STABILITY AND HOPF BIFURCATION OF STATIONARY SOLUTION OF A DELAY EQUATION*

Zhou Li

(Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, China)

Fu Yiping

(Department of Mathematics, South China University of Technology, Guangzhou 510641, China) (Received Apr. 6, 1998)

Abstract In this paper we investigate a Logistic equation with delay and it is shown that if b(x) > c(x), the stationary solution is globally asymptotically stable; if τ is small, U(x) is locally stable; if b(x) < c(x), there is Hopf bifurcation from U(x).

Key Words Logistic equation; delay; stability; Hopf bifurcation.

1991 MR Subject Classification 35K57.

Chinese Library Classification 0175.26, 0175.29, 0175.21.

1. Introduction

In this paper we study the following Logistic equation with instantaneous and delay effects

$$\begin{split} \frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2} + u(x,t)[a(x) - b(x)u(x,t) - c(x)u(x,t-\tau)], \quad \Omega \times [0,\infty) \\ B[u](x,t) &= 0, \qquad \qquad \partial \Omega \times [0,\infty) \\ u(x,t) &= \eta(x,t), \qquad \qquad \Omega \times [-\tau,0] \end{split}$$

where $\eta \in C([-\tau, 0], H_0^1[0, \pi])$, $\tau \geq 0$ is constant. The functions a(x), b(x), c(x) are positive and Hölder continuous on $\overline{\Omega}$. The boundary condition is given by Bu = u or $Bu = \frac{\partial u}{\partial n} + \gamma(x)u$ where $\gamma \in C^{1+\alpha}(\partial\Omega)$, $\gamma(x) \geq 0$ on $\partial\Omega$ and $\frac{\partial}{\partial n}$ denotes the outward normal derivative on $\partial\Omega$.

The problem (1.1) describes the evolution of population u subject to diffusion, having delay effects in the growth rate. The related problems when a, b, c are constants

^{*} The project supported by National Natural Science Foundation of China.

or related ordinary differential equation have been treated extensively [1-5, and their references].

It is well known that the steady-state problem

$$\frac{\partial^2 u}{\partial x^2} + u(a(x) - b(x)u - c(x)u) = 0, \quad x \in \Omega$$

$$Bu = 0, \quad x \in \partial\Omega$$

- if λ₁ ≥ 1, it has only the trivial solution 0 which is globally asymptotically stable with respect to every nonnegative initial function,
- (2) if λ₁ < 1, it has a unique positive solution U(x) which is globally asymptotically stable with respect to every nonnegative, nontrivial initial function,

where λ_1 is the smallest eigenvalue of the eigenvalue problem

$$\frac{\partial^2 \phi}{\partial x^2} + \lambda a(x)\phi = 0, \quad x \in \Omega, \quad B\phi = 0, \quad x \in \partial\Omega$$
 (1.2)

Obviously, U(x) is also a stationary solution of (1.1). However, as a solution of the delay equation (1.1), the stability of U(x) is different.

The content of this paper is organized as follows. In Section 2 we show that when b(x) > c(x), for any $\tau \ge 0$, the stationary solution U(x) is globally asymptotically stable. In Section 3, for small τ and for any b(x), c(x), it is given that U(x) is linearized stable. Section 4 is devoted to the study of Hopf bifurcation from U(x) as τ varies when b(x) < c(x).

2. Globally Asymptotic Stability of U(x) when b(x) > c(x)

Theorem 2.1 Let $L \equiv \max_{x \in \overline{\Omega}} \frac{c(x)}{b(x)}$ and $\tau > 0$. If $\lambda_1 < 1$ and L < 1, then U(x) is globally asymptotically stable in (1.1) with respect to every nonnegative initial function $\eta(x,t)$ with $\eta(x,0) \equiv 0$.

Proof It is obvious that $c(x) \leq Lb(x)$ on $\overline{\Omega}$. Hence

$$c(x) \le \frac{L}{L+1}(b(x)+c(x)), \ b(x) \ge \frac{1}{L+1}(b(x)+c(x)), \ \text{on} \ \overline{\Omega}$$
 (2.1)

Let U^* be the nonnegative solution of the following parabolic problem

$$\begin{split} \frac{\partial U^*}{\partial t} - \frac{\partial^2 U^*}{\partial x^2} &= U^*(a(x) - b(x)U^*), \quad \Omega \times [0, \infty) \\ BU^* &= 0, \qquad \qquad \partial \Omega \times [0, \infty) \\ U^*(x, 0) &= \eta(x, 0), \qquad \Omega \end{split}$$