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Abstract We study the traveling wave solutions of a nonlinear degenerate parabolic
equation with non-divergence form. Under some conditions on the source, we establish
the existence, and then discuss the regularity of such solutions.
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1. Introduction

This paper is concerned with the traveling wave fronts of the following nonlinear
degenerate equation with non-divergence form

∂u

∂t
= um4u + unf(u), x ∈ RN , t ∈ R+, (1.1)

where m ≥ 1, n > 0 and f is continuously differentiable. Such an equation is quite
different from the well-known porous medium equation with an absorption

∂u

∂t
= ∆up + uqf(u), (p > 1, q > 0) (1.2)

although it can be transformed into an equation like (1.1), with the exponent m =
p− 1

p
which falls into the interval (0, 1). During the past decades, the equations whose prin-
cipal parts are in divergence form, like (1.2), have been deeply investigated. However,
as far as we know, there are only a few works devoted to the equations whose principal
parts are not in divergence form like (1.1). Among the earliest works in this respect, it
is worthy to mention the work [1] by Allen, who did discuss such kind of equation with
m = 1 in one dimensional case, modeling the diffusive process for biological species. It
was Friedman and McLeod [2] who studied the blow-up properties of solutions for the
equation with m = 2, n = 3 in multi-dimensional case. We may also mention the work
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[3] by Passo, where the basic existence, uniqueness and the properties of solutions are
investigated in detail for the case m = 1. Recently, Wang, Wang and Xie [4] studied
the equation for any m > 1 with n = m + 1, and discussed the global existence and
blow-up properties of solutions. Furthermore, we point out that Bertsch has obtained
several important results on the similar equations like (1.1) or (1.2), see [5–7].

In this paper, we are much interested in the discussion of the traveling wave solutions
of the equation (1.1) with m ≥ 1 and n > 0. For the same question about the degenerate
or non-degenerate diffusion equations whose principal parts are in divergence form, we
refer to [8–13]. First, we introduce the following

Definition A function u(z) ∈ C(R) with z = γ · x + t for some 0 6= γ ∈ RN is
called a traveling wave front of the equation (1.1) if there exist −∞ ≤ zl < zr ≤ +∞
such that

(i) u(z) ∈ C2(zl, zr) and satisfies

u′ = |γ|2umu′′ + unf(u), ∀z ∈ (zl, zr);

(ii) u(zl) = θl, u(zr) = θr, where θl and θr are zero or the zero points of f(u);
(iii) u(z) is strictly monotone in the interval (zl, zr), u(z) = θl for z ∈ (−∞, zl) and

u(z) = θr for z ∈ (zr,+∞);
(iv) If u(zl) < u(zr), then u′(zr) = 0, while if u(zl) > u(zr), then u′(zl) = 0.
Furthermore, if u′+(zl) = u′−(zr) = 0, we call u(z) a smooth traveling wave front,

where u′+ and u′− denote the right and the left derivative of u.
To discuss the traveling wave fronts, let us first change the form of the equation.

Let p = u′ and c =
1
|γ|2

, the wave speed. Then for z ∈ {z ∈ (zl, zr) : u(z) > 0}, we get

that {
u′ = p,

p′ = cu−mp− cun−mf(u).
(1.3)

As we did for the equation whose principal part is in divergence form, we consider
the following two typical cases

f(1) = 0, f ′(1) < 0, and f(s) > 0 for s ∈ [0, 1), (H1)

and

f(0) < 0, f(1) = 0, f ′(1) < 0, f(u) < 0 for s ∈ (0, a) and f(s) > 0 for s ∈ (a, 1),
(H2)

where a is a given number in (0, 1). First, in Section 2 we discuss the case for f

satisfying (H1). Different from the equation (1.2), see [14], there is no minimal wave
speed for the solutions of the equation (1.1). In other words, for any c, there always
exists a traveling wave front with the wave speed c for equation (1.1). Then in Section
3, we study the case with f changing sign, namely, the case for f satisfying (H2). As it
was shown in [15], there exists one and only one wave speed c∗ such that the equation


