R3. Therefore, H(x1, x2, x3) =
0 is an isolated invariant algebraic surface if and only if K(x1, x2, x3) ̸≡ 0.

Note that the relative position between the center S(a, b, c) of the sphere E2 and
the equilibrium O(0, 0, 0) will determine the relative position between O(0, 0, 0) and
E2. In general, there are three possible relative positions between E2 and O(0, 0, 0):
(i). the equilibrium O(0, 0, 0) is exactly the center S(a, b, c) of the sphere E2 iff
(a, b, c) = (0, 0, 0); (ii). O(0, 0, 0) ∈ E2 iff a2 + b2 + c2 = 1; (iii). O(0, 0, 0) ̸∈
E2 ∪ {(a, b, c)} iff 0 < a2 + b2 + c2 ̸= 1. Since r > 0 in the expression of torus T2,
there exist two possible relative positions between the torus T2 and the equilibrium
O(0, 0, 0): (I). O(0, 0, 0) ∈ T2 iff r = 1; (II). O(0, 0, 0) ̸∈ T2 iff 0 < r ̸= 1. We
characterize the smallest degree of system (1.2) with an isolated invariant sphere
E2 (torus T2) in three relative positions (in two relative positions, resp.), and give
the sufficient and necessary algebraic conditions for system (1.2) with the smallest
degree having an isolated invariant E2 (T2) in the corresponding relative positions,
which provide implicit three-dimensional polynomial differential systems with an
isolated invariant E2 (T2), respectively.

The structure of the paper is as follows. In Section 2, we first study the smallest
degree of system (1.2) such that system (1.2) has both an isolated equilibrium O
and an isolated sphere E2; then we characterize this three dimensional polynomial
differential systems with the smallest degree and obtain the sufficient and necessary
algebraic conditions under three different relative positions between the equilibrium
O and E2. In Section 3, we study the smallest degree of system (1.2) such that
system (1.2) has both an isolated equilibrium O and an isolated torus T2 in two
different relative positions between the equilibrium O and T2, and characterize this
three dimensional polynomial differential systems with the smallest degree. In the
last section, we discuss the influence of the coexistence of the isolated invariant
E2 (or T2) and an equilibrium on dynamics of the three dimensional polynomial
differential system.

2. Three-dimensional polynomial differential syste-
ms having an isolated invariant sphere

In the section, we investigative the smallest degree (or order) of the n-order three-
dimensional polynomial differential system (1.2) having an isolated invariant sphere
E2 in three different relative positions. Then we discuss the sufficient and necessary
algebraic conditions for the smallest order system (1.2) with the invariant E2 in the
corresponding three different relative positions.

We first study the relative position between the equilibrium O(0, 0, 0) and the
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invariant sphere E2: the center S(a, b, c) of E2 is exactly at O(0, 0, 0), in other words,
(a, b, c) = (0, 0, 0). We denote this sphere by E2

0.

Theorem 2.1. If the n-order system (1.2) has an isolated invariant sphere E2
0 with

a2 + b2 + c2 = 0, then the smallest degree of system (1.2) is three, that is, n = 3.
Furthermore, a cubic polynomial differential system in the form

dx1

dt =
∑3

i=1 aixi +
∑

1≤i≤j≤3 aijxixj +
∑

1≤i≤j≤k≤3 aijkxixjxk,
dx2

dt =
∑3

i=1 bixi +
∑

1≤i≤j≤3 bijxixj +
∑

1≤i≤j≤k≤3 bijkxixjxk,
dx3

dt =
∑3

i=1 cixi +
∑

1≤i≤j≤3 cijxixj +
∑

1≤i≤j≤k≤3 cijkxixjxk,

(2.1)

where ai, bi, ci, aij , bij , cij , aijk, bijk and cijk are real parameters for any i, j, k ∈
{1, 2, 3}, has an isolated invariant sphere E2

0 in R3 if and only if

(i) all coefficients of quadratic homogeneous terms of the vector field associated
with (2.1) are zero, that is,

aij = bij = cij = 0, ∀i, j ∈ {1, 2, 3}; (2.2)

(ii) the coefficients of linear homogeneous terms of the vector field associated with
(2.1) satisfy

a21 + b22 + c23 + (a2 + b1)
2 + (a3 + c1)

2 + (b3 + c2)
2 ̸= 0; (2.3)

(iii) the coefficients of linear homogeneous terms and cubic homogeneous terms of
the vector field associated with (2.1) satisfy the following equalities

a1 = −a111, b2 = −b222, c3 = −c333,

a2 + b1 + a112 + b111 = 0,

a3 + c1 + a113 + c111 = 0,

b2 + a1 + a122 + b112 = 0,

c3 + a1 + a133 + c113 = 0,

a2 + b1 + a222 + b122 = 0,

a3 + c1 + a333 + c133 = 0,

b3 + c2 + b223 + c222 = 0,

c3 + b2 + b233 + c223 = 0,

b3 + c2 + b333 + c233 = 0,

b3 + c2 + a123 + b113 + c112 = 0,

a3 + c1 + a223 + b123 + c122 = 0,

a2 + b1 + a233 + b133 + c123 = 0.

(2.4)

Proof. If E2
0 is an invariant sphere of system (1.2), then let H0(x1, x2, x3) =

x2
1 + x2

2 + x2
3 − 1. The derivative of H0(x1, x2, x3) along the flow of system (1.2)

should be H0(x1, x2, x3)K(x1, x2, x3) by Darboux theory, that is

dH0(x1, x2, x3)

dt
|(1.2) =

3∑
i=1

∂H0

∂xi
fi(x1, x2, x3) = H0(x1, x2, x3)K(x1, x2, x3), (2.5)
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where K(x1, x2, x3) is a cofactor of the invariant sphere E2
0, whose degree is at most

n− 1. Assume that

K(x1, x2, x3) =

n−1∑
k=0

K(k)(x1, x2, x3),

where K(k)(x1, x2, x3) is the homogeneous polynomial terms with degree k of
K(x1, x2, x3). By calculating both sides of equality (2.5) respectively, we have

3∑
i=1

2xifi(x1, x2, x3) =−K(x1, x2, x3) + (x2
1 + x2

2 + x2
3)K(x1, x2, x3)

=−
n−1∑
k=0

K(k)(x1, x2, x3) (2.6)

+ (x2
1 + x2

2 + x2
3)

(
n−1∑
k=0

K(k)(x1, x2, x3)

)
.

Since fi(x1, x2, x3) has no constant term for i = 1, 2, 3, the left side of (2.6) has no
constant term and linear terms. Therefore, the K(0)(x1, x2, x3) and K(1)(x1, x2, x3)
should be null by (2.6), i.e.

K(0)(x1, x2, x3) ≡ K(1)(x1, x2, x3) ≡ 0. (2.7)

Note that K(x1, x2, x3) ̸≡ 0 if E2
0 is an isolated invariant sphere of system (1.2).

Hence. the equality (2.6) holds only if the degree of K(x1, x2, x3) is greater than
two. This leads to the degree n of system (1.2) being greater than three, i.e. n ≥ 3.

We now consider system (1.2) as cubic polynomial differential systems, that is,
we consider system (2.1).

In the following we focus on whether system (2.1) has an isolated invariant
sphere E2

0 or not, and characterize system (2.1) if it has an isolated invariant sphere
E2
0.
Let us first assume that E2

0 is an isolated invariant sphere of system (2.1). Then
by Darboux theory, we derive that there exists a non-zero polynomial K0(x1, x2, x3)
with degree less than two such that

dH0(x1, x2, x3)

dt
|(2.1) = H0(x1, x2, x3)K0(x1, x2, x3). (2.8)

Note that K0(x1, x2, x3) is a quadratic homogeneous polynomial due to (2.7), i.e.

K0(x1, x2, x3) = K
(2)
0 (x1, x2, x3). By directly computing both sides of equality

(2.8), we have

(x2
1 + x2

2 + x2
3 − 1)K

(2)
0 (x1, x2, x3)

=2x1

3∑
i=1

aixi + 2x2

3∑
i=1

bixi + 2x3

3∑
i=1

cixi (2.9)

+ 2x1

∑
1≤i≤j≤3

aijxixj + 2x2

∑
1≤i≤j≤3

bijxixj + 2x3

∑
1≤i≤j≤3

cijxixj

+ 2x1

∑
1≤i≤j≤k≤3

aijkxixjxk + 2x2

∑
1≤i≤j≤k≤3

bijkxixjxk
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+ 2x3

∑
1≤i≤j≤k≤3

cijkxixjxk.

Since the left hand of equality (2.9)

(x2
1+x2

2+x2
3−1)K

(2)
0 (x1, x2, x3) = −K

(2)
0 (x1, x2, x3)+(x2

1+x2
2+x2

3)K
(2)
0 (x1, x2, x3),

is composed of quadratic homogeneous terms and fourth-order homogeneous terms
in the variables x1, x2 and x3, the cubic homogeneous terms of the variables x1, x2

and x3 on the right hand of (2.9) should be null, that is,

2x1

∑
1≤i≤j≤3

aijxixj + 2x2

∑
1≤i≤j≤3

bijxixj + 2x3

∑
1≤i≤j≤3

cijxixj ≡ 0.

This leads to aij = bij = cij = 0, ∀i, j ∈ {1, 2, 3}, that is, all coefficients of
quadratic homogeneous terms of the vector field associated with system (2.1) are
zero. So the conclusion (i) in the theorem is true if system (2.1) has an isolated
invariant sphere E2

0. Further, we obtain the following equalities by comparing the
quadratic homogeneous terms and fourth-order homogeneous terms on both sides
of equality (2.9), respectively

K
(2)
0 (x1, x2, x3) = −(2x1

∑
aixi + 2x2

∑
bixi + 2x3

∑
cixi), (2.10)

(x2
1 + x2

2 + x2
3)K

(2)
0 (x1, x2, x3)

=2x1

∑
1≤i≤j≤k≤3

aijkxixjxk (2.11)

+ 2x2

∑
1≤i≤j≤k≤3

bijkxixjxk + 2x3

∑
1≤i≤j≤k≤3

cijkxixjxk.

Pluging (2.10) to (2.11), we have

− (x2
1 + x2

2 + x2
3)(x1

3∑
i=1

aixi + x2

3∑
i=1

bixi + x3

3∑
i=1

cixi)

=x1

∑
1≤i≤j≤k≤3

aijkxixjxk + x2

∑
1≤i≤j≤k≤3

bijkxixjxk + x3

∑
1≤i≤j≤k≤3

cijkxixjxk.

(2.12)

Comparing the corresponding coefficients of the same polynomial term on the left
and right hands of (2.12), we obtain the equalities (2.4) in (iii) of the theorem. And

K
(2)
0 (x1, x2, x3) ̸≡ 0, which leads that (2.3) in (ii) of the theorem holds by (2.10).
On the other hand, if the parameters of system (2.1) satisfy conditions (2.2),

(2.3) and (2.4), then it can be checked that

dH0(x1, x2, x3)

dt
|(2.1) = 2H0(x1, x2, x3)K0(x1, x2, x3),

where

K0(x1, x2, x3) = −a1x
2
1−b2x

2
2−c3x

2
3−(a2+b1)x1x2−(a3+c1)x1x3−(b3+c2)x2x3 ̸≡ 0.
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Thus, E2 is an isolated invariant sphere of system (2.1). The theorem is proved.

We now consider the second relative position between the equilibrium O(0, 0, 0)
and the invariant sphere E2: O(0, 0, 0) ∈ E2, in other words, a2 + b2 + c2 = 1. We
denote this sphere by E2

1.

Theorem 2.2. If the n-order system (1.2) has an isolated invariant sphere E2
1 with

a2 + b2 + c2 = 1, then the smallest degree of system (1.2) is two, that is, n = 2.
Furthermore, a quadratic polynomial differential system

dx1

dt =
∑3

i=1 aixi +
∑

1≤i≤j≤3 aijxixj ,
dx2

dt =
∑3

i=1 bixi +
∑

1≤i≤j≤3 bijxixj ,
dx3

dt =
∑3

i=1 cixi +
∑

1≤i≤j≤3 cijxixj ,

(2.13)

where ai, bi, ci, aij, bij and cij are real parameters for any i, j ∈ {1, 2, 3}, has an
isolated invariant sphere E2

1 in R3 if and only if there exists a constant k such that
the following equalities and inequality all hold.

aa1 + bb1 + cc1 = ak,

aa2 + bb2 + cc2 = bk,

aa3 + bb3 + cc3 = ck,

a2 + b2 + c2 = 1;

(2.14)



k − 2aa11 = 2a1 − 2bb11 − 2cc11,

k − 2bb22 = 2b2 − 2aa22 − 2cc22,

k − 2cc33 = 2c3 − 2aa33 − 2bb33,

−2ab22 − 2ba11 = a2 + b1 − aa12 − bb12 − cc12,

−2ac33 − 2ca11 = a3 + c1 − aa13 − bb13 − cc13,

−2bc33 − 2cb22 = b3 + c2 − aa23 − bb23 − cc23;

(2.15)


2a11 = 2a22 + 2b12 = 2a33 + 2c13,

2a12 + 2b11 = 2b22 = 2b33 + 2c23,

2a13 + 2c11 = 2b23 + 2c22 = 2c33,

a23 + b13 + c12 = 0;

(2.16)

and
3∑

i=1

(aai + bbi + cci)
2 + a211 + b222 + c233 ̸= 0. (2.17)

To prove Theorem 2.2, we first give a lemma, which shows that system (1.2) can
not have an isolated invariant sphere E2

1 if it is a linear differential system.

Lemma 2.1. Assume that system (1.2) is a linear differential system in the form
dx1

dt =
∑3

i=1 aixi,
dx2

dt =
∑3

i=1 bixi,
dx3

dt =
∑3

i=1 cixi,

(2.18)

where ai, bi, ci are real parameters for i = 1, 2, 3., which has an invariant sphere E2
1

in R3. Then E2
1 is not isolated, that is, system (2.18) has a first integral (x1−a)2+

(x2 − b)2 + (x3 − c)2 − 1 with a2 + b2 + c2 = 1.
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Proof. Assume that system (2.18) has an invariant sphere E2
1 in R3. Then let

H1(x1, x2, x3) = (x1 − a)2 + (x2 − b)2 + (x3 − c)2 − 1,

where a, b and c satisfy a2 + b2 + c2 = 1. We have

dH1(x1, x2, x3)

dt
|(2.18) = H1(x1, x2, x3)k0,

where k0 is a constant. Hence,

((x1 − a)2 + (x2 − b)2 + (x3 − c)2 − 1)k0 (2.19)

=2(x1 − a)(

3∑
i=1

aixi) + 2(x2 − b)(

3∑
i=1

bixi) + 2(x3 − c)(

3∑
i=1

cixi).

Since the coefficients of the same polynomial terms on both sides of (2.19) should
be equal, we obtain 

−2ak0 = −2aa1 − 2bb1 − 2cc1,

−2bk0 = −2aa2 − 2bb2 − 2cc2,

−2ck0 = −2aa3 − 2bb3 − 2cc3,

(2.20)

and {
k0 = 2a1, a1 = b2 = c3,

a2 + b1 = 0, a3 + c1 = 0, c2 + b3 = 0.
(2.21)

Pulgging (2.21) into (2.20), one gets
aa1 + ba2 + ca3 = 0,

ba1 − aa2 − cc2 = 0,

ca1 − aa3 + bc2 = 0.

(2.22)

Note that a2 + b2 + c2 = 1. There are three cases for a, b and c. Case 1: abc ̸= 0;
Case 2: there is only one of a, b and c being zero; Case 3: there are only two of a, b
and c being zero. Multiplying some equations of system (2.22) by an appropriate
nonzero a, b and c, and then adding them together, we obtain a1 = 0 in the three
cases. Hence, from (2.21) we have k0 = 0. This implies

dH1(x1, x2, x3)

dt
|(2.18) ≡ 0.

Therefore, H1(x1, x2, x3) is a first integral of system (2.18). And so the invariant
sphere E2

1 is not isolated in R3. We finish the proof.

We are now in the position to prove Theorem 2.2.
Proof. [Proof of Theorem 2.2] If system (2.1) has an isolated invariant sphere E2

1,
then the degree of system (2.1) is greater than two according to Lemma 2.1, that is,
n ≥ 2. We now consider system (1.2) as quadratic polynomial differential systems
(2.13), and consider whether system (2.13) has an isolated invariant sphere E2

1 or
not. We first assume that system (2.13) has an isolated invariant sphere E2

1 in R3.
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Then by Darboux theory, there exists a nonzero polynomial with degree less than
one, denoted by K1(x1, x2, x3), such that

dH1(x1, x2, x3)

dt
|(2.13) = H1(x1, x2, x3)K1(x1, x2, x3), (2.23)

where H1(x1, x2, x3) = (x1 − a)2 + (x2 − b)2 + (x3 − c)2 − 1 with a2 + b2 + c2 = 1,
K1(x1, x2, x3) = k + k1x1 + k2x2 + k3x3, in which k, kl ∈ R and l ∈ {1, 2, 3}. By a
direct computation of (2.23), we have

(x2
1 + x2

2 + x2
3 − 2ax1 − 2bx2 − 2cx3)(k +

3∑
l=1

klxl)

=2(x1 − a)(

3∑
i=1

aixi +
∑

1≤i≤j≤2

aijxixj) (2.24)

+2(x2 − b)(
3∑

i=1

bixi +
∑

1≤i≤j≤2

bijxixj)

+2(x3 − c)(

3∑
i=1

cixi +
∑

1≤i≤j≤2

cijxixj).

Hence, the coefficients of the same polynomial terms on both sides of (2.24) should
be equal. By comparing the coefficients of the same polynomial terms with degree
one, two and three on both sides of (2.24), respectively, we get the condition (2.14),

k − 2ak1 = 2a1 − 2aa11 − 2bb11 − 2cc11,

k − 2bk2 = 2b2 − 2aa22 − 2bb22 − 2cc22,

k − 2ck3 = 2c3 − 2aa33 − 2bb33 − 2cc33,

−ak2 − bk1 = a2 + b1 − aa12 − bb12 − cc12,

−ak3 − ck1 = a3 + c1 − aa13 − bb13 − cc13,

−bk3 − ck2 = b3 + c2 − aa23 − bb23 − cc23,

(2.25)

and 
k1 = 2a11 = 2a22 + 2b12 = 2a33 + 2c13,

k2 = 2a12 + 2b11 = 2b22 = 2b33 + 2c23,

k3 = 2a13 + 2c11 = 2b23 + 2c22 = 2c33,

a23 + b13 + c12 = 0.

(2.26)

Plugging (2.26) and (2.14) into (2.25), we derive (2.15). And condition (2.26) is the
condition (2.16). If K1(x1, x2, x3) ̸≡ 0, then condition (2.17) should hold. Thus,
these conditions are necessary.

On the other hand, assume that the parameters of system (2.13) satisfy con-
ditions (2.14)-(2.16). Then one can check that there is a nonzero polynomial
K(x1, x2, x3) = k + 2a11x1 + 2b22x2 + 2c33x3, where k satisfies (2.14) and (2.15),
such that

dH1(x1, x2, x3)

dt
|(2.13) = 2H1(x1, x2, x3)K(x1, x2x3). (2.27)

Therefore, system (2.13) has an isolated invariant sphere E2
1 in R3.
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We finish the proof.

Last we consider the third relative position between the equilibrium O(0, 0, 0)
and the invariant sphere E2: O(0, 0, 0) ̸∈ E2 ∪ {(0, 0, 0)}, in other words, 0 <
a2+b2+c2 ̸= 1. We denote this sphere by E2

2. Using the arguments similar to those
in proofs of Theorem 2.1 and Theorem 2.2, we obtain the following conclusion. To
save the space, we leave its proof to readers.

Theorem 2.3. If the n-order system (1.2) has an isolated invariant sphere E2
2 with

0 < a2 + b2 + c2 ̸= 1, then the smallest degree of system (1.2) is two, that is, n = 2.
Furthermore, the quadratic polynomial differential system (2.13) has an isolated
invariant sphere E2

2 in R3 if and only if the following equalities and inequality all
hold.

a11 = a33 + c13 = a22 + b12 = −(a2 + b2 + c2)−1(aa1 + bb1 + cc1),

a12 + b11 = b22 = b33 + c23 = −(a2 + b2 + c2)−1(aa2 + bb2 + cc2),

a13 + c11 = b23 + c22 = c33 = −(a2 + b2 + c2)−1(aa3 + bb3 + bc3),

a23 + b13 + c12 = 0;

(2.28)



a1 + aa11 = bb11 + cc11,

a2 + b1 + a(a12 + 2b11) + b(b12 + 2a22) = cc12,

a3 + c1 + a(a13 + 2c11) + c(c13 + 2a33) = bb13,

b2 + bb22 = aa22 + cc22,

b3 + c2 + b(b23 + 2c22) + c(c23 + 2b33) = aa23,

c3 + cc33 = aa33 + bb33;

(2.29)

and
3∑

i=1

(aai + bbi + cci)
2 ̸= 0. (2.30)

3. Three-dimensional polynomial differential syste-
ms having an isolated invariant tours T2

In this section, we consider the smallest degree of three-dimensional polynomial
differential systems (1.2) having an isolated two-dimensional invariant torus T2 in
two possible relative positions between the torus T2 and the equilibrium O(0, 0, 0).
We first consider the case that O(0, 0, 0) ∈ T2, that is r = 1, and we denote the
invariant torus with r = 1 by T2

0.

Theorem 3.1. If the n-order system (1.2) has an isolated invariant torus T2
0 with

r = 1, then the smallest degree of system (1.2) is two, that is, n = 2. Further, a
quadratic polynomial differential system (2.13) has an isolated invariant torus T2

0 if
and only if

(i) the coefficients of the linear term of system (2.13) satisfy

a1 = a3 = b2 = b3 = c1 = c2 = c3 = 0, and a2 + b1 = 0; (3.1)
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(ii) the coefficients of the quadratic term of system (2.13) satisfy
a11 = a33 = b22 = b33 = c12 = c13 = c23 = 0,

a12 + b11 = 0, a22 + b12 = 0, a23 + b13 = 0,

2a13 + c11 = 0, 2b23 + c22 = 0, 2a13 = 2b23 = c33;

(3.2)

(iii) a13 ̸= 0.

Proof. Assume that system (1.2) has an isolated invariant torus T2
0 with r = 1.

Then let

H(x1, x2, x3) = ((x2
1 + x2

2)− 1)2 + x2
3 − 1 = (x2

1 + x2
2)

2 + x2
3 − 2(x2

1 + x2
2).

There exists a nonzero polynomial K(x1, x2, x3) with degree less than n − 1 such
that

dH(x1, x2, x3)

dt
|(1.2) = H(x1, x2, x3)K(x1, x2, x3). (3.3)

Hence, we have

4x1(x
2
1 + x2

2 − 1)f1 + 4x2(x
2
1 + x2

2 − 1)f2 + 2x3f3 (3.4)

=((x2
1 + x2

2)
2 − 2(x2

1 + x2
2) + x2

3)(

n−1∑
k=0

K(k)(x1, x2, x3)).

If (3.4) holds for n = 1, then

a1 = a3 = b2 = b3 = c1 = c2 = c3 = 0, and a2 + b1 = 0 (3.5)

by comparing the coefficients of quadratic polynomial terms on both sides of (3.4).
However, linear system (2.18) with (3.5) has only invariant cylindrical surfaces and
no invariant tori. Therefore, n ≥ 2 if system (1.2) has an isolated invariant torus
T2
0.
We now give the sufficient and necessary conditions for quadratic system (2.13)

having an isolated invariant torus T2
0.

Let us first assume that system (2.13) has an invariant torus T2
0 with r = 1.

Then H(x1, x2, x3) is an invariant algebraic surface and its cofactor K(x1, x2, x3)
can be written as K(x1, x2, x3) = K0 + K1(x1, x2, x3), where K0 is constant and
K1(x1, x2, x3) is a homogeneous polynomial with degree one. Applying Darboux
theory one gets

((x2
1 + x2

2 − 1)2 + x2
3 − 1)(K0 +K1(x1, x2, x3))

=4x1(x
2
1 + x2

2 − 1)(

3∑
i=1

aixi +
∑

1≤i≤j≤3

aijxixj)

+ 4x2(x
2
1 + x2

2 − 1)(

3∑
i=1

bixi +
∑

1≤i≤j≤3

bijxixj)

+ 2x3(

3∑
i=1

cixi +
∑

1≤i≤j≤3

cijxixj). (3.6)
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Hence, the homogeneous polynomial with degree two and degreee four on both sides
of equality (3.6) should be equal, respectively, then we obtain

(−2(x2
1 + x2

2) + x2
3)K0 = −4x1(

3∑
i=1

aixi)− 4x2(

3∑
i=1

bixi) + 2x3(

3∑
i=1

cixi), (3.7)

and

(x2
1 + x2

2)
2K0 = 4x1(x

2
1 + x2

2)(

3∑
i=1

aixi) + 4x2(x
2
1 + x2

2)(

3∑
i=1

bixi). (3.8)

And the homogeneous polynomial with degree three and degree five on both
sides of equality (3.6) should be equal, respectively, then we obtain

(−2(x2
1 + x2

2) + x2
3)K1(x1, x2, x3) =− 4x1(

∑
1≤i≤j≤2

aijxixj) (3.9)

− 4x2(
∑

1≤i≤j≤2

bijxixj) + 2x3(
∑

1≤i≤j≤2

cijxixj),

and

(x2
1 + x2

2)
2K1(x1, x2, x3) =4x1(x

2
1 + x2

2)(
∑

1≤i≤j≤2

aijxixj) (3.10)

+ 4x2(x
2
1 + x2

2)(
∑

1≤i≤j≤2

bijxixj).

By comparing the coefficients of the same polynomial terms in (3.7) and (3.8),
respectively, we get 

K0 = 2c3 = 2a1 = 2b2,

a2 + b1 = 0,

2a3 − c1 = 0,

2b3 − c2 = 0,

(3.11)

and 
K0 = 4a1 = 4b2 = 2a1 + 2b2,

a2 + b1 = 0,

a3 = b3 = 0.

(3.12)

Combining (3.11) and (3.12), and simplifying them, we obtain the condition (3.1).
Plugging (3.9) into (3.10), and making replacement and simplification, we have

4x1x
2
3(

∑
1≤i≤j≤2

aijxixj) + 4x2x
2
3(

∑
1≤i≤j≤2

bijxixj) (3.13)

=4x3
1(

∑
1≤i≤j≤2

aijxixj) + 4x2
1x2(

∑
1≤i≤j≤2

bijxixj) + 2x2
1x3(

∑
1≤i≤j≤2

cijxixj)

+ 4x1x
2
2(

∑
1≤i≤j≤2

aijxixj) + 4x3
2(

∑
1≤i≤j≤2

bijxixj) + 2x2
2x3(

∑
1≤i≤j≤2

cijxixj).
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By comparing the coefficients of the same polynomial term on both sides of (3.13),
we have

0 = 4a11, 0 = 4a12 + 4b11, 0 = 4a13 + 2c11,

0 = 4a22 + 4b12 + 4a11, 0 = 4a23 + 4b13 + 2c12,

4a11 = 4a33 + 2c13, 0 = 4b22 + 4a12 + 4b11,

0 = 4b23 + 2c22 + 4a13 + 2c11, 4a12 + 4b11 = 4b33 + 2c23,

4a13 = 2c33, 0 = 4a22 + 4b12, 0 = 4a23 + 4b13 + 2c12,

4a22 + 4b12 = 4a33 + 2c13, 4a23 + 4b13 = 0, 4a33 = 0,

4b22 = 0, 0 = 4b23 + 2c22, 4b22 = 4b33 + 2c23,

4b23 = 2c33, 4b33 = 0.

(3.14)

By rearranging and simplifying the relations in (3.14), we obtain the condition (3.2).
Since K(x1, x2, x3) ̸≡ 0, a13 ̸= 0, which is the condition (iii) in this theorem.

On the other hand, if the parameters of system (2.13) satisfy conditions (3.1)
and (3.2), then it can be checked that

dH(x1, x2, x3)

dt
|(2.13) = 4a13x3H(x1, x2, x3),

which implies that T2
0 with r = 1 is invariant for the flow of system (2.13). Note

that a13 ̸= 0 by condition (iii) in this theorem. Thus, system (2.13) has an isolated
invariant torus T2

0. The proof is finished.

Last we consider the case that O(0, 0, 0) ̸∈ T2, that is 0 < r ̸= 1. We denote the
invariant torus with 0 < r ̸= 1 by T2

1.

Theorem 3.2. If the n-order system (1.2) has an isolated invariant torus T2
1 with

0 < r ̸= 1, then the smallest degree of system (1.2) is three, that is, n = 3. Further,
a cubic polynomial differential system (2.1) has an isolated invariant torus T2

1 if
and only if

(i) the coefficients ai, bi and ci of linear terms of system (2.1) satisfy the following
conditions

a1 = b2 = a2 + b1 = 0. (3.15)

(ii) the coefficients aij , bij , cij of quadratic terms of system (2.1) satisfy the fol-
lowing equalities 

b22 = b23 = b33 = a11 = a13 = a33 = 0,

b11 + a12 = 0,

b12 + a22 = 0,

b13 + a23 = 0,

c11 = c12 = c13 = c23 = c22 = c33 = 0.

(3.16)

(iii) the coefficients aijk, bijk and cijk of the cubic terms of system (2.1) satisfy the
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following equalities.

a111 = b222 = a333 = b333 = 0,

a112 + b111 = 0,

a122 + b112 = 0,

a222 + b122 = 0,

a233 + b133 = 0,

a113 = a223 + b123 = 1
2c133 = 1

2dc1 − r2da3,

a123 + b113 = b223 = 1
2c233 = 1

2dc2 − r2db3,

a133 = b233 = 1
2c333 = 1

2dc3,

(3.17)

and 
c111 = c122 = (2r4d− 2)a3 − r2dc1,

c112 = c222 = (2r4d− 2)b3 − r2dc2,

c113 = c223 = −r2dc3,

c123 = 0,

(3.18)

where d := (r4 − 1)−1.

(iv)
c23 + (c1 − 2r2a3)

2 + (c2 − 2r2b3)
2 ̸= 0. (3.19)

Proof. Assume that T2
1 is an invariant algebraic surface of system (1.2). Let

F (x1, x2, x3) = (x2
1 + x2

2 − r2)2 + x2
3 − 1, 0 < r ̸= 1.

Then F (x1, x2, x3) is a Darboux polynomial of system (1.2) and there exists a

cofactor K(x1, x2, x3) =
∑n−1

j=0 K(j)(x1, x2, x3), such that

dF (x1, x2, x3)

dt
|(1.2) =

3∑
i=1

∂F

∂xi
fi(x1, x2, x3) = F (x1, x2, x3)K(x1, x2, x3), (3.20)

where K(j)(x1, x2, x3) is a homogeneous polynomial with degree j in the variables
x1, x2, and x3. By a direct computation, we have

3∑
i=1

∂F

∂xi
fi(x1, x2, x3) = 4x1(x

2
1 + x2

2 − r2)f1 + 4x2(x
2
1 + x2

2 − r2)f2 + 2x3f3, (3.21)

which is a polynomial without constant term and linear terms. And

F (x1, x2, x3)K(x1, x2, x3) =((x2
1 + x2

2 − r2)2 + x2
3 − 1)

n−1∑
j=0

K(j)(x1, x2, x3)

=(r4 − 1)

n−1∑
j=0

K(j)(x1, x2, x3) (3.22)

+ ((x2
1 + x2

2)
2 − 2(x2

1 + x2
2)r

2 + x2
3)

n−1∑
j=0

K(j)(x1, x2, x3).
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Since 0 < r ̸= 1, r4 − 1 ̸= 0. From (3.20), we derive that

K(0)(x1, x2, x3) = K(1)(x1, x2, x3) ≡ 0.

Therefore, the degree of the cofactor K(x1, x2, x3) is at least two, which yields that
n ≥ 3.

In the following we consider a cubic polynomial differential system (2.1) and
characterize system (2.1) having an isolated invariant torus T2

1.
We first assume that T2

1 is an isolated invariant algebraic surface of system (2.1);
then, in view of (3.21) and (3.22), we derive that

((x2
1 + x2

2 − r2)2 + x2
3 − 1)K(2)(x1, x2, x3)

=((x2
1 + x2

2)
2 − 2r2(x2

1 + x2
2) + x2

3 + r4 − 1)K(2)(x1, x2, x3) (3.23)

=4x1(x
2
1 + x2

2 − r2)(

3∑
i=1

aixi +
∑

1≤i≤j≤2

aijxixj +
∑

1≤i≤j≤k≤2

aijkxixjxk)

+ 4x2(x
2
1 + x2

2 − r2)(

3∑
i=1

bixi +
∑

1≤i≤j≤2

bijxixj +
∑

1≤i≤j≤k≤2

bijkxixjxk)

+ 2x3(

3∑
i=1

cixi +
∑

1≤i≤j≤2

cijxixj +
∑

1≤i≤j≤k≤2

cijkxixjxk),

where K(2)(x1, x2, x3) is a homogeneous polynomial with degree two.
Note that the polynomial on the left hand of (3.23) contains only terms with

even degrees. So the coefficients of polynomial terms with odd degrees on the right
hand of (3.23) should be zero. This leads that

b22 = b23 = b33 = a11 = a13 = a33 = 0,

b11 + a12 = 0,

b12 + a22 = 0,

b13 + a23 = 0,

(3.24)

and 

c33 = b22 = a11 = 0,

c11 − 2r2a13 = 0,

c13 − 2r2a33 = 0,

c23 − 2r2b33 = 0,

c22 − 2r2b23 = 0,

c12 − 2r2b13 − 2r2a23 = 0,

b11 + a12 = 0, b12 + a22 = 0.

(3.25)

Further simplified by combining conditions in (3.24) and (3.25), it gives that

c11 = c12 = c13 = c23 = c22 = c33 = 0. (3.26)

Taking into account (3.26) and (3.24), we give the condition (3.16).
Now we compare the polynomial terms of degree two in (3.23), and obtain that

(r4 − 1)K(2)(x1, x2, x3) = 2x3

3∑
i=1

cixi − 4r2(x2

3∑
i=1

bixi + x1

3∑
i=1

aixi). (3.27)
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Again comparing the polynomial terms of degree four in (3.23), one gets

(x2
3 − 2r2(x2

1 + x2
2))K

(2)(x1, x2, x3) (3.28)

=2x3

∑
1≤i≤j≤k≤2

cijkxixjxk + 4x1(x
2
1 + x2

2)(

3∑
i=1

aixi) + 4x2(x
2
1 + x2

2)(

3∑
i=1

bixi)

− 4r2x2(
∑

1≤i≤j≤k≤2

bijkxixjxk)− 4r2x1(
∑

1≤i≤j≤k≤2

aijkxixjxk).

Lastly, we compare the polynomial terms of degree six in (3.23) and obtain

(x2
1 + x2

2)K
(2)(x1, x2, x3) = 4x1

∑
1≤i≤j≤k≤2

aijkxixjxk + 4x2

∑
1≤i≤j≤k≤2

bijkxixjxk.

(3.29)

Let d = (r4 − 1)−1. Then equality (3.27) shows that K(2)(x1, x2, x3) is deter-
mined by the linear terms of system (2.1). Equality (3.29) tells us that polynomial
terms with coefficients aijk and bijk are determined by K(2)(x1, x2, x3). And equal-
ity (3.28) yields that polynomial terms with coefficient cijk are controlled by linear
terms of system (2.1) and polynomial terms with coefficients aijk and bijk.

By comparing the coefficients in the same polynomial term in (3.29), we have



a111 = −r2da1,

a112 + b111 = −r2d(a2 + b1),

a113 = 1
2dc1 − r2da3,

a122 + b112 = −r2d(b2 + a1),

a123 + b113 = 1
2dc2 − r2db3,

a133 = 1
2dc3,

a222 + b122 = −r2d(b1 + a2),

a223 + b123 = 1
2dc1 − r2da3,

b222 = −r2db2,

b223 = 1
2dc2 − r2db3,

b233 = 1
2dc3,

a233 + b133 = 0, a333 = b333 = 0.

(3.30)

Now, we compare the coefficients of the same polynomial terms in (3.28) and obtain
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the following 15 equalities.

4r2a111 = (4− 8r4d)a1,

4r2(a112 + b111) = (4− 8r4d)(a2 + b1),

2c111 − 4r2a113 = (8r4d− 4)a3 − 4r2dc1,

4r2(a122 + b112) = (4− 8r4d)(a1 + b2),

4r2(a123 + b113)− 2c112 = (4− 8r4d)b3 + 4r2dc2,

4r2a133 − 2c113 = 4r2d(a1 + c3),

4r2(a222 + b122) = (4− 8r4d)(a2 + b1),

4r2(a223 + b123)− 2c122 = (4− 8r4d)a3 + 4r2dc1,

4r2(a233 + b133)− 2c123 = 4r2d(a2 + b1),

−4r2a333 + 2c133 = −4r2da3 + 2dc1,

4r2b222 = (4− 8r4d)b2,

−4r2b223 + 2c222 = (8r4d− 4)b3 − 4r2dc2,

4r2b233 − 2c223 = 4r2d(b2 + c3),

4r2b333 − 2c233 = 4r2db3 − 2dc2,

2c333 = 2dc3.

(3.31)

Plugging (3.30) into (3.31) we have

a1 = a111 = 0,

a2 + b1 = a112 + b111 = 0,

c111 = (2r4d− 2)a3 − r2dc1,

a1 + b2 = a122 + b112 = 0,

c112 = (2r4d− 2)b3 − r2dc2,

c113 = −r2dc3,

a2 + b1 = a222 + b122 = 0,

c122 = (2r4d− 2)a3 − r2dc1,

c123 = 0,

c133 = dc1 − 2r2da3,

b2 = b222 = 0,

c222 = (2r4d− 2)b3 − r2dc2,

c223 = −r2dc3,

c233 = −2r2db3 + dc2,

c333 = dc3.

(3.32)

Combining and simplifying (3.32) and (3.30), we obtain the conditions (3.15), (3.17)
and (3.18) in the theorem. Note that T2

1 is isolated. K(2)(x1, x2, x3) ̸≡ 0, which
leads that the condition (3.19) holds.

On the other hand, if all parameters of system (2.1) satisfy conditions (3.15)-
(3.18), then it can be checked that

dF (x1, x2, x3)

dt
|(2.1) = 2F (x1, x2, x3)K(x1, x2, x3),
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where

K(x1, x2, x3) = (r4 − 1)−1(x3(

3∑
i=1

cixi)− 2r2(x2(

3∑
i=1

bixi) + x1(

3∑
i=1

aixi))). (3.33)

And if condition (3.19) holds, then K(x1, x2, x3) ̸≡ 0. Thus, T2
1 is isolated invariant

torus of system (2.13). The proof is finished.

4. Discussion

In the paper, we characterize the simplest three-dimensional polynomial differen-
tial system having an equilibrium and a 2-dimensional orientable smooth compact
invariant manifold: sphere E2 or torus T2 in R3. A natural question is how the
relative position between the equilibrium and sphere E2 or torus T2 in R3 affect the
global dynamics of this system.

When the compact invariant algebraic surface is sphere E2, if the equilibrium
O(0, 0, 0) is the center of E2 and it is a hyperbolic unstable equilibrium, we can
obtain that sphere E2 is a global attractor of the system in R3 \ {(0, 0, 0)} under
some conditions, for example, see [16, 17]. When the compact invariant algebraic
surface is torus T2, the conditions that guarantee this torus is a global attractor of
the system in R3, and richer dynamics of the system with sphere E2 or torus T2

awaits further research in the future.
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