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Abstract We introduce a metric, conformal to the affine metric, on a convex
graph, and consider the Euler equation of the volume functional. We establish a priori
estimates for solutions and prove a Bernstein-Jörgens type result in the two dimensional
case.
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1. Introduction

In this paper we study locally uniformly convex solutions of fourth order elliptic
equations of the form

L[u] = U ijwij = f, (1.1)

in the n-dimensional Euclidean space, Rn, where (U ij) is the cofactor matrix of the
Hessian matrix (uij) = D2u ≥ 0, w = [detD2u]α, α 6= 0 is a constant, and f is a
given function in Rn. The operator L is the Euler operator (up to a constant) of the
functional

J(u) =
∫

[detD2u]1+α. (1.2)

Let M = {(x, u(x)) | x ∈ Rn} be a locally uniformly convex hypersurface, given by
the graph of u. We introduce a metric g on M, defined by

gij = ρuij , (1.3)
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where ρ = [detD2u](1+2α)/n > 0. Then (1.2) is the volume functional of the metric g.
Note that (1.1) can also be written in the form (suppose f = 0)

∆gρ = 0, (1.4)

where ∆g is the Laplace-Beltrami operator with respect to the metric g.
There has been a growing interest in recent years in functionals involving curvatures

of a hypersurface (or manifold). Well-known examples are the Willmore functional [1,2]
∫

M
H2dσ, (1.5)

the functional proposed by Calabi [3-5]
∫

M
S2dσ (1.6)

and the affine surface area functional [6,7]
∫

M
K1/(n+2)dσ, (1.7)

where H, S, K are respectively the mean curvature, the scalar curvature, and the Gauss
curvature, and dσ is the volume element onM. The Euler equations of these functionals
are strongly nonlinear fourth order partial differential equations.

Our knowledge on higher order nonlinear partial differential equations is limited up
to date, although there are some isolated results. The study of the functional (1.2)
may help to understand other functionals such as (1.5)-(1.7). Note that the metrics g

in (1.3) are conformal to each other for different α. If α = −1
2 , the metric g in (1.3) is

called the Schwarz-Pick metric [8]. When α = −n+1
n+2 , the metric

gij = ga
ij = [detD2u]−1/(n+2)uij (1.8)

is the affine metric (Berwald-Blaschke metric). In this case the equation (1.1) is the
affine maximal surface equation for f = 0, and the affine mean curvature equation
for general f . In [7] we proved interior estimates and solved the Bernstein problem in
dimension two for the affine maximal surface equation.

In this paper we study the equation (1.1) with positive exponent α > 0. We will
first derive a priori estimates (Section 2) and then prove the Bernstein-Jörgens theorem
for the equation (1.1), with f ≡ 0, in two dimensions (Section 3). In [9] Jörgens proved
that an entire convex solution to the Monge-Ampère equation

detD2u = 1 (1.9)

must be a quadratic function if n = 2. Jörgens’ result was extended to high dimensions
by Calabi for 3 ≤ n ≤ 5 and Pogorelov for all n ≥ 2, see [10]. Jörgens’ result can also


