Explicit *H*¹**-Estimate for the Solution of the Lamé** System with Mixed Boundary Conditions

AIT-AKLI Djamel* and MERAKEB Abdelkader

L2CSP, Mouloud Mammeri University Tizi-Ouzou, 15000, Algeria.

Received 20 May 2019; Accepted 27 February 2020

Abstract. In this paper we consider the Lamé system on a polygonal convex domain with mixed boundary conditions of Dirichlet-Neumann type. An explicit L^2 norm estimate for the gradient of the solution of this problem is established. This leads to an explicit bound of the H^1 norm of this solution. Note that the obtained upper-bound is not optimal.

AMS Subject Classifications: 35J57, 74B05

Chinese Library Classifications: O175.27

Key Words: Lamé system; Korn's inequality; Poincare's inequality; inequality; of trace; explicit estimates.

1 Introduction

Let Ω be a bounded open connected subset of \mathbb{R}^2 . The static equilibrium of a deformable structure occupying Ω is governed by the Lamé linear elasto-static system, see [1]. In this paper, we restrict the study to a convex domain Ω whose boundary has a polygonal shape that posses m+1 edges with $m \ge 2$. We denote $\Gamma = \bigcup_{i=0}^{m} \Gamma_i$ its boundary and $d(\Omega)$ its diameter. Moreover, we assume that all the edges Γ_i have strictly positive measure. The system under consideration is given by

$$\begin{cases}
Lu = f & \text{a.e in } \Omega, \\
\sigma(u) \cdot \overrightarrow{n_i} = g_i & \text{on } (\Gamma - \Gamma_0) \cap \Gamma_i, \ 1 \le i \le m, \\
u = 0 & \text{on } \Gamma_0.
\end{cases}$$
(1.1)

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* djamel.aitakli@ummto.dz (D. Ait-akli), kader.merakeb@ummto.dz (A. Merakeb)

*H*¹-Estimate for the Solution of the Lamé System with Mixed Boundary Conditions

We need to assume that the edges Γ_i which form the boundary Γ fulfill a condition similar to assumption (H_2) in ([2], Theorem 2.3). Actually, for our purpose, a stronger condition is needed and it is formulated in (1.5) below. The vector function $u = (u^1, u^2)$ satisfying the system (1.8) describes a displacement in the plane. In this model we impose a homogeneous Dirichlet condition on Γ_0 and a Neumann condition on the remaining part of the boundary. The equality on the boundary is understood in the sense of the trace. We denote *L* the Lamé operator defined by

$$Lu := -\operatorname{div}\sigma(u) = -\operatorname{div}[2\mu\varepsilon(u) + \lambda\operatorname{Tr}\varepsilon(u)Id].$$
(1.2)

We assume the data functions f and g at the right hand sides to satisfy $f \in [L^2(\Omega)]^2$ and $g \in [H^{\frac{1}{2}}(\Gamma - \Gamma_0)]^2$. The vector $\overrightarrow{n_i}$ represents the outside normal to Γ_i . We write μ and λ the Lamé's coefficients. We place ourselves in the isotropic framework, the deformation tensor ε is defined by

$$\varepsilon(u) = \frac{1}{2} (\nabla u + \nabla^t u). \tag{1.3}$$

The weak form of problem (1.1) is (see [1,3]): Find $u \in V$ such that $\forall v \in V$

$$\int_{\Omega} 2\mu\varepsilon(u)\varepsilon(v) + \lambda \operatorname{div} u \operatorname{div} v dx = \int_{\Omega} f v dx + \int_{\Gamma-\Gamma_0} g v d\sigma(x), \quad (1.4)$$

where

$$V = \left\{ v \in [H^1(\Omega)]^2; \quad v = 0 \quad \text{on } \Gamma_0 \right\}.$$

The existence and uniqueness issue of the solution of (1.4) in *V* is classic, (see [3]).

If we denote θ the interior angle between the edges Γ_j and Γ_k , $0 \le j$, $k \le m$ such that $\Gamma_j \cap \overline{\Gamma}_k \ne \emptyset$ and if we denote γ the interior angle between the Neumann part of the boundary $\Gamma_N := \Gamma - \Gamma_0$ and the Dirichlet part of the boundary $\Gamma_D := \Gamma_0$, then we impose

$$0 < \theta < \pi, \qquad 0 < \gamma < \pi. \tag{1.5}$$

The reason behind this assumption on the boundary is to get a better regularity of the solution of the weak problem (1.4). Precisely in that case we have, following ([2], Theorem 2.3) stated at the bottom of page 330, $u \in [H^{\frac{3}{2}+\iota}(\Omega)]^2$ for some positive $\iota > 0$, which implies in particular, using the appropriate Sobolev embedding and since Ω is a locally Lipschitz domain, see part II of ([4], Theorem 4.12, page 85), that $u \in [C^{0,\frac{1}{2}+\iota}(\overline{\Omega})]^2$ i.e. u is $(\frac{1}{2}+\iota)$ -holder continuous. One should notice that condition (1.5) are met since the domain considered in our case is convex. Let us denote

$$||\varepsilon(u)||_{0,\Omega} := \left(\int_{\Omega} \varepsilon(u)\varepsilon(u) \,\mathrm{d}x\right)^{\frac{1}{2}}; \qquad ||\nabla u||_{0,\Omega} := \left(\int_{\Omega} |\nabla u^{1}|^{2} + |\nabla u^{2}|^{2} \,\mathrm{d}x\right)^{\frac{1}{2}}.$$

By using the second Korn inequality, see [5], the trace and the Poincaré's inequalities, one easily gets from (1.4) the following estimate

$$||\nabla u||_{0,\Omega} \leq \frac{1}{c_k} \frac{1}{2\mu} \Big(c_p ||f||_{0,\Omega} + c_{p,t} ||g||_{\frac{1}{2},\Gamma - \Gamma_0} \Big), \tag{1.6}$$