On Regularization of a Source Identification Problem in a Parabolic PDE and its Finite Dimensional Analysis

MONDAL Subhankar and NAIR M. Thamban*

Department of Mathematics, IIT Madras, Chennai 600036, India.

Received 14 May 2020; Accepted 8 March 2021

Abstract. We consider the inverse problem of identifying a general source term, which is a function of both time variable and the spatial variable, in a parabolic PDE from the knowledge of boundary measurements of the solution on some portion of the lateral boundary. We transform this inverse problem into a problem of solving a compact linear operator equation. For the regularization of the operator equation with noisy data, we employ the standard Tikhonov regularization, and its finite dimensional realization is done using a discretization procedure involving the space $L^2(0, \tau; L^2(\Omega))$. For illustrating the specification of an a priori source condition, we have explicitly obtained the range space of the adjoint of the operator involved in the operator equation.

AMS Subject Classifications: 35R30, 65N21, 47A52

Chinese Library Classifications: O175.26

Key Words: Ill-posed; source identification; Tikhonov regularization; weak solution.

1 Introduction

Let $d \ge 1$ and Ω be a bounded domain in \mathbb{R}^d with Lipschitz boundary. For a fixed $\tau > 0$ we denote the cylindrical domain $\Omega \times [0,\tau]$ by Ω_{τ} and its lateral surface $\partial \Omega \times [0,\tau]$ by $\partial \Omega_{\tau}$. Let Σ be a relatively open subset of $\partial \Omega$. We denote the boundary surface $\Sigma \times [0,\tau]$ by Σ_{τ} . For

 $f \in L^2(0,\tau;L^2(\Omega)), \quad g \in L^2(0,\tau;L^2(\partial\Omega)), \quad h \in L^2(\Omega),$

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* s.subhankar800gmail.com (S. Mondal), mtnair@iitm.ac.in (M. T. Nair)

we consider the parabolic PDE

$$\begin{cases} u_t - \nabla \cdot (Q(x)\nabla u) = f & \text{in } \Omega_{\tau}, \\ Q(x)\nabla u \cdot \vec{n} = g & \text{on } \partial \Omega_{\tau}, \\ u(\cdot, 0) = h & \text{in } \Omega, \end{cases}$$
(1.1)

where $Q \in (L^{\infty}(\Omega))^{d \times d}$ is a symmetric matrix with entries from $L^{\infty}(\Omega)$ satisfying the uniform ellipticity condition, that is, there exist a constant $\kappa_0 > 0$ such that

$$Q\xi \cdot \xi \ge \kappa_0 |\xi|^2$$
 a.e on Ω , and for all $\xi \in \mathbb{R}^d$, (1.2)

where $|\xi|^2 = \xi_1^2 + \ldots + \xi_d^2$ for $\xi = (\xi_1, \ldots, \xi_d) \in \mathbb{R}^d$ and \vec{n} is the outward unit normal to $\partial \Omega$.

Throughout the paper, for a Banach space X, $\phi \in L^2(0,\tau;X)$ means ϕ is an X-valued function on $[0,\tau]$ such that $t \mapsto \|\phi(t)\|_X$ belongs to $L^2[0,\tau]$. Also, throughout we use the standard notations of the function spaces $L^2(\Omega)$ and the Sobolev spaces $H^1(\Omega)$ (see [1–3]).

For results related to existence and uniqueness of the classical solution corresponding to the forward problem associated with (1.1), namely, that of finding u satisfying (1.1) from the knowledge of f,g,h as considered above, one may refer to [4–6]. In certain cases, a classical solution may not exist for the forward problem, but we may have a *weak solution*. In [5, Theorem 2.4], the authors have given an existence result for a weak solution of (1.1). We first state the existence result precisely, whose proof follows along similar lines as in [5, Theorem 2.4].

Theorem 1.1. ([5, Theorem 2.4]) Let $f \in L^2(0,\tau;L^2(\Omega))$, $g \in L^2(0,\tau;L^2(\partial\Omega))$ and $h \in L^2(\Omega)$. Also, let $Q \in (L^{\infty}(\Omega))^{d \times d}$ be symmetric satisfying the uniform ellipticity condition (1.2). Then there exists a unique $u \in L^2(0,\tau;H^1(\Omega))$ with $u_t \in L^2(0,\tau;(H^1(\Omega))')$ satisfying

$$\langle u_t(\cdot,t),\varphi\rangle + \int_{\Omega} Q\nabla u(\cdot,t) \cdot \nabla \varphi \, \mathrm{d}x = \int_{\Omega} f(\cdot,t) \varphi \, \mathrm{d}x + \int_{\partial \Omega} g \varphi \, \mathrm{d}x \tag{1.3}$$

for all $\varphi \in H^1(\Omega)$ and for a.a.(almost all) $t \in [0, \tau]$ with $u(\cdot, 0) = h$ a.e. in Ω . Further, there exists a constant $C_1 > 0$, independent of f, such that

$$\|u\|_{L^{2}(0,\tau;H^{1}(\Omega))} + \|u_{t}\|_{L^{2}(0,\tau;(H^{1}(\Omega))')}$$

$$\leq C_{1} \Big(\|f\|_{L^{2}(0,\tau;L^{2}(\Omega))} + \|g\|_{L^{2}(0,\tau;L^{2}(\partial\Omega))} + \|h\|_{L^{2}(\Omega)} \Big).$$
(1.4)

In (1.3), the notation $\langle \cdot, \cdot \rangle$ stands for the duality action between $H^1(\Omega)$ and $(H^1(\Omega))'$, where $(H^1(\Omega))'$ stands for the dual of $H^1(\Omega)$. Also, u_t denotes the distributional derivative of u with respect to t, that is, u_t is the unique element in $L^2(0, \tau; (H^1(\Omega))')$ such that

$$\int_0^\tau \varphi'(t)u(t)dt = -\int_0^\tau \varphi(t)u_t(t)dt \quad \text{for all } \varphi \in C_c^\infty(0,\tau).$$