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Abstract. The aim of this paper is to study the obstacle problem associated with an
elliptic operator having degenerate coercivity, and L!—data. The functional setting
involves Lebesgue-Sobolev spaces with variable exponents. We prove the existence of
an entropy solution and show its continuous dependence on the L! —data in W1()(Q)
with some g(-) >1.
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1 Introduction

Let Q CRRYN (N >2) be a bounded domain with smooth boundary 9Q). and f € L}(Q)). We
consider the following nonlinear problem

Au=f, inQ,
{ u=0, on d(), (1.1)

where A the operateur define by

a(x,Vu)

Au=—di .
T ) ul) ™

(1.2)
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p,y€C(Q), and p*:=max, gp(x), p~ :=min _gp(x); furthermore, p, satisfy

2——11]<p_§p(x)§P+<N, VxeQ, (1.3)
) — N(p(x)—1) _

<~t P(X) 1 p — + — .

0<vy <mm{N—p(x) " NZ1 1¢, v"<p -1, (1.4)

and b is an L* —function satisfying, with some v >0
0<b(x)<v, (1.5)

a: QxRN RN is a Carathéodory function, i.e. a(.,¢) is measurable in (), for any ¢ in
RY; and a(x,.) is continuous in RY, for almost every x € (). Meanwhile, a satisfies

a(x,6).&>alg", (1.6)
la(x,8) | <B(j(x)+1g" ), (17)
(a(x,8) —a(x 1) (E=1) >0, (18)

G—glP-t, if1<p(x)<2,

(
(A+]E|+1Z)PD 2 e —gl, if p(x) =2 19

Ia(x,é‘)—a(x,g)lgy{

for almost every x € () and for every ¢,,( € RN with ¢ #1, where a, 8,y are constants,
and j is a nonnegative function in L? () (Q)).

If f has a fine regularity, e.g., f € W~ 7' ()(Q), the obstacle problem corresponding to
(f,9,g) can be formulated in terms of the inequality

a(x,Vu)
/Q (T+b(x)[u]) 7™ 'V(”_”)d”/ﬂf(“—v)dxzof (1.10)

for every v € Kg N L®(Q)) >0, whenever the convex subset
Kgp={ve WO (Q); v—ge W) (Q), 0> p,ae.in Q} £0

is nonempty. However, if f € L}(Q)), the right integral in (1.10) is not well-defined.
Following [1] etc., we are led to the more general definition of a solution to the obsta-
cle problem, using the truncation function at level k>0, T;:R — R defined by

s, if [s| <k,
Ti(s)= { kS, if|s| > k.
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